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1 Introduction 

1.1 Problem 
China is undergoing a significant demographic transformation entering an aging society. Nearly a third 

population will be over 60 years old by 2050 as projected by "National Development Bulletin on Ageing 

2020.". Already, over 264 million Chinese citizens are aged 60 and above, making up approximately 

18.7% of the nation's total population. [1] This demographic shift has led to an increased demand for 

elderly care services, placing Elderly Care Centers at the forefront of providing essential care and safety 

for this vulnerable group. Yet, these centers face substantial challenges in monitoring and responding to 

emergencies, such as falls or medical crises, without compromising the privacy and dignity of the 

elderly, as traditional methods of monitoring the elderly, such as hiring professional caregivers, have the 

main disadvantage of high manpower costs and cannot be extended to most elderly institutions. On the 

other hand, monitoring with a caregiver or visual recognition program reduces costs, but the demand 

for surveillance equipment undoubtedly violates the privacy of the elderly to a certain extent. 

Considering the harm to the psychological health of the elderly, the market urgently needs a monitoring 

program that can solve the above issues. [2] 

A survey among Elderly Care Centers in China revealed a significant lack of advanced mechanisms for 

detecting emergencies while preserving privacy.[3] This inadequacy in care provision highlights an 

urgent need for innovative solutions that balance efficient emergency detection with the preservation of 

privacy and dignity. [4] Developing such systems is essential not only for enhancing elderly care but also 

for adapting to China's changing demographic landscape, making it imperative to invest in technologies 

that ensure safety and respect for the elderly simultaneously.[5] 

1.2 Solution 
To bridge this gap, we propose an Emergency Detection System specifically designed for elderly 

individuals. This system combines two innovative components to ensure both efficacy and privacy. The 

first component is Wi-Fi Emergency System: Utilizing advanced signal processing and deep learning 

techniques, this system interprets Wi-Fi signal disruptions caused by human movement within its 

coverage area. By analyzing these disruptions, the system can identify unusual patterns indicative of falls 

or other emergencies without the need for visual surveillance, thereby maintaining privacy. [3] 

The second component is Wearable Devices that complements the Wi-Fi Emergency System. These 

devices are equipped with motion and health sensors. They are designed to be lightweight, unobtrusive, 

and capable of providing real-time data on the wearer's physical state. In the event of an abnormality, 

the device can trigger an immediate alert to caregivers for prompt response. 
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1.3 Visual Aid 

 

Figure  1: Visual Aid 

1.4 High-level Requirements Lists 
· For the recognition of the action of falling, the correct rate should be 100%, the probability of false 

alarms should be maintained at less than 20%, and the probability of miss should be maintained at 

least at less than 5% and 0 miss should be the target.  

· The complete system should be able to operate in a 20 square meter scenario and maintain above 

recognition accuracy. Real-time signal monitoring should be maintained within this area 

· The system alarm should be triggered within 500 ms after the falling action. 

  



3 
 

2 Design 

2.1 Block Diagram 

 

Figure  2: Block Diagram 
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2.2 Physical Design 

2.3 Subsystem Overview 
The Wi-Fi Source Subsystem will be a high-performance Wi-Fi router capable of dual-band signaling (2.4 

GHz and 5 GHz), providing extensive coverage and penetration through various obstacles commonly 

found in residential settings. It should be capable of sustaining multiple device connections 

simultaneously without degradation of service quality. The router will have high-gain antennas to ensure 

the signal's strength is maintained even at the edges of the coverage area. The Wi-Fi signal will be 

received by the Detector Subsystem and used to determine the current movement of the tester. 

The Wearable Device Subsystem is designed to collect acceleration as well as angle information while 

being worn on the tester's wrist and send it to the software processing section. The subsystem needs to 

consist of at least one acceleration sensor module and one gyroscope module to collect enough 

information. The information is sent to the software processing section via a transmission module. The 

entire subsystem should be powered by a separate power supply module that can provide 3-5 V voltage. 

Similarly, the acceleration and angular data collected by the sensors in three dimensions will be received 

by the Detector Subsystem and used to determine the current movement of the tester. 

