
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT DRAFT

A MICRO-PENETROMETER FOR
SNOW AND SOIL STRUCTURAL

ANALYSIS

Team #12

CHENGHAO MO (cmo8@illinois.edu)
XING SHEN (xings2@illinois.edu)

ZHEYAN WU (zheyanw2@illinois.edu)
CHENXIAN MENG (cmeng10@illinois.edu)

May 8, 2024

Abstract

Micro-penetrometers serve as indispensable tools in various scientific and environmental
applications for non-destructive analysis of soil and snow compositions and their struc-
tural relationships. However, existing micro-penetrometers encounter limitations such
as mobility constraints and inefficiencies in batch measurement and data transmission.
This report elaborates on the development process of our enhanced micro-penetrometer,
undertaken as part of the ECE445 course. Our micro-penetrometer builds upon exist-
ing functionalities by incorporating horizontal motion along the x and y axes, facilitat-
ing enhanced maneuverability. Additionally, we have integrated Bluetooth technology
for seamless data transmission, ensuring portability and convenience. This project rep-
resents a significant advancement in micro-penetrometer design, addressing key limi-
tations and enhancing usability across scientific research and environmental forecasting
domains.

ii

Contents

1 Introduction 1
1.1 Problem and Solution Overview . 1
1.2 System Components . 2
1.3 Performance Requirements . 3
1.4 Design Modifications . 3

2 Design 4
2.1 Design procedure . 4

2.1.1 Structure Design . 4
2.1.2 Connection Schemes . 5
2.1.3 Force Sensor . 6

2.2 Design details . 6
2.2.1 Force Sensor . 6
2.2.2 Voltage Amplifier . 7
2.2.3 Motor Unit . 8
2.2.4 Microcontroller (STM32F407) . 9
2.2.5 Bluetooth Module (ATK-MW579) . 12
2.2.6 Control Program . 13
2.2.7 Connector Designs . 17

3 Verification 19
3.1 Force Sensor . 19

3.1.1 Verification Process - Linearity . 19
3.1.2 Verification Process - Accuracy of Proportional Relationship 19
3.1.3 Conclusion . 22

3.2 Bluetooth Module . 22
3.2.1 Verification Process . 22
3.2.2 Results . 23

3.3 Motors . 23
3.3.1 Horizontal Movement Verification . 23
3.3.2 Vertical Movement Verification . 24

3.4 Overall System Verification . 24
3.4.1 Soil Test Setup . 24
3.4.2 Procedure . 25
3.4.3 Results and Analysis . 26

4 Costs 27
4.1 Labor . 27
4.2 Parts . 27
4.3 Grand Total . 29

5 Conclusions 30
5.1 Accomplishments . 30

iii

5.2 Uncertainties and Alternatives . 30
5.3 Ethical Considerations . 31
5.4 Broader Impacts . 32

References 33

Appendix A Requirement and Verification Table 34

Appendix B Motor, ADC and Bluetooth Communication 38

Appendix C Control Program 46

iv

1 Introduction

1.1 Problem and Solution Overview

In various fields such as agricultural production, archaeology, and disaster warning, the
analysis of soil (sand, snow) is particularly important. The use of mechanical penetration
can detect the bonding forces of soil (sand, snow) at different depths, and serve for sub-
sequent data analysis. The existing analytical instruments have many problems, such as
too large volume, limited application scenarios, insufficient operation convenience, and
insufficient accuracy[1], [2]. We aim to develop a portable, easy-to-use device that deliv-
ers intuitive results and can adapt to various scenarios for users.

We envisioned designing a machine that could drive a rod with a force sensor into soil
(sand, snow) and record the force it received in real time. After integrating the data
records, the penetration force characteristics of the sample at different depths could be
visually reflected by color. Furthermore, this machine could also achieve multiple sam-
pling and analysis of small-scale ground samples without moving the device by changing
the horizontal position of the rod.

The specific implementation method is as follows: The controller controls the movement
of the mechanical structure. During the movement, the data collected by the force sensor
can be transmitted to the computer in real time by Bluetooth, and stored in the computer.
The data analysis and result presentation can be carried out through the supporting soft-
ware on the computer. After a single sampling, the rod will be reset to the initial height. If
necessary, the horizontal position of the rod will be changed and the sample will be taken
again. In addition, in the case of Bluetooth connection, users can also control the machine
by using Bluetooth devices.

Our solution is to design an mechanical product which can test the force when drug-
ging into the soil with pressure sensor and move xyz axis automatically. Also, we need
to design the control parts to control the motor movement and read the transient data of
sensor. The data can be displayed on computer with Bluetooth block.

1

1.2 System Components

Figure 1: Block Diagram

The system is divided into several key blocks, shown in figure 1, each meticulously de-
signed to handle specific functionalities within the overall operation:

• Mechanical System: Comprises three stepper motors; two manage horizontal move-
ment across a 7x7 grid, and one is connected to a lead screw for precise vertical
drilling.

• Sensing and Data Acquisition: Utilizes a force sensor to detect resistance as the
probe penetrates different materials. Data are transmitted via Bluetooth to the host
computer where it is processed and visualized.

• Control Unit: Features an embedded STM32 microcontroller that processes sensor
inputs, manages motor operations, and communicates via Bluetooth with the host
computer.

2

• Control Program: Includes a user interface that allows scanning for available de-
vices and another interface for sending commands, receiving data, and plotting re-
sults..

1.3 Performance Requirements

The performance requirements defined in the final version of our proposal include:

• Maximum penetration depth of 50 cm.

• The probe can move horizontally, with a minimum displacement of at least 30cm
along both the x and y axes.

• The software can record information for all detection points, including depth and
the magnitude of pressure applied.

• Users can control the entire system via Bluetooth.

• The error of the horizontal motor should be controlled within 5%, while the error of
the vertical motor should be controlled within 2%.

• The software will be able to provide a 3D visualization of the data results, allowing
users to have a more intuitive understanding of the detected terrain.

• Battery life sufficient to support at least 50 uses on a single charge.

1.4 Design Modifications

Throughout the development process, several significant modifications were made to en-
hance the performance of the system. These changes were driven by initial testing out-
comes and feedback, leading to improvements in sensor integration and motor control
mechanisms.

• Sensor Integration: Initially, the force sensor was directly connected to the data
acquisition system. To improve the accuracy and reduce noise interference, we in-
tegrated the force sensor with a charge amplifier. This setup not only enhanced
the signal-to-noise ratio but also improved the overall measurement accuracy. Ad-
ditionally, modifications were made to the mounting of the force sensor to further
minimize noise and increase the precision of the data captured.

• Motor Control: The control of the motors was initially based on basic algorithms
which did not account for the non-linearities in motor response. To address this, we
implemented a Pulse Width Modulation (PWM) algorithm to refine the control over
the motor’s motion angles. This allowed for precise control of the motor’s position
and, consequently, the depth to which the probe could penetrate. The revised algo-
rithm also facilitated an accurate transformation of angular movement into specific
depth measurements, significantly improving the responsiveness and accuracy of
the probe’s movements.

3

2 Design

2.1 Design procedure

2.1.1 Structure Design

In terms of mechanical structure design, the first is the overall design of the structure.
Since we need to control the movement of the detection rod in three directions xyz, we
came up with a structure similar to a 3D printer, with independent motors in each direc-
tion to control its movement in their respective directions. The first idea we came up with
was similar to a cube framework, but soon we found a better structure to do this. The
new structure uses less material and is also smaller, more in line with our requirements
for portability and light weight. After the structure is roughly determined, the choice of
transmission mechanism is also very important. At present, the more popular three-axis
transmission mainly has two ways of screw structure and belt transmission, the former
has the advantage of more accurate displacement and greater force, and the latter has the
advantage of faster movement, lighter weight and cheaper price. Finally, we used a screw
structure on the z axis and a belt structure on the xy axis. Because the Z-axis is responsi-
ble for pushing the detection rod into the soil while ensuring uniform movement, while
the movement of the xy axis has less demand for accuracy and force. After comprehen-
sive consideration of cost, accuracy and other factors, we finally decided to buy the z axis
screw structure online, and the xy axis belt structure is assembled by ourselves.

Figure 2: First Design

4

Figure 3: Final Design

2.1.2 Connection Schemes

There are some connection schemes in the assembly process. For our design, the main
options are the use of glue and screw fixation. In our design, most of them are fixed
by screws. Compared with the direct use of glue, its advantage is that it is easy to dis-
assemble, which is conducive to our modification, and the strength of the connection is
large, which will not be damaged. However, there are also disadvantages, in addition to
the connection between aluminum profiles can use corner code and ladder nuts, the con-

5

nection between other parts require us to design and print 3D printed parts, and design
screw holes on the 3D printed parts for connection. So in our design, all the connections
in the main structure are fixed with corner codes or 3D printed connectors and screws. Of
course, we also use glue to fix, such as the fixing of the motor is the use of glue. There are
two main reasons for this, one is because the screw hole reserved on the motor above the
aluminum profile is back to the aluminum profile, which means that we need a larger con-
nector to wrap the upper part of the motor in order to use the screw connection, adding a
connector in the limited space will affect the normal operation of other parts; In addition,
because the motor is subjected to less external force, the strength of bonding using 502
glue is enough, and the glue is more convenient.