The Detector Subsystem is a standalone module with its own dedicated casing, designed to be 

lightweight and compact, potentially the size of a small router or a large smartphone to be placed within 

the living space of the elderly person. It requires a stable power source, typically 5 V supplied via a USB 

connection or wall adapter, and must have an internal voltage regulator to provide a clean 3.3 V power 

supply for its internal electronics, with at least 500 mA current capacity to support its operation. 

The core of this subsystem is a high-performance microcontroller or a microprocessor with a fast clock 

speed, sufficient to process data from both the wearable sensors and the Wi-Fi signal strength 

information. It should possess robust communication interfaces like SPI and I2C to interface with the Wi-

Fi module and possibly additional UART interfaces for debugging and future expansions. 

The Wi-Fi module should be capable of operating in dual-band (2.4 GHz and 5 GHz) to ensure 

comprehensive coverage and the ability to analyze signal strength with a high degree of accuracy. The 

SPI or UART interface with the microcontroller must support high data rate transfer to prevent any data 

bottleneck. 

Moreover, the Detector Subsystem should feature onboard memory (RAM and flash) to log events and 

store the necessary analysis algorithms, ensuring that a transient loss in connectivity does not result in 

data loss. The received Wi-Fi signal and sensor data will be used in this sub-system to determine the 

tester's movements and cross validate for improved accuracy. 

2.4 Wi-Fi Source Subsystem  
In this project, we focused on implementing the hardware necessary to capture Wi-Fi Channel State 

Information (CSI) signals using a Raspberry Pi 4B equipped with Nexmon CSI, in conjunction with a Wi-Fi 

router. This setup is pivotal for our research in Wi-Fi signal monitoring and analysis. 
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2.4.1 Initial Considerations and Challenges 

The project began with the intent to use CSI Tool, leveraging its advantages for our initial setups. We 

procured Intel 5300 network cards based on their compatibility with CSI Tool, anticipating a 

straightforward implementation. However, we encountered a significant obstacle: the Intel 5300 cards 

were incompatible with the laptops available to our team, which halted our progress. After attempting 

various configurations and considering different laptops, it became evident that this approach was not 

feasible due to hardware limitations and the specific setup requirements of the Intel 5300 cards. 

2.4.2 Transition to Nexmon CSI 

Given the setbacks with CSI Tool and Intel 5300, we pivoted to using Nexmon CSI, which is known for its 

robust support on Raspberry Pi platforms. This decision came after evaluating various alternatives that 

could provide similar data quality and reliability. 

2.4.3 Detailed Implementation with Raspberry Pi 4B and Nexmon CSI 

Implementing the Wi-Fi CSI data collection using the Raspberry Pi 4B with Nexmon CSI involved several 

crucial steps, each tailored to ensure the system was robust and capable of capturing high-quality CSI 

data. Below is a detailed breakdown of the process: 

1. Preparation and Initial Setup 

• Raspberry Pi 4B Setup: We started by setting up the Raspberry Pi 4B with a fresh installation of 

Raspberry Pi OS. It was important to ensure the OS was up to date to avoid any compatibility 

issues with the Nexmon CSI firmware. 

• Nexmon CSI Installation: We installed Nexmon, a firmware modification framework for the 

Broadcom Wi-Fi chips used in the Raspberry Pi. This involved cloning the Nexmon repository 

from GitHub, installing necessary dependencies like libisl, libmpfr, and libmpc, and building the 

tools and patches specific to our Broadcom chip model. 

2. Firmware Modification 

• Compiling Nexmon Firmware: With the Nexmon environment set up, we compiled a modified 

firmware that enables CSI collection. This step required careful configuration to match the 

specific Wi-Fi chipset of the Raspberry Pi 4B. 

• Flashing Modified Firmware: After successful compilation, the next step was to flash this 

modified firmware onto the Raspberry Pi’s Wi-Fi chip. We backed up the original firmware 

before proceeding to ensure we could revert if necessary. 

3. Router Configuration 

• Router Choice and Setup: We selected a Wi-Fi router that supported the specific channels and 

frequencies compatible with our Nexmon CSI setup. The router was configured to use a static 

channel rather than auto-selecting channels to maintain consistency in the data collected. 
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• Transmission Power and Bandwidth Settings: We adjusted the transmission power and 

bandwidth settings on the router to optimize signal clarity and strength, ensuring that the 

Raspberry Pi could reliably capture CSI data even at varying distances and through physical 

obstructions. 

4. Data Collection Setup 

• Monitoring Mode Activation: On the Raspberry Pi, we activated the monitoring mode that 

Nexmon CSI provides. This mode allows the device to listen for Wi-Fi packets without connecting 

to the network, which is crucial for passive data collection. 

• Scripting Automated Data Capture: We wrote scripts to automate the process of starting and 

stopping data capture, as well as handling data storage. These scripts helped manage large 

volumes of data efficiently, segmenting captures by time or event, depending on the 

experiment's needs. 

5. Validation and Testing 

• Initial Data Checks: Once the setup was complete, we conducted initial tests to check the 

integrity and format of the CSI data captured. This was crucial to ensure that the data was not 

only accurate but also consistent with our expectations for analysis. 

• Ongoing Adjustments: Based on initial feedback and data quality, we fine-tuned the system by 

adjusting the router’s settings and the Raspberry Pi’s placement. These adjustments were 

necessary to accommodate different environments and scenarios where signal strength and 

quality could vary. 

6. Integration with Analysis Tools 

• Data Processing Tools Setup: The CSI data collected was integrated with our existing signal 

processing and analysis tools. We made necessary modifications to these tools to parse and 

analyze the Nexmon CSI data format effectively. 

• Real-time Analysis Capability: We also implemented real-time data processing capabilities to 

observe the Wi-Fi environment dynamically, which was vital for applications requiring 

immediate response or adjustment based on the CSI data. 

2.4.4 Overcoming Challenges 

The shift from Intel 5300 and CSI Tool to Nexmon CSI required us to adapt our data processing scripts 

and analysis tools. The data format and capabilities provided by Nexmon CSI differed slightly, 

necessitating modifications to our existing algorithms and processing techniques. 

2.4.5 Conclusion 

The transition to Nexmon CSI on the Raspberry Pi 4B, despite initial challenges, proved to be successful. 

This setup not only met our requirements for capturing Wi-Fi CSI data but also enhanced our project's 

flexibility and scalability. The Raspberry Pi 4B and Nexmon CSI combination is a cost-effective and 



7 
 

efficient solution for Wi-Fi signal analysis, particularly suitable for research and development projects 

involving environmental sensing and motion detection. 

2.5 Wearable Device Subsystem Requirement 

2.5.1 Sensor Module 

The sensor module should be able to measure and output three-way acceleration and three-way 

rotational angular velocity data with a certain degree of accuracy under the power supply module, and 

transmit the data in real time in a certain format to the Wi-Fi data transmission module, which means 

that the module should at least contain acceleration sensors and gyroscopes to complete the 

measurement of the data, and should support the I2C or TCP protocols to transmit the data to the 

corresponding module. Based on the above requirements, we believe that the IMU sensor (MCU6050) 

can meet the needs. 

The MPU6050 is a widely used motion-tracking device that integrates a 3-axis accelerometer and a 3-

axis gyroscope on a single chip. This powerful sensor module is an integral part of the wearable sensor 

subsystem in the project. Its ability to accurately measure acceleration and rotational movement makes 

it ideal for monitoring the activity and movements of elderly individuals. 

2.5.2 Power Module 

The power module will be used to power the sensor module and the Wi-Fi data transmission module. 

Considering the size requirement of wearable devices: no more than twice the size of a common watch 

and the portability requirement: as little as possible obstruction of the test movement while wearing it, 

we ruled out the option of powering it through a power cord and initially planned that the power 

module should contain a power supply module that acts as a voltage regulator that converts an input 

voltage of 3.7 V - 5 V into an output voltage of about 3.3 V. The power supply module should contain a 

voltage regulator that converts the 3.7 V – 5 V input voltage into an output voltage of about 3.3 V for 

the sensor module and about 5 V for the Wi-Fi data transmission module. The power supply will be 

powered by a battery pack that holds up to two common Li-ion 5 or 7 batteries, which we expect to be 

able to provide an output voltage of at least 6 V at an expected output voltage of 7.4 V and an input 

current of up to 1 A to meet the input requirements of the power supply module. 