2.1.3 Force Sensor

In the choice of force sensor, we originally intended to use the most conventional labo-
ratory force sensor, but this idea was quickly rejected - the laboratory force sensor is too
large and follows the pole into the soil.Therefore, we wanted to use the ordinary piezo-
electric sensor module, but found that it has two shortcomings: first, the module is wired
from the side, which will lead to the actual need for more space than its own area, because
it needs to ensure that the wire is passed through the rod under the premise of the sensor
being flat; Second, because the sensor itself can not work alone, it needs to cooperate with
the design of the external structure to complete the detection of the force on the tip, which
requires the external structure to be more fine to ensure the accuracy of the measurement
results, which is more difficult to achieve 3D printing. So we found the sensor we are
using now, it is in line with the characteristics of round, small size, the bottom line can
also meet the design needs, is undoubtedly the best choice.

2.2 Design details

2.2.1 Force Sensor

Input: : Physical force

Output: Voltage change of signal

The force sensor has a built-in Force Sensitive Resistor (FSR) whose resistance varies
according to the applied pressure. The force sensor here, with a 0-300N range and a
sensitivity resolution of 1.0±10% mV/V, is a strain gauge-based transducer designed
to convert applied force into a measurable electrical signal. When interfaced with an
STM32F407IGT6 microcontroller, the sensor’s excitation wires are connected to a stable
5V supply and ground, while the signal wires are linked to the microcontroller’s ADC
inputs to facilitate precise data acquisition. This setup enables the conversion of the me-
chanical force into digital values, which the STM32 controller can process and interpret.
Calibration is imperative to correlate the ADC readings to actual force measurements ac-
curately, considering the sensor’s specified sensitivity and ensuring that the 10% tolerance
is accounted for in the measurement system. This integration not only provides a reliable
method to measure forces within its capacity but also allows for real-time monitoring and

6

analysis when coupled with the microcontroller’s computational capabilities, making it
a suitable choice for a wide range of applications demanding force quantification. The
figure 4 shows the schematic diagram of the force sensor.

Figure 4: Force Sensor Schematic Diagram

2.2.2 Voltage Amplifier

Input: Positive Signal (Force Sensor), Negative Signal (Force Sensor), Power Supply (24V)

Output: Amplified Voltage (+), Amplified Voltage (-), Power Supply for Sensor

The voltage amplifier is a critical component in our system, designed to enhance the low
output signal from the force sensor for accurate digital interpretation by the STM32F407
microcontroller. Given that the force sensor outputs a very low signal of approximately 1
mV, the amplifier’s role is to boost this signal to a more usable level. The selected charge
amplifier outputs a voltage in the range of 0-5V, which corresponds to the force sensor’s
measurement range up to 30 kg. This linear relationship between the output voltage and
the force ensures that 5V represents the maximum force of 30 kg, allowing for precise and
straightforward data interpretation.

Additionally, the amplifier is powered by a 24V supply, ensuring it has sufficient power
to operate effectively. Despite this high input voltage, the amplifier is designed to output
the necessary 0-5V signal, making it compatible with the microcontroller’s ADC, which
has a maximum input voltage of 3.3V. This careful matching of components ensures that
the amplified signal remains within the optimal range for the STM32, facilitating accurate
and reliable force measurements. Integrating the amplifier with the microcontroller’s
onboard voltage output ports not only streamlines the design by eliminating the need
for an additional power source but also ensures the system is both efficient and compact,
reducing the overall complexity of the design.

7

2.2.3 Motor Unit

High-performance stepper motor driver (ATK-PD5050S)

The ATK-PD5050S module [3] is a versatile and rugged stepper motor driver that enables
motors to dig down at a steady speed. The module operates from a 12 to 50V DC supply
voltage range and has an output current of up to 5.0A, effectively driving a two-phase
hybrid stepper motor at a constant speed. It boasts cutting-edge features including high-
resolution microstepping for detailed motion control, load-based power optimisation for
energy savings, and a low-resonance chopper algorithm that minimises vibration for im-
proved motion accuracy. Integrating the ATK- PD5050S with an STM32F407IGT6 micro-
controller typically involves connecting the drive’s power input to the microcontroller’s
controlled voltage output, aligning the motor connections with the drive’s terminals, and
establishing communication for pulse, direction, and enable functions via optically iso-
lated control signals. This integration will facilitate sophisticated motor control through
the microcontroller’s firmware, which generates PWM signals to control motor direction
and to engage or disengage the motor as required by the application.

The figure 5 shows the schematic diagram of the motor, and the table 1 shows the motor
pin descriptions.

Figure 5: Motor Unit Schematic Diagram

8

Pin Name Description

ENA- Enable negative When the negative enable signal is effective, the in-
ternal logic signal is valid. When the signal is in-
valid, the internal logic is suspended, and the output
is low impedance, high level, and the internal clock is
stopped.

ENA+ (5V) Enable positive (5V) When the positive enable signal is effective, the inter-
nal logic signal is valid. When the signal is invalid,
the internal clock is suspended, and the output is high
impedance, high level.

DIR- Direction negative When the negative direction signal is effective, the in-
ternal logic determines the direction, and when the
signal is invalid, the direction is determined exter-
nally.

DIR+ (5V) Direction positive (5V) When the positive direction signal is effective, the in-
ternal logic determines the direction.

PUL- Pulse negative When the negative pulse signal is effective, the inter-
nal logic is triggered, and when the signal is invalid,
the external high level maintains the current state.

PUL+ (5V) Pulse positive (5V) When the positive pulse signal is effective, the inter-
nal logic is triggered, and the speed of the pulse is
200kHz.

Table 1: Motor Driver Pin Descriptions

We hope that this accuracy should be large than 95%. On x and y axis, the large accuracy
means the probe can be control to the right place. Since we want to detect several place
in a 50cm ∗ 50cm square, we should keep every position accurate. Also, for the z axis,
we also hope we can generate a diagram with force and distance, which means the motor
should be accurate enough to represent its position.

Besides, we should also test the accuracy for different motors. The accuracy for each
motor may be different. Which means when we setting parameters and controlling the
motors, we should assign different parameters to different motors. So this step should be
repeat several times for every motors.

2.2.4 Microcontroller (STM32F407)

Input: 5V(USB) or DC6V 24V(DC005), voltage signal from sensor, data from motor driver
Output: command to motor driver, data of force sensor to Bluetooth Module

The microcontroller (ATK-DMF407)[4] serves as the central hub for interfacing with the

9

Bluetooth module (ATK-MW579), the force sensor (DYMH-106), and the motor unit (ATK-
PD5050S). It connects to the Bluetooth module utilizing TX and RX pins for bi-directional
data exchange, allowing for wireless communication with other devices using UART. The
force sensor is linked to an analog GPIO pin on the microcontroller, enabling the measure-
ment of variable voltages that correspond to physical forces applied to the sensor. This
analog signal is then digitized by the microcontroller for processing. For the motor unit,
the microcontroller uses digital GPIO pins to send control signals (enable, direction, and
pulse) to the stepper motor driver, dictating the motor’s operational state, direction, and
speed. This intricate network of connections between the microcontroller and the vari-
ous components facilitates a seamless integration, enabling the microcontroller to collect
data, process inputs, and control outputs, thus forming the backbone of a sophisticated
sensor and control system. Figure 6 shows the STM32 Voltage Amplifier and Force Sensor
Schematic Diagram.

10

Figure 6: STM32 Voltage Amplifier and Force Sensor Schematic Diagram

11

Component Inter-
face

ATK-
MW579
Pin

ATK-
PD5050S
Interface

F407 Corresponding
Interface

Power Supply (VCC) VCC - 5V

Ground (GND) GND - GND

UART Transmit
(TXD)

TXD - PB11

UART Receive (RXD) RXD - PB10

Status Indicator STA - PF6

Wake Up (WKUP) WKUP - PC0

Enable Negative - ENA- PF15

Enable Positive - ENA+ ST+ (Supply Voltage
Positive)

Direction Negative - DIR- PF14

Direction Positive - DIR+ ST+ (Supply Voltage
Positive)

Pulse Negative - PUL- PI5

Pulse Positive - PUL+ ST+ (Supply Voltage
Positive)

Table 2: Microcontroller Pin Interface Mapping

2.2.5 Bluetooth Module (ATK-MW579)

Input: 3.3V 5V power supply and pin connection with microcontroller Output: data trans-
mitted to host device (Bluetooth protocol)

The Bluetooth Module modulates 1Mbps enhanced data rate with complete 2.4GHz ra-
dio[5].

12

Pin Name Description

1, 3, 9, 19, 20 GND Ground

2 ANT Antenna

4 SLEEP Sleep Mode

5 WKUP Wake Up, Active High

6 RELOAD Reload Counter

7 RXD UART Receive (RX) Pin

8 TXD UART Transmit (TX) Pin

10 3V3 Power Supply (3.3V–5V)

11–15, 18 NC Not Connected

16 LINK Connection Status Indicator (Active Low: Connection,
Active High: No connection, Flashing: Transmitting)

17 RST Reset (Active Low)

Table 3: Pin Descriptions of the Bluetooth Module

Connection with STM32 dev board.

ATK-MW579 Pin F407 Corresponding Interface

VCC 5V

GND GND

TXD PB11

RXD PB10

STA PF6

WKUP PC0

Table 4: ATK-MW579 to F407 Interface Mapping

2.2.6 Control Program

The control applet is a crucial component of the micro-penetrometer system, designed to
facilitate seamless interaction between the user and the device through Bluetooth commu-
nication. It combines user-friendly interface design with robust functionality to control
device operations and visualize data effectively.