The wearable sensor subsystem will use a battery pack with 4 AAA batteries, providing 6V. Since the 

ESP8266 operates at 3.3V and the MPU6050 requires 5V, appropriate power regulation and distribution 

are essential. 

2.5.3 Wi-Fi Communication Module 

The Wi-Fi data transmission module, powered by the power supply module, will receive the data 

transmitted from the sensor module in real time and perform operations such as formatting, after which 

the module will send the processed data to the processor subsystem. This requires that the module 

should support common Wi-Fi protocols such as IEEE 802.11b/g/n Wi-Fi protocol and have a suitable 

processor chip to perform the potentially required data processing operations. Based on the above 

requirements, we believe that the ESP8266 wireless Wi-Fi module can meet our needs. 
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In the proje the Wi-Fi communication module is critical for transmitting sensor data from the wearable 

device to a central monitoring system. By utilizing the Station (STA) mode on the ESP8266 and the User 

Datagram Protocol (UDP), we can achieve efficient and reliable data transmission to a PC or server. 

2.6 Detector Subsystem Requirement 

2.6.1 Software Development and Integration 

The development and integration of the software that analyzes data from both the Wi-Fi and wearable 

device subsystems involved: 

1. Algorithm Design: Creating algorithms capable of interpreting disruptions in Wi-Fi signals and 

inputs from wearable devices to detect falls. The algorithms use a combination of signal 

processing and machine learning techniques to distinguish between normal movements and 

potential falls. 

2. Data Processing: Developing scripts to preprocess and filter the data received from the 

hardware subsystems. This includes applying filters to Wi-Fi Channel State Information (CSI) and 

accelerometer data to enhance the accuracy of the fall detection process. 

3. Machine Learning Implementation: Implementing and training machine learning models to 

predict falls based on processed data. The models were trained using the FARSEEING database, 

which provides extensive real-world fall data, ensuring the models are robust and reliable in 

various scenarios. 

2.6.2 Equations and Algorithmic Description 

In our fall detection system design, we have incorporated insights and techniques based on real-world 

data analysis from the study by Bagalà, which provides a benchmark for accelerometer-based 

algorithms. The evaluation highlighted the complexity of accurately detecting falls in real scenarios, 

emphasizing the need for robust detection mechanisms that can differentiate between falls and regular 

activities. 

Key Equations and Algorithm Parameters: 

1. Impact Detection: 

• The fall detection starts by identifying significant impacts. The standard approach uses a 

threshold on the sum vector SV of the accelerometer outputs: 

𝑆𝑉 =  √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 

• An impact is suspected if SV exceeds a predetermined threshold, typically derived from 

empirical data to optimize sensitivity (SE) and specificity (SP). 

2. Orientation Change: 
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• Post-impact, the orientation change is calculated using the dot product of acceleration 

vectors before and after the impact. This helps in confirming a fall by analyzing the 

change in body orientation: 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = acos (
𝑎𝑝𝑟𝑒 × 𝑎𝑝𝑜𝑠𝑡

|𝑎𝑝𝑟𝑒||𝑎𝑝𝑜𝑠𝑡|
) 

• A significant angular change supports the detection of a fall. 

3. Posture Analysis: 

• After detecting a fall, the algorithm checks the subject’s posture using low-pass filtered 

(LPF) signals to determine if the person remains lying down, which is critical in 

confirming fall events: 

𝑃𝑜𝑠𝑡𝑢𝑟𝑒 𝑐ℎ𝑒𝑐𝑘 = 𝑚𝑒𝑎𝑛(𝐿𝑃𝐹(𝑎𝑧)) < 0.5𝑔 

These methods have been tested and validated under real-world conditions, where falls were recorded 

among elderly patients with high fall-risk, significantly contributing to the tuning of our detection 

algorithms.[2] 

Feature Extraction 

To effectively detect falls, the system extracts various statistical features from the accelerometer 

and gyroscope data within a sliding window. The following features are computed for each axis 

(ax, ay, az, gx, gy, gz) as well as for the magnitude of acceleration and gyroscope data. Each 

feature provides unique insights into the movement and orientation data, helping to distinguish 

between normal activities and falls: Mean, Standard Deviation, Variance, Min value, Max value, 

Skewness, Kurtosis, Spectral Entropy. 