13

System Architecture and User Interface The applet is structured into two main pages
as shown in figure 7, each serving distinct functions:

1. Device Scan Page: Allows users to scan for available Bluetooth devices, displaying
each device with its Bluetooth address. Users can select and establish a connection
to the micro-penetrometer from this page.

2. Command and Control Page: Activated post-connection, this page includes:

• Grid Control: A 7x7 interactive grid where users can select coordinates for the
horizontal movement of the probe, sending precise movement instructions to
the system.

• Operational Commands: ’Start’ and ’Return’ buttons to begin and reverse the
drilling operation, simplifying probe management.

• Data Visualization: Features for plotting and analyzing data, such as an overview
plot of force values across various positions and depths, and options to select
specific coordinates for detailed analysis.

Figure 7: Left: Device Scan Page. Right: Command and Control Page.

14

Integration and Functionality The program communicates directly with the STM32 mi-
crocontroller via Bluetooth. It sends encoded command strings to the microcontroller,
which interprets these and controls the motors accordingly. Force data collected by the
system is sent back to the applet for processing and visualization:

• Data Flow: The program encodes operational commands as strings, which are de-
coded by the STM32 to execute motor actions. Feedback from the force sensor is
transmitted back to the applet and displayed graphically.

• Graphical Representation: Real-time graphical outputs generated within the applet
illustrate the force dynamics relative to probe depth and position, using python
matplotlib.pyplot for data visualization.

Design Considerations To enhance the system’s usability and extend its analytical ca-
pabilities, several key design considerations were implemented:

• Data Storage and Analysis: All data collected during probe operations are stored in
a SQLite database, which offers robust data management without the limitations of
the STM32’s onboard storage capacity. This approach allows for extensive data ac-
cumulation without concerns about space constraints. The use of SQLite facilitates
complex data queries and supports extensive analysis post-collection. Further, data
visualization is performed using Python packages, which provide powerful tools
for generating insightful graphical representations from the stored data.

• Plotting Methods: The control applet incorporates two primary methods for data
visualization:

1. Overall Plotting: This method provides a comprehensive overview of all col-
lected data, allowing users to quickly assess and analyze the force values across
all tested positions and depths. It is particularly useful for identifying patterns
and anomalies across the entire data set. The figure 8 shows the overall plot-
ting.

2. Position-Specific Plotting: Enables detailed visualization of data at specific
grid coordinates. This feature is essential for in-depth analysis of the probe’s
performance at particular locations, facilitating detailed assessments that may
inform adjustments or further targeted investigations.The figure 9 shows the
overall plotting.

15

Figure 8: Overall Plotting

(a) Position (1,3) Plot (b) Position (2,2) Plot (c) Position (1,1) Plot

Figure 9: Position-Specific Plotting

These considerations are crucial for ensuring the system not only performs data collection
efficiently but also supports detailed analysis and easy access to historical data for longi-
tudinal studies or iterative testing scenarios. The integration of robust data handling and
versatile visualization options enhances the overall functionality and user experience of
the micro-penetrometer system.

16

2.2.7 Connector Designs

Here are some important connectors we designed. They are finally processed in the form
of 3D printing.

Figure 10: Connector 1

Figure 11: Connector 2

17

Figure 12: Connector 3

18

3 Verification

3.1 Force Sensor

The force sensor is the most critical component in data acquisition for this project. The
verification method used for this component consists mainly of two steps: validating the
linear relationship between the output voltage of the sensor and the applied force, and
calculating the accuracy of proportional relationship between the force exerted on the
sensor and its output voltage. Table 9 shows the requirement and verification table for
the force sensor.

3.1.1 Verification Process - Linearity

Validation of the linear relationship of the force sensor is based on the premise that when
the sensor receives the same magnitude of tension or pressure, its output voltage remains
constant. Our validation method relies on a precise laboratory force sensor. We conducted
experiments by applying tension and simultaneously recording the voltage output of the
sensor as well as the force measured by the laboratory force sensor, then plotted the data.
Figure 13 shows the verification for linearity.

Figure 13: The Verification for Linearity

The left of figure 13 displays the voltage signals received by the microcontroller from the
sensor, which have been amplified by an amplifier. The x-axis represents time, and the
y-axis represents the voltage magnitude. The right of figure 13 shows the force signals
received by the laboratory’s force sensor, with the x-axis also representing time and the
y-axis representing force magnitude. Comparing the two images, we can observe that
their trends are essentially identical, with differences primarily attributable to variations
in sampling frequencies between the two sensors. Given that the force displayed by the
right-side sensor exhibits a linear relationship, it is not difficult to demonstrate that the
force exerted by our sensor is also linearly correlated with voltage magnitude.

3.1.2 Verification Process - Accuracy of Proportional Relationship

The validation of the proportional relationship of the force sensor involves ensuring that
the force measured by the sensor corresponds accurately to the voltage output. The fol-
lowing steps outline the verification process:

19

First, the experiment setup requires placing the force sensor in contact with the scale,
ensuring it is perpendicular to the plane of the scale. This proper alignment is crucial for
accurate measurement and consistency in results.

Next, the measurement recording involves several steps. Initially, record the degree of
the force sensor in terms of voltage. Following this, calculate the force using the formula
(1):

Force = Voltage × 30 (force sensor range)× 9.81

5 (charge amplifier range)
(1)

Simultaneously, record the force values measured by the scale. This dual recording en-
sures that the force values calculated from the voltage output of the force sensor can be
compared against the actual force values measured by the scale, thus validating the accu-
racy and proportionality of the force sensor. The figure 14 shows the process.

Figure 14: The scale used to measure the voltage output of the force sensor in contact with
it.

The comparison graph of standard force versus detected force by the force sensor (see
Figure 15) shows a high degree of correlation between the two measurements. The nearly
overlapping lines suggest that the force sensor accurately measures the applied force
across different magnitudes. This accuracy is further supported by the data in Table 5,
which indicates minimal differences between the converted scale values and the force

20

sensor values. The close agreement between these values underscores the sensor’s relia-
bility and precision in detecting force.

Additionally, the mean relative error of 0.0187 demonstrates that the discrepancies be-
tween the measured values are very small. This low error percentage indicates that the
force sensor’s readings are consistently within 1.87% of the standard values, which is
crucial for applications requiring precise force measurements. The relative error for each
measurement is calculated using the formula (Equation 2):

Relative Error =
|Measured Value − True Value|

True Value
(2)

Overall, the data validates the proportional relationship of the force sensor, confirming
that it provides a dependable representation of the actual forces applied. This is evi-
denced by both the graphical (Figure 15) and tabular (Table 5) results.

Figure 15: Comparison of Standard vs. Detected Force

21

Converted Scale Values (N) Force Sensor Values (N) Relative Error

8.53 8 0.06265012

19.62 20 0.01936799

34.46 35 0.01501792

45.02 45 0.00061962

54.37 54 0.00728816

73.49 73 0.00715326

Table 5: Comparison of Converted Scale Values and Force Sensor Values (in Newtons)

3.1.3 Conclusion

The verification process for the force sensor demonstrated that it provides accurate and
reliable measurements, which are critical for the data acquisition in this project. Through
validating both the linear relationship between the output voltage and the applied force
and the accuracy of the proportional relationship, we confirmed that the force sensor
performs consistently under varying conditions.

The successful validation process underscores the importance of the force sensor in our
project. By ensuring that the force measurements are both accurate and proportional
to the applied force, we can confidently use the data collected for precise analysis and
decision-making. This reliability is essential for applications where accurate force mea-
surement is crucial.

3.2 Bluetooth Module

The Bluetooth module in our micro-penetrometer system is critical for reliable communi-
cation between the host computer and the device. Ensures that data integrity and com-
mand execution are maintained throughout operations. The primary function of the Blue-
tooth module is to facilitate the transfer of control commands from the host to the device
and to relay data, including force measurements and positional information, back to the
host. Table 10 shows the requirement and verification table for Bluetooth module.

3.2.1 Verification Process

The verification of the Bluetooth module involved several key tests to confirm its opera-
tional integrity and reliability:

1. Command Transmission: Commands such as ”start,” ”return,” and horizontal move-
ment instructions (e.g., ”move 1 1”) were sent from the host computer to the device.
These commands were encoded in UTF-8 format to ensure compatibility and pre-
vent data corruption.

22

2. Motor Response Testing: Upon receiving commands, the motor’s response was
observed to verify that it moved as directed. This test confirmed the system’s ability
to interpret and execute commands accurately.

3. Data Integrity Check: To test the integrity of the data received by the host, the probe
was moved 50 cm without allowing the force sensor to contact any surface. During
this test, data regarding the depth and force were recorded and plotted to assess any
potential data loss or corruption.

3.2.2 Results

The results from the verification tests demonstrated that the Bluetooth module performed
reliably under test conditions. The motor responded accurately to the received com-
mands, and the integrity of the data transmitted back to the host was maintained. The
plot of depth versus force showed consistent and accurate data points, confirming that
the Bluetooth module supports our system’s requirements for precise data handling and
robust wireless communication.

3.3 Motors

The micro-penetrometer system utilizes multiple motors to control both horizontal and
vertical movements with high precision. Verification of these motors is essential to en-
sure precise movement and positioning of the penetrometer’s probe according to system
commands. Table 11 shows the requirement and verification table for motors.

3.3.1 Horizontal Movement Verification

The horizontal movement is controlled by two motors, which navigate the probe across a
7x7 grid.

Procedure

1. Command Execution: Send sequential movement commands from (0,1) to (6,6) to
the motors through the control program, directing them to move the probe across
all grid points.

2. Return Test: After completing the grid movements, send a command (0,0) to ensure
the motors return the probe to its original position.

3. Accuracy Check: By measuring the diameter of the pulley, we can calculate the
theoretical distance traveled by the slider for each 360-degree rotation of the motor.
After measuring the distance traveled by the slider multiple times, calculating the
average value allows us to determine the error in the horizontal movement of the
motor rotation.

23

Results The diameter of the pulley is d = 19mm. So for one cycle, the motor is expected
to move D = π ∗ d = 59mm. By measuring the distance traveled by the horizontal motor
for multiple rotations and obtained their average. By utilizing the following equation 3,
we determined the rotational error of the horizontal motor.

error =
ΣMovement

n
−D

D
∗ 100% = 0.85% (3)

3.3.2 Vertical Movement Verification

The vertical motor is responsible for controlling the depth of penetration by the probe,
essential for collecting accurate subsurface data.

Procedure

1. Depth Command Execution: Issue commands to the vertical motor to rotate the
probe down by 4 complete cycles (1440 degrees).

2. Distance Measurement: Employ an external measuring device to verify the actual
distance the probe has traveled. Repeat this measure several times to ensure re-
peatability and reliability.

3. Angle Verification: Monitor and record the actual angles achieved by the motor
using the control algorithm, checking for precision in achieving the required angular
displacement.

Results By measuring the diameter of the lead screw, we determined that the slider
should descend 20mm when the motor rotates 1440 degrees. We measured the distance
traveled by the slider multiple times. When the motor rotated 1440 degrees, the slider
descended 20.01mm; when it rotated 2880 degrees, the slider descended 40.03mm, and
when it rotated 4320 degrees, the slider descended 60.06mm. From this data, we calcu-
lated the rotational error of the vertical motor by equation 4.

error =
D1+D2+D3

3
−Dexpect]

Dexpect

∗ 100% = 0.1% (4)

3.4 Overall System Verification

The comprehensive verification process of the micro-penetrometer system’s functionality
included testing with four specific types of soil to ensure accuracy and reliability in di-
verse conditions. Table 12 shows the requirement and verification table for overall system
requirements.

3.4.1 Soil Test Setup

Figure 16 shows layered soil sample setup used for the penetration test. The system was
evaluated using the following soil samples, each with distinct physical properties:

24

• Paving Stone: Placed at the top layer, offering a hard surface.

• Pastoral Soil: Rich in organic matter, commonly used in grasslands and agricultural
fields.

• River Sandriversand: Known for its gritty texture, typically found in riverbeds.

• Coconut Soilcoconutsoil: Made from coconut husk fibers, highly absorbent and
lightweight.

Figure 16: Layered soil sample setup used for the penetration test.

3.4.2 Procedure

The procedure involved allowing the probe to penetrate through the soil layers. If the
force exceeded 90 N, the probe would return, and the data would not be recorded.

25

3.4.3 Results and Analysis

Figure 17 shows the force (N) over depth for position (3, 4). The graph illustrates the force
required to penetrate each soil layer. The slope of the graph correlates with the properties
of the different soil types:

Figure 17: Force (N) versus depth (cm) for position (3, 4) showing the resistance encoun-
tered by the probe in different soil layers.

• From 0 to 13 cm, the force data is meaningless as the probe has not yet contacted the
soil.

• From 13 to 20 cm, the force remains relatively low, corresponding to the macadam
layer. This is because the macadam has larger pores and is located at the uppermost
layer, resulting in lower pressure on the drill bit, allowing it to penetrate this layer
easily.

• Beyond 20 cm, the smaller soil particles and their lower layer position result in a
more compact structure. As a result, the pressure on the drill bit increases signif-
icantly with depth. The obtained data matches the images presented in the refer-
enced paper, demonstrating that our device accurately reflects the expected data.

26

4 Costs

4.1 Labor

Name1 Hourly
Rate1

Hours1 Total1 Total x2.51

Chenghao Mo1 ¥301 2001 ¥60001 ¥150001

Xing Shen1 ¥301 2001 ¥60001 ¥150001

Zheyan Wu1 ¥301 2001 ¥60001 ¥150001

Chenxian
Meng1

¥301 2001 ¥60001 ¥150001

Total1 ¥600001

Table 6: Labor Costs1

4.2 Parts

Table 7: Component Costs

Description Quantity ManufacturerVendor Cost/unit Total cost

Li-Polymer Bat-
tery (14.8 V, 48
Wh)

1 Wei Zhen Tao Bao ¥34.20 ¥34.20

GGP Dual op-
tical axis ball
screw module
guide rail with
motor

1 Mei Ke
Transmis-
sion

Tao Bao ¥310.00 ¥310.00

57HB56L4/1.2Nm
motor

2 Planetary
Decelera-
tion

Tao Bao ¥50.00 ¥100.00

3030N1-
Aluminum
profile

4 YYDS Tao Bao ¥24.00/m ¥56.00

Continued on next page

27

Table 7 – continued from previous page

Description Quantity ManufacturerVendor Cost/unit Total cost

3030ED-
Aluminum
profile

1 YYDS Tao Bao ¥21.00/m ¥12.00

Manufacture
service for
Aluminum
profile

4 YYDS Tao Bao ¥1.00 ¥4.00

3030 Corner
code

10 YYDS Tao Bao ¥1.20 ¥12.00

Delivery fee for
Aluminum pro-
file

1 YYDS Tao Bao ¥12.00 ¥12.00

DYM-106 Micro
pressure sensor

2 Ocean
Sensor

Tao Bao ¥234.00 ¥234.00

Bluetooth mod-
ule

1 Zheng
Dian
Atom

Tao Bao ¥56.36 ¥56.36

Stepper motor
driver

3 Zheng
Dian
Atom

Tao Bao ¥114.86 ¥344.58

Motor control
development
board

1 Zheng
Dian
Atom

Tao Bao ¥532.38 ¥532.38

Plum blossom
handle screw

4 Wu Xi
Quality

Tao Bao ¥0.74 ¥2.80

Large head
screw

1 Guwan Ji Tao Bao ¥7.82 ¥7.82

Guide rail slide 3 Zhejiang
Zhenhao

Tao Bao ¥30.00 ¥90.00

Guide rail slide
with lock

3 Zhejiang
Zhenhao

Tao Bao ¥48.00 ¥144.00

Belt pulley 4 AET
Hardware

Tao Bao ¥9.00 ¥36.00

Continued on next page

28

Table 7 – continued from previous page

Description Quantity ManufacturerVendor Cost/unit Total cost

Belt 2 Libose Tao Bao ¥9.00 ¥18.00

Load sensor
transmitter

1 DaYang
Sensor

Tao Bao ¥234.00 ¥234.00

Garden soil 1 Plant and
Garden

Tao Bao ¥18.62 ¥18.62

River soil and
sand

1 Plant and
Garden

Tao Bao ¥26.68 ¥26.68

Succulent pellet
nutrient soil

1 Plant and
Garden

Tao Bao ¥9.80 ¥9.80

Coconut coir
brick nutrient
soil

1 Plant and
Garden

Tao Bao ¥12.56 ¥12.56

Box 1 Hao Hao
Furniture

Tao Bao ¥43.80 ¥43.80

Large capacity
lithium battery

1 XinDun
energy
lithium
battery

Tao Bao ¥460.00 ¥460.00

Gradienter 1 Zhongke
Long

Tao Bao ¥12.30 ¥12.30

Screw foot pad 4 Niuge Tao Bao ¥3.70 ¥20.80

Hexagon socket
head cap screw

100 Niuge Tao Bao ¥4.60 ¥4.60

Total ¥3083.3

4.3 Grand Total

Section Total

Labor ¥60000

Parts ¥3083.3

Grand Total ¥63083.3

Table 8: Grand Total Costs (Labor + Parts)

29

5 Conclusions

The project has successfully led to the construction of an advanced micro-penetrometer
system designed for detailed analysis of soil and snow structures. The system integrates
three stepper motors: two for precise horizontal movement, and a third motor connected
to a screw for controlling the vertical movement of the probe. This ensures accurate and
controlled penetration into diverse materials.

Central to our system’s functionality is the STM32 microcontroller, which serves as the
command hub. It receives commands from a remote host computer through a Bluetooth
module, dispatches these commands to the motors, and handles data from the force sen-
sor. This data is critical for analyzing the structural properties of the material being pen-
etrated and is sent back to the host for real-time visualization and analysis.

5.1 Accomplishments

The development of the micro-penetrometer system has led to several significant tech-
nological advancements and functional capabilities, enhancing its application in soil and
snow analysis. Key accomplishments of this project are outlined below:

• Precision Control: The system uses Pulse Width Modulation (PWM) to control the
motor’s angle precisely, enabling meticulous positioning of the probe. Integration
of multiple stepper motors allows for exact control over the probe’s positioning and
depth, ensuring precise measurements critical for reliable analysis.

• Real-time Data Processing: Data from the force sensor are transmitted in real time
to a remote host via Bluetooth, and stored in a SQLite database. This setup removes
storage limitations on the STM32 microcontroller and facilitates advanced data anal-
ysis, enhancing the system’s efficiency and analytical capabilities.

• User Interface Development: A custom-developed control program on the host
computer enhances user interaction, enabling precise device manipulation and real-
time data visualization. This intuitive interface simplifies device operation and al-
lows for immediate interpretation of collected data, crucial for field decision-making.

5.2 Uncertainties and Alternatives

Although the system fulfills most of the design specifications, there are areas requiring
further refinement to fully optimize its performance and durability. Specifically, bat-
tery life during continuous operation and the system’s reliability under extreme envi-
ronmental conditions have been identified as critical aspects needing additional explo-
ration.

• Power Management: To extend the operating life, enhancements to the power man-
agement system are necessary. This could involve integrating more efficient battery
technologies or developing advanced energy management protocols that reduce
power consumption during idle periods.

30

• Material Adaptation: The materials currently used need to be evaluated and possi-
bly upgraded to enhance durability and performance under various environmental
conditions, including extreme weather such as rain and snow. This adaptation may
involve using weather-resistant materials or additional sealing processes.

• Circuit Layout and Packaging: There is a need to improve the circuit layout of each
subsystem to maximize space efficiency and enhance the robustness of connections.
Better packaging of components can contribute significantly to the system’s porta-
bility and durability, making it more capable of handling adverse conditions.

• Equipment Modularity and Disassembly: Enhancing the design to allow easier
disassembly and reassembly of the device will facilitate field repairs and mainte-
nance. This modularity will also support the customization of the system based on
specific field conditions or user requirements.

These improvements are essential for ensuring that the micro-penetrometer can operate
reliably in a broader range of environmental scenarios and for prolonging the lifespan of
the device under typical field usage conditions.

5.3 Ethical Considerations

Our project’s commitment to ethical engineering practices is rooted in the principles out-
lined by the IEEE Code of Ethics[6]. We integrate these principles within the scope of our
micro-penetrometer development:

1. Public Safety: We prioritize the safety and well-being of the public by ensuring
the reliable and safe operation of our penetrometer, conducting extensive tests to
mitigate potential hazards.

2. Honesty: We adhere to honesty in reporting findings and claims based on data
obtained by our penetrometer, ensuring accuracy and verifiability.

3. Technological Understanding: We aim to enhance technological understanding
and its appropriate application in soil and snow analysis, with implications for agri-
culture and disaster management.

4. Technical Competency: We maintain technical competence, embarking on tasks
within our expertise, and disclose any limitations in knowledge or abilities.

5. Criticism and Credit: We welcome criticism constructively, acknowledge errors,
and appropriately credit the contributions and efforts of others involved in the
project.

6. Avoiding Harm: We are committed to avoiding harm, by designing a safe-to-handle
device and securely enclosing all electronic components to prevent misuse or acci-
dents.

7. Professional Support: We support our peers in professional development and up-
hold the ethical standards set forth by IEEE, fostering a culture of ethical engineer-
ing.

31

Each principle is actively practiced and reflected in our project methodology, ensuring an
alignment of our technological advancements with ethical engineering standards.

5.4 Broader Impacts

The micro-penetrometer system is designed with the future in mind, capable of integra-
tion with additional sensors such as temperature and humidity detectors. This enhance-
ment would enable a more comprehensive analysis of soil and snow properties, further
expanding its applicability across various fields.

Globally, the micro-penetrometer has significant potential to impact agricultural produc-
tivity, archaeological research, and environmental monitoring. Economically, it offers a
cost-effective solution for on-site soil and snow analysis, potentially reducing the need
for extensive laboratory equipment. Environmentally, the device aids in the assessment
of soil health and snow stability, contributing to sustainable land management and disas-
ter prevention efforts.

In conclusion, the micro-penetrometer system stands as a testament to innovative engi-
neering, combining precise mechanical design with sophisticated software integration to
serve a variety of global needs in soil and snow analysis.

32

References

[1] D. E. Rolston, M. N. A. Bedaiwy, and D. T. Louie, “Micropenetrometer for in situ
measurement of soil surface strength,” Soil Science Society of America Journal, vol. 55,
no. 2, pp. 481–485, 1991. DOI: 10.2136/sssaj1991.03615995005500020031x.

[2] M. Schneebeli and J. B. Johnson, “A constant-speed penetrometer for high-resolution
snow stratigraphy,” Annals of Glaciology, vol. 26, pp. 107–111, 1998.

[3] OpenEDV, Documentation for the ATK-2MD4850 Module, http://www.openedv.com/
docs/modules/other/ATK-2MD4850.html, [Online; accessed 28-September-2023],
2023.

[4] OpenEDV, ATK-DMF407 Development Board Documentation, http://www.openedv.
com/docs/boards/stm32dj/ATK-DMF407.html, [Online; accessed 28-September-
2023], 2023.

[5] OpenEDV, ATK-BLE02 IoT Module Documentation, http://www.openedv.com/docs/
modules/iot/ATK- BLE02.html?highlight=%E8%93%9D%E7%89%99, [Online;
accessed 28-September-2023], 2023.

[6] Institute of Electrical and Electronics Engineers, IEEE Governance Documents, Ac-
cessed: 2023-09-28, 2023. [Online]. Available: https://www.ieee.org/about/corporate/
governance/p7-8.html.

33

https://doi.org/10.2136/sssaj1991.03615995005500020031x
http://www.openedv.com/docs/modules/other/ATK-2MD4850.html
http://www.openedv.com/docs/modules/other/ATK-2MD4850.html
http://www.openedv.com/docs/boards/stm32dj/ATK-DMF407.html
http://www.openedv.com/docs/boards/stm32dj/ATK-DMF407.html
http://www.openedv.com/docs/modules/iot/ATK-BLE02.html?highlight=%E8%93%9D%E7%89%99
http://www.openedv.com/docs/modules/iot/ATK-BLE02.html?highlight=%E8%93%9D%E7%89%99
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html

Appendix A Requirement and Verification Table

Requirement Description Verification Procedure

The force sensor must accurately mea-
sure forces with a linear response to ap-
plied loads.

1. Validate linearity by applying known
weights (100g increments) and measur-
ing output voltage. Record the volt-
age for each weight and ensure a linear
trend in the graphed results.

2. Use a standard laboratory force gauge to
apply a range of forces. Compare the
sensor output to the gauge readings to
verify linearity across the sensor’s oper-
ational range.

The force sensor output voltage must re-
main stable under constant load condi-
tions over a period of time.

1. Conduct a stability test by applying a
fixed weight (e.g., 500g) and record the
sensor’s voltage output every 10 sec-
onds for 5 minutes.

2. Analyze the recorded data for any fluc-
tuations, and ensure that the variation is
within the acceptable error margin (e.g.,
less than 1% variance).

The force sensor must have a calibrated
zero point where no force results in zero
voltage output.

1. Zero calibration test: Ensure that no
weight is applied and adjust the sensor
(if necessary) so the output reads zero
volts.

2. Verify the zero point under various en-
vironmental conditions (e.g., changes in
temperature and humidity) to ensure
stability.

Table 9: Force Sensor Requirements and Verification

34

Requirement Description Verification Procedure

Module must be discoverable by the
host device for connection establish-
ment.

Perform a scan on the host device and verify
that the ATK-MW579 is listed among the dis-
coverable devices.

Module must transmit data with in-
tegrity to the host device over an estab-
lished Bluetooth connection.

1. Command transmission testing: Send
commands such as ”start,” ”return,”
and ”move 1 1” from the host. Ensure
commands are received and executed
correctly by the device.

2. Motor response and data integrity
check: After sending commands, mon-
itor motor response and verify correct
movement. Simultaneously, check the
integrity of data received at the host
side. Conduct a no-contact test where
the probe moves 50 cm, record and plot
depth versus force data to ensure all
data points are received accurately.

Table 10: Bluetooth Module Requirements and Verification

35

Requirement Description Verification Procedure

Motors must ensure precise horizontal
movement across a 7x7 grid without
slippage or deviation.

1. Execute command sequence from (0,1)
to (6,6) and verify each grid point is
reached accurately using a position sen-
sor.

2. Conduct a return test to original posi-
tion (0,0) to check the accuracy of the re-
verse movement.

3. Measure and record the distance trav-
eled for each motor cycle, compare with
the theoretical distance (D = π × d),
and calculate the error percentage using
equation 3.

Motors must accurately control the ver-
tical movement of the penetrometer’s
probe to ensure precise depth penetra-
tion.

1. Send depth commands for multiple ro-
tations (e.g., 1440, 2880, 4320 degrees)
and use an external measuring device to
verify the depth reached by the probe.

2. Repeat depth measurements to ensure
consistency and reliability of vertical po-
sitioning.

3. Calculate the average descent per ro-
tation, compare with expected descent
(20mm per 1440 degrees), and compute
the error as outlined in equation 4.

Table 11: Motor Requirements and Verification

36

Requirement Description Verification Procedure

The system must accurately measure
penetration depth and resistance in dif-
ferent soil types (River Sand, Pastoral
Soil, Coconut Soil, Nutrient Soil).

1. Conduct individual soil testing by plac-
ing each soil type in a separate container.
Use the probe to penetrate each sample
while recording depth and resistance.

2. Ensure the system records consistent
penetration depths and resistance val-
ues that align with the known properties
of each soil type.

The system must effectively handle tran-
sitions between different soil layers and
accurately reflect changes in resistance
and depth.

1. Arrange the soils in layered sequences
within a single container to mimic var-
ied ground conditions.

2. As the probe penetrates through these
layers, verify that the system accurately
records shifts in resistance and depth
corresponding to changes in soil types.

3. Review data to confirm the system’s re-
sponsiveness and precision in detecting
different soil layers.

Table 12: Overall System Requirements and Verification

37

Appendix B Motor, ADC and Bluetooth Communication

#include "./SYSTEM/sys/sys.h"
#include "./SYSTEM/delay/delay.h"
#include "./SYSTEM/usart/usart.h"
#include "./BSP/LED/led.h"
#include "./BSP/KEY/key.h"
#include "./BSP/LCD/lcd.h"
//#include "demo.h"
#include "./BSP/ATK_MW579/atk_mw579.h"
#include "./BSP/ADC/adc.h"
#include "./BSP/TIMER/stepper_tim.h"
#include "./BSP/STEPPER_MOTOR/stepper_motor.h"
#include <string.h>
#include <stdio.h>

#include "./BSP/RTC/rtc.h"
#include "./USMART/usmart.h"

#define DEMO_BLE_NAME "ATK-MW579"
#define DEMO_BLE_HELLO "HELLO ATK-MW579"
#define DEMO_BLE_ADPTIM 5

int id = 1;
extern uint8_t g_run_flag;
void show_mesg(void)
{

lcd_show_string(10, 10, 220, 32, 32, "Group-12", RED);
lcd_show_string(10, 47, 220, 24, 24, "MICRO-PENETROMETER", RED);
//lcd_show_string(10, 76, 220, 16, 16, "ATOM@ALIENTEK", RED);

printf("\n");
printf("********************************\r\n");
printf("STM32\r\n");
printf("ATK-MW579\r\n");
//printf("ATOM@ALIENTEK\r\n");
printf("********************************\r\n");
printf("\r\n");

}

void bluetooth(void)
{

uint8_t ret;
uint8_t key;
uint8_t *recv_dat;

uint16_t adcx;

uint8_t start_hour, start_min, start_sec, start_ampm;
uint8_t hour, min, sec, ampm;
uint8_t year, month, date, week;
uint8_t tbuf[40];

38

uint8_t send_flag=0;

float temp;
float voltage;
float force;

uint8_t flag = 0, t = 0;
uint8_t dir = 1;

uint8_t start_t;

int angle = 0;

char buf[32];

ret = atk_mw579_init(ATK_MW579_UART_BAUDRATE_115200);
if (ret != 0)
{

printf("ATK-MW579 init failed!\r\n");
lcd_show_string(30, 187, 200, 16, 16, "ATK-MW579 init failed!", BLUE);
while (1)
{

LED0_TOGGLE();
delay_ms(200);

}
}

atk_mw579_enter_config_mode();
ret = atk_mw579_set_name(DEMO_BLE_NAME);
ret += atk_mw579_set_hello(DEMO_BLE_HELLO);
ret += atk_mw579_set_tpl(ATK_MW579_TPL_P0DBM);
ret += atk_mw579_set_uart(ATK_MW579_UART_BAUDRATE_115200,

ATK_MW579_UART_DATA_8, ATK_MW579_UART_PARI_NONE, ATK_MW579_UART_STOP_1
);

ret += atk_mw579_set_adptim(DEMO_BLE_ADPTIM);
ret += atk_mw579_set_linkpassen(ATK_MW579_LINKPASSEN_OFF);
ret += atk_mw579_set_leden(ATK_MW579_LEDEN_ON);
ret += atk_mw579_set_slavesleepen(ATK_MW579_SLAVESLEEPEN_ON);
ret += atk_mw579_set_maxput(ATK_MW579_MAXPUT_OFF);
ret += atk_mw579_set_mode(ATK_MW579_MODE_S);
if (ret != 0)
{

printf("ATK-MW579 config failed!\r\n");
lcd_show_string(30, 187, 200, 16, 16, "ATK-MW579 config failed!", BLUE

);
while (1)
{

LED0_TOGGLE();
delay_ms(200);

}
}

39

printf("Connection Success\r\n");
lcd_show_string(30, 187, 200, 16, 16, "Connection Success", BLUE);

atk_mw579_uart_rx_restart();

while (1)
{

rtc_get_time(&hour, &min, &sec, &m);
rtc_get_date(&year, &month, &date, &week);
sprintf((char *)tbuf, "Time:%02d:%02d:%02d", hour, min, sec);
lcd_show_string(30, 170, 210, 16, 16, (char*)tbuf, RED);

adcx = adc_get_result_average(ADC_ADCX_CHY, 10);

lcd_show_xnum(120, 107, adcx, 5, 16, 0, BLUE);

temp = (float)adcx * (3.3 / 4096);
voltage = (float)adcx * (3.3 / 4096);
adcx = temp;
lcd_show_xnum(140, 127, adcx, 1, 16, 0, BLUE);

temp -= adcx;
temp *= 1000;
force = voltage * 6 * 9.8;
lcd_show_xnum(150, 127, temp, 3, 16, 0X80, BLUE);
lcd_show_xnum(130, 147, force, 3, 16, 0X80, BLUE);

key = key_scan(0);
if(send_flag)

atk_mw579_uart_printf("%f,%d\r\n",voltage, g_stepper.
add_pulse_count);

switch (key)
{

case KEY0_PRES:
{

atk_mw579_uart_printf("adc:%f\r\n",voltage);
break;

}
case KEY1_PRES:
{

atk_mw579_wakeup_by_uart();
break;

}
default:
{

break;
}

}

recv_dat = atk_mw579_uart_rx_get_frame();
if (recv_dat != NULL)
{

40

printf("%s\r\n", recv_dat);

const char *start = "start";
if (strncmp((const char*)recv_dat, start, strlen(start)) == 0) {

flag = !flag;
if(flag)
{

g_stepper.add_pulse_count = 0;
if(g_run_flag == 0)
{

angle = 360 * 100;
id = 1;
g_stepper.angle = angle;
g_stepper.dir = CW;
angle = 0;
send_flag = 1;
stepper_set_angle(g_stepper.angle, g_stepper.dir, id);

}
flag = !flag;

}
else
{

id = 1;
printf("sdhfksdjfksjd\r\n");
stepper_stop(id);

}
}

const char *change = "change";
if(strncmp((const char*)recv_dat, change, strlen(change)) == 0)
{

id = 1;
dir = !dir;
send_flag = !send_flag;
stepper_star(id, dir);

// stepper_pwmt_speed(set_speed+100,ATIM_TIMX_PWM_CH1);
printf("hour:%d; min: %d; sec: %d\r\n",hour, min, sec);
delay_ms(1000*((hour-start_hour)*60*60 + (min-start_min)*60 +

(sec - start_sec)));
stepper_stop(id);
dir = !dir;

}

const char *up = "up";
if(strncmp((const char*)recv_dat, up, strlen(up)) == 0)
{

if(g_run_flag == 0)
{

angle = 360 * 10;
id = 1;
g_stepper.angle = angle;
g_stepper.dir = CCW;

41

angle = 0;
stepper_set_angle(g_stepper.angle, g_stepper.dir, id);

}
}

const char *down = "down";
if(strncmp((const char*)recv_dat, down, strlen(down)) == 0)
{

if(g_run_flag == 0)
{

angle = 360 * 10;
id = 1;
g_stepper.angle = angle;
g_stepper.dir = CW;
angle = 0;
stepper_set_angle(g_stepper.angle, g_stepper.dir, id);

}
}

const char *re = "return";
if(strncmp((const char*)recv_dat, re, strlen(re)) == 0)
{

g_run_flag = 0;
angle = g_stepper.add_pulse_count*MAX_STEP_ANGLE;
id = 1;
send_flag = 0;
g_stepper.angle = angle;
g_stepper.dir = CCW;
angle = 0;
stepper_set_angle(g_stepper.angle, g_stepper.dir, id);

}

const char *move = "move";
if(strncmp((const char*)recv_dat, move, 4) == 0)
{

int dx, dy;

// Find the position of the first space in the message
char *space = strchr((const char*)recv_dat, ’ ’);

// Move the pointer to the beginning of the dx value
space++; // Increment to skip the space

// Extract dx and dy values from the message
sscanf(space, "%d %d", &dx, &dy);

// Print the values to confirm
printf("dx = %d, dy = %d\n", dx, dy);

if(dx < 0)
{

if(g_run_flag == 0)
{

angle = 360 * (-dx);

42

id = 3;
g_stepper.angle = angle;
g_stepper.dir = CW;
angle = 0;
stepper_set_angle(g_stepper.angle, g_stepper.dir, id);

}

}
else
{

if(g_run_flag == 0)
{

angle = 360 * dx;
id = 3;
g_stepper.angle = angle;
g_stepper.dir = CCW;
angle = 0;
stepper_set_angle(g_stepper.angle, g_stepper.dir, id);

}
}
while(g_run_flag == 1)
{

delay_ms(10);
}
if(dy < 0)
{

printf("g_stepper.pulse_count = %d\n", g_stepper.
pulse_count);

printf("g_run_flag = %d\n", g_run_flag);
if(g_run_flag == 0)
{

angle = 360 * (-dy);
id = 2;
g_stepper.angle = angle;
g_stepper.dir = CW;
angle = 0;
stepper_set_angle(g_stepper.angle, g_stepper.dir, id);

// printf("g_stepper.pulse_count = %d\n", g_stepper.
pulse_count);

// printf("g_run_flag = %d\n", g_run_flag);
}

}
else
{

printf("g_stepper.pulse_count = %d\n", g_stepper.
pulse_count);

printf("g_run_flag = %d\n", g_run_flag);
if(g_run_flag == 0)
{

angle = 360 * dy;
id = 2;
g_stepper.angle = angle;
g_stepper.dir = CCW;
angle = 0;

43

stepper_set_angle(g_stepper.angle, g_stepper.dir, id);
// printf("g_stepper.pulse_count = %d\n", g_stepper.

pulse_count);
// printf("g_run_flag = %d\n", g_run_flag);

}
}

}

atk_mw579_uart_rx_restart();
}

delay_ms(300);
if ((t % 20) == 0)
{

LED0_TOGGLE(); /* 200ms , LED0 */
}

}
}

int main(void)
{

HAL_Init();
sys_stm32_clock_init(336, 8, 2, 7);
delay_init(168);
usart_init(115200);
usmart_dev.init(84);
led_init();
key_init();
lcd_init();
show_mesg();

stepper_init(1000 - 1, 168 - 1);

rtc_init();
rtc_set_wakeup(RTC_WAKEUPCLOCK_CK_SPRE_16BITS, 0);

adc_init();
lcd_show_string(30, 87, 200, 16, 16, "ADC TEST", RED);
lcd_show_string(30, 107, 200, 16, 16, "ADC_CH3_VAL:", BLUE);
lcd_show_string(30, 127, 200, 16, 16, "ADC_CH3_VOL:", BLUE);
lcd_show_string(147, 127, 200, 16, 16, ".", BLUE);
lcd_show_string(30, 147, 200, 16, 16, "ADC_FORCE:", BLUE);

44

lcd_show_string(30, 187, 200, 16, 16, "Bluetooth Status", BLUE);

bluetooth();

}

45

Appendix C Control Program
import asyncio
import tkinter as tk
from tkinter import messagebox, scrolledtext
from bleak import BleakScanner, BleakClient
from threading import Thread
import sqlite3
from datetime import datetime
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

class BleakApp:
def __init__(self, master, loop):

self.master = master
self.loop = loop
master.title("Bluetooth Communication with Device")
self.database_setup()
self.setup_connection_page()
self.last_position = None
self.setup_close_event() # Setup close event binding

def setup_close_event(self):
self.master.protocol("WM_DELETE_WINDOW", self.on_close)

def on_close(self):
Run the asynchronous return_to_home task
asyncio.run(self.return_to_home())
self.master.destroy()

async def return_to_home(self):
if self.last_position is None:

dx, dy = 0, 0 # Sending absolute position for the first click
else:

dx, dy = 0 - self.last_position[0], 0 - self.last_position[1]

home_command = f"move {dx} {dy}"
data_to_send = home_command.encode(’utf-8’)
write_uuid = "9ecadc24-0ee5-a9e0-93f3-a3b50200406e" # Replace with

your characteristic UUID
try:

await self.client.write_gatt_char(write_uuid, data_to_send,
response=False)

print("Device returning to home position (0,0)")
except Exception as e:

print(f"Failed to send home command: {str(e)}")

def database_setup(self):
Connect to the SQLite database (the database file will be created if

it does not exist)
self.conn = sqlite3.connect(’adc_data.db’)

46

self.cursor = self.conn.cursor()
Create a table to store ADC values with a timestamp
self.cursor.execute(’’’

CREATE TABLE IF NOT EXISTS adc_values (
timestamp TEXT NOT NULL,
x INTEGER NOT NULL,
y INTEGER NOT NULL,
adc_value REAL NOT NULL,
angle REAL NOT NULL

)
’’’)
self.conn.commit()

def setup_connection_page(self):
self.connection_frame = tk.Frame(self.master)
self.connection_frame.pack(padx=10, pady=10)

tk.Label(self.connection_frame, text="Select a Bluetooth Device:").
pack(pady=(0, 10))

self.scan_button = tk.Button(self.connection_frame, text="Scan",
command=self.initiate_scan)

self.scan_button.pack()

self.devices_listbox = tk.Listbox(self.connection_frame, width=50,
height=10)

self.devices_listbox.pack(pady=10)

self.connect_button = tk.Button(self.connection_frame, text="Connect",
command=self.connect_device)

self.connect_button.pack(pady=(10, 0))

def initiate_scan(self):
asyncio.run_coroutine_threadsafe(self.scan_devices(), self.loop)

async def scan_devices(self):
self.devices_listbox.delete(0, tk.END)
devices = await BleakScanner.discover()
for device in devices:

self.devices_listbox.insert(tk.END, f"{device.name} | {device.
address}")

def connect_device(self):
selection = self.devices_listbox.curselection()
if not selection:

messagebox.showerror("Error", "Please select a device from the
list.")

return

selected_device = self.devices_listbox.get(selection[0])
address = selected_device.split(’|’)[1].strip()
asyncio.run_coroutine_threadsafe(self.start_client(address), self.loop

)

47

async def start_client(self, address):
client = BleakClient(address)
try:

await client.connect()
if client.is_connected:

self.client = client
self.setup_communication_interface()
self.setup_grid_selection()
self.setup_results_display()
self.setup_overview_button()
await self.manage_device_communication()

else:
messagebox.showinfo("Connection Status", "Failed to connect to

the device.")
except Exception as e:

messagebox.showerror("Connection Error", str(e))

def setup_communication_interface(self):
self.connection_frame.pack_forget()
self.communication_frame = tk.Frame(self.master)
self.communication_frame.pack(padx=10, pady=10)

self.text_area = scrolledtext.ScrolledText(self.communication_frame,
width=60, height=10)

self.text_area.pack(pady=10)

self.entry = tk.Entry(self.communication_frame, width=40)
self.entry.pack(side=tk.LEFT, padx=(10, 0))

self.send_button = tk.Button(self.communication_frame, text="Send",
command=self.send_message)

self.send_button.pack(side=tk.LEFT, padx=10)

self.up_button = tk.Button(self.communication_frame, text="Up",
command=lambda: self.send_predefined_message("up"))

self.up_button.pack(side=tk.LEFT, padx=10)

self.down_button = tk.Button(self.communication_frame, text="Down",
command=lambda: self.send_predefined_message("down"))

self.down_button.pack(side=tk.LEFT, padx=10)

self.stop_button = tk.Button(self.communication_frame, text="Return",
command=lambda: self.send_predefined_message("return"))

self.stop_button.pack(side=tk.LEFT, padx=10)

self.stop_button = tk.Button(self.communication_frame, text="Start",
command=lambda: self.send_predefined_message("start"))

self.stop_button.pack(side=tk.LEFT, padx=10)

def send_predefined_message(self, message):
self.append_text(f"Sent: {message}")
data_to_send = message.encode(’utf-8’)
write_uuid = "9ecadc24-0ee5-a9e0-93f3-a3b50200406e"

48

Send the "power" message immediately.
asyncio.run_coroutine_threadsafe(

self.client.write_gatt_char(write_uuid, data_to_send, response=
False),

self.loop
)

If the message is "power", schedule to send "stop" after 20 seconds.
if message == "power":
self.master.after(32500, self.send_stop_message)

def send_stop_message(self):
stop_message = "stop"
self.append_text(f"Sent: {stop_message}")
data_to_send = stop_message.encode(’utf-8’)
write_uuid = "9ecadc24-0ee5-a9e0-93f3-a3b50200406e"

Send the "stop" message after a delay.
asyncio.run_coroutine_threadsafe(

self.client.write_gatt_char(write_uuid, data_to_send, response=
False),

self.loop
)

def setup_grid_selection(self):
self.grid_frame = tk.Frame(self.master)
self.grid_frame.pack(side=tk.TOP, padx=10, pady=10)

Description label with pack
tk.Label(self.grid_frame, text="Select a cell to send the probe to the

corresponding position:", font=(’Helvetica’, 10)).pack(pady=(0,
10))

Sub-frame for grid, using a different frame to use grid layout
self.button_grid_frame = tk.Frame(self.grid_frame)
self.button_grid_frame.pack(pady=(10, 10)) # Using pack for the frame

that contains the grid

Creating a grid of buttons inside the sub-frame
self.grid_buttons = {}
self.selected_buttons = set()
for i in range(7):

for j in range(7):
button = tk.Button(self.button_grid_frame, text=f’{i},{j}’,

width=6, height=2)
button.grid(row=i, column=j, padx=2, pady=2)
self.grid_buttons[(i, j)] = button
button.config(command=lambda i=i, j=j, btn=button: self.

handle_grid_click(i, j, btn))

def handle_grid_click(self, i, j, button):
Check if it’s the first click
if self.last_position is None:

49

For the first click, treat the clicked position as relative to
(0,0)

dx, dy = i, j # Sending absolute position for the first click
else:

For subsequent clicks, calculate relative motion
dx, dy = i - self.last_position[0], j - self.last_position[1]

Update the last position to the current position
self.last_position = (i, j)

Change the button color to indicate it has been selected at least
once

if button not in self.selected_buttons:
button.config(bg=’lightblue’) # Change color to light blue
self.selected_buttons.add(button)

Schedule the database record insertion and motion command sending
asyncio.run_coroutine_threadsafe(self.send_motion_to_device(dx, dy),

self.loop)

async def send_motion_to_device(self, dx, dy):
message = f’move {dx} {dy}’
data_to_send = message.encode(’utf-8’)
write_uuid = "9ecadc24-0ee5-a9e0-93f3-a3b50200406e"
await self.client.write_gatt_char(write_uuid, data_to_send, response=

False)
self.append_text(f"Motion sent: {dx}, {dy}")

def setup_results_display(self):
self.results_frame = tk.Frame(self.master)
self.results_frame.pack(side=tk.BOTTOM, padx=10, pady=10, fill=tk.X,

expand=True)

self.results_label = tk.Label(self.results_frame, text="Results (Time
- ADC Value for each (x, y))")

self.results_label.pack()

self.results_text = scrolledtext.ScrolledText(self.results_frame,
height=10)

self.results_text.pack(fill=tk.BOTH, expand=True)

async def notification_handler(self, sender, data):
data_str = data.decode(’utf-8’).strip()
print(f"Received data: {data_str}")

try:
Split data based on comma and remove any surrounding whitespace
parts = [part.strip() for part in data_str.split(’,’)]
if len(parts) != 2:

raise ValueError(f"Expected 2 parts but got {len(parts)}: {
parts}")

50

adc_value, angle_value = map(float, parts) # Convert both parts
to float

print(adc_value, angle_value)

Add milliseconds to the timestamp
timestamp = datetime.now().strftime(’%Y-%m-%d %H:%M:%S.%f’)[:-3]

Call the database insert function in an executor to avoid
blocking the event loop

await self.loop.run_in_executor(None, self.insert_db_record,
timestamp, adc_value, angle_value*0.225)

print(f"Processed ADC: {adc_value}, Angle: {angle_value}")

except ValueError as e:
print(f"Error processing notification: {e}")
self.append_text(f"Error processing notification: {e}")

def insert_db_record(self, timestamp, adc_value, angle_value):
try:

Perform the SQLite operations
conn = sqlite3.connect(’adc_data.db’)
cursor = conn.cursor()
cursor.execute(’INSERT INTO adc_values (timestamp, x, y, adc_value

, angle) VALUES (?, ?, ?, ?, ?)’,
(timestamp, self.last_position[0], self.last_position

[1], adc_value, angle_value))
conn.commit()

except sqlite3.Error as e:
Log or handle the error
print(f"Database error: {e}")

finally:
conn.close()

async def manage_device_communication(self):
notify_uuid = "9ecadc24-0ee5-a9e0-93f3-a3b50300406e"
Change ’notification_handler’ to ’self.notification_handler’
await self.client.start_notify(notify_uuid, self.notification_handler)
self.append_text("Subscribed to notifications. Listening for messages

from the device...")

def append_text(self, text):
Ensure the UI is updated in a thread-safe way
self.text_area.after(0, lambda: self.text_area.insert(tk.END, f"{text

}\n"))
self.text_area.after(0, lambda: self.text_area.see(tk.END))

def setup_results_display(self):
self.results_frame = tk.Frame(self.master)
self.results_frame.pack(side=tk.BOTTOM, padx=10, pady=10, fill=tk.X,

expand=True)

Variable to hold the currently selected (x, y) pair
self.selected_xy = tk.StringVar(self.master)

51

self.selected_xy.set(’Select Coordinates’) # default value

Dropdown menu to select (x, y) pair
self.xy_menu = tk.OptionMenu(self.results_frame, self.selected_xy, ’

Select Coordinates’)
self.xy_menu.pack(pady=10)

Attach an event to the dropdown to refresh the list whenever it’s
clicked

self.xy_menu.bind(’<Button-1>’, self.update_dropdown)

self.plot_button = tk.Button(self.results_frame, text="Plot ADC Values
", command=self.plot_adc_values)

self.plot_button.pack()

def update_dropdown(self, event=None):
Fetch unique (x, y) pairs from the database to populate the dropdown
connection = sqlite3.connect(’adc_data.db’)
cursor = connection.cursor()
cursor.execute(’SELECT DISTINCT x, y FROM adc_values ORDER BY x, y’)
coordinates = cursor.fetchall()
connection.close()

Clear the current options in the OptionMenu
menu = self.xy_menu["menu"]
menu.delete(0, "end")
for coordinate in coordinates:

menu.add_command(label=coordinate, command=lambda value=coordinate
: self.selected_xy.set(value))

If no data is available, set to default value
if not coordinates:

self.selected_xy.set(’Select Coordinates’)

def plot_adc_values(self):
selected_pair = self.selected_xy.get()
if selected_pair == ’Select Coordinates’:

messagebox.showerror("Selection Error", "Please select valid
coordinates.")

return

Extract x, y from the selected pair string
x, y = map(int, selected_pair.strip(’()’).split(’,’))

Fetch data from the database for the selected (x, y) pair
connection = sqlite3.connect(’adc_data.db’)
cursor = connection.cursor()
Fetching both adc_value and angle
cursor.execute(’SELECT timestamp, adc_value, angle FROM adc_values

WHERE x=? AND y=? ORDER BY timestamp’, (x, y))
records = cursor.fetchall()
connection.close()

if not records:

52

messagebox.showinfo("No Data", "No data available for this
position.")

return

Prepare data for plotting
timestamps = [datetime.strptime(record[0], ’%Y-%m-%d %H:%M:%S.%f’) for

record in records]
adc_values = [record[1] * 120 for record in records]
angles = [record[2] for record in records]

Calculate depth from angle
depths = [(angle / 360) * 0.5 for angle in angles]

Plotting the data
plt.figure(figsize=(10, 5))
plt.plot(depths, adc_values, marker=’o’, linestyle=’-’)
plt.title(f’ADC Values Over Depth for Position ({x}, {y})’)
plt.title(f’Force Over Depth for Position ({x}, {y})’)
plt.xlabel(’Depth (cm)’)
plt.ylabel(’ADC Value’)
plt.ylabel(’Force Value’)
plt.grid(True)
plt.tight_layout()
plt.show()

def setup_overview_button(self):
Adding a frame for the plot button to keep the layout organized
self.plot_frame = tk.Frame(self.master)
self.plot_frame.pack(padx=10, pady=10, fill=tk.X)

Button for plotting the overview of all data
self.overview_plot_button = tk.Button(self.plot_frame, text="Plot Data

Overview", command=self.plot_overview)
self.overview_plot_button.pack()

def plot_overview(self):
Connect to the database and fetch all data
conn = sqlite3.connect(’adc_data.db’)
cursor = conn.cursor()
cursor.execute(’SELECT x, y, adc_value, angle FROM adc_values’)
data = cursor.fetchall()
conn.close()

if not data:
messagebox.showinfo("No Data", "No data available to plot.")
return

Prepare data for plotting
xs, ys, zs, colors = [], [], [], []
for x, y, adc, angle in data:

depth = (angle / 360) * 0.5 # Calculate depth based on angle
xs.append(x)
ys.append(y)
zs.append(depth)

53

colors.append(adc*120) # Use ADC value as color scale

Create a 3D scatter plot
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection=’3d’)

scatter = ax.scatter(xs, ys, zs, c=colors, cmap=’viridis’, marker=’o’,
edgecolor=’k’, s=50, depthshade=True)

fig.colorbar(scatter, ax=ax, label=’ADC Value’)
fig.colorbar(scatter, ax=ax, label=’Force Value’)

ax.set_xlabel(’X Position’)
ax.set_ylabel(’Y Position’)
ax.set_zlabel(’Depth (cm)’)
plt.title(’Overview of ADC Values Across Positions and Depths’)
plt.title(’Overview of Force Values Across Positions and Depths’)

ax.invert_xaxis()
plt.xticks(range(7))
plt.yticks(range(7))

plt.show()

def send_message(self):
message = self.entry.get()
if message.lower() == ’exit’:

self.master.quit()
return

self.entry.delete(0, tk.END)
data_to_send = message.encode(’utf-8’)
write_uuid = "9ecadc24-0ee5-a9e0-93f3-a3b50200406e"
asyncio.run_coroutine_threadsafe(

self.client.write_gatt_char(write_uuid, data_to_send, response=
False),

self.loop
)
self.append_text(f"Sent: {message}")

def append_text(self, text):
self.text_area.insert(tk.END, f"{text}\n")
self.text_area.see(tk.END)

def run_tkinter_loop(root):
root.mainloop()

def main():
root = tk.Tk()
loop = asyncio.new_event_loop()
app = BleakApp(root, loop)

loop_thread = Thread(target=loop.run_forever)
loop_thread.start()

run_tkinter_loop(root)

54

loop.call_soon_threadsafe(loop.stop)
loop_thread.join()

if __name__ == "__main__":
main()

55

	Introduction
	Problem and Solution Overview
	System Components
	Performance Requirements
	Design Modifications

	Design
	Design procedure
	Structure Design
	Connection Schemes
	Force Sensor

	Design details
	Force Sensor
	Voltage Amplifier
	Motor Unit
	Microcontroller (STM32F407)
	Bluetooth Module (ATK-MW579)
	Control Program
	Connector Designs

	Verification
	Force Sensor
	Verification Process - Linearity
	Verification Process - Accuracy of Proportional Relationship
	Conclusion

	Bluetooth Module
	Verification Process
	Results

	Motors
	Horizontal Movement Verification
	Vertical Movement Verification

	Overall System Verification
	Soil Test Setup
	Procedure
	Results and Analysis

	Costs
	Labor
	Parts
	Grand Total

	Conclusions
	Accomplishments
	Uncertainties and Alternatives
	Ethical Considerations
	Broader Impacts

	References
	Appendix Requirement and Verification Table
	Appendix Motor, ADC and Bluetooth Communication
	Appendix Control Program