2.6.3 Algorithm Integration and System Design 

The system design integrates these algorithms to perform sequential checks: 

1. Data Acquisition: Continuous monitoring using tri-axial accelerometers placed at strategic body 

locations to capture movement data. 

2. Real-time Processing: The accelerometer data is processed in real-time to calculate the sum 

vector and check against the impact threshold. 

3. Orientation and Posture Analysis: Upon passing the impact threshold, orientation changes are 

calculated, and posture is analyzed to confirm a fall. 

4. Alarm Triggering: If a fall is confirmed, the system automatically triggers an alert to notify 

caregivers or medical personnel. 

This integration ensures that the fall detection system is not only sensitive to the various dynamics of a 

fall but also minimizes false positives, a common issue in less discriminating systems. 
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Performance Metrics 

• Sensitivity (SE): Measures the percentage of falls correctly detected. 

• Specificity (SP): Measures the accuracy in disregarding non-fall events. 

• False Alarms: Number of incorrect fall detections per day, which is critical for user 

acceptance.[3] 

The algorithms have been refined based on feedback from initial testing, where real-world fall data 

helped in calibrating the detection thresholds to balance sensitivity and specificity effectively. 

By utilizing these advanced algorithms and incorporating real-world testing data, the fall detection 

system is optimized to provide reliable and timely detection, thereby enhancing the safety and 

confidence of the elderly population. 

2.6.4 Integration with Hardware 

To ensure that the software components were well-integrated with the hardware, following integrations 

are necessary: 

• Regular testing sessions with the hardware teams to ensure data consistency and reliability, 

adjustments to data transmission protocols to optimize speed and reduce latency. 

• Setting Sensor Configuration: Utilized tri-axial seismic acceleration sensors (LIS3LV02DQ 

STMicroelectronics) [4] fixed at the lower back, mirroring the setup in the study. This sensor 

configuration captures movements in three dimensions (vertical, medio-lateral, and anterior-

posterior), essential for detecting the direction and impact of falls. 

• Sampling and Resolution in data acquisition: Adjusted our system to handle data from sensors 

with variable sampling frequencies (50 Hz to 250 Hz) and acceleration ranges (±2 g to ±12 g), 

ensuring the system's robustness against the so-called “clipping effect” observed at ±2 g in some 

of the recorded falls.[3] 

2.7 Wi-Fi Detector Algorithm Subsystem 

2.7.1 Wi-Fi-Based Respiration Monitoring 

CSI Data Acquisition: Continuous monitoring and collection of Channel State Information (CSI) from WiFi 

devices provide the raw data necessary for analysis. The system utilizes the fine-grained temporal 

fluctuations in CSI caused by the respiratory movement of a person's chest and abdomen to detect 

breathing patterns. 

Signal Processing and Filtering: The raw CSI data is processed to filter out noise and irrelevant 

information. Techniques such as band-pass filtering are applied to isolate the frequency bands that are 

most affected by human respiration, typically within the 0.1 Hz to 0.5 Hz range, which corresponds to 

normal human breathing rates. 
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Multi-Domain Analysis: By employing a multi-domain analysis that includes both Doppler shifts 

(frequency domain) and Angle of Arrival (AoA) (spatial domain), the system can construct a two-

dimensional Doppler AoA map (DAM). This map enables the differentiation of respiration signals from 

multiple individuals in the monitored environment. 

Super Resolution Doppler AoA Map Construction: To enhance the resolution of the DAM and improve 

the accuracy of respiration rate estimation, a super-resolution technique is implemented. This approach 

is crucial for accurately clustering and identifying individual breathing patterns, especially when the 

number of Wi-Fi antennas is limited. 

Clustering and Respiration Rate Estimation: The peaks within the DAM represent potential respiration 

signals. A clustering algorithm, such as DBSCAN, groups these peaks based on their proximity, each 

cluster corresponding to an individual's respiration signal. The centroid of each cluster is used to 

estimate the respiration rate accurately. 

2.7.2 Motion Sensor Integration 

Motion Detection: Motion sensors placed strategically around the living space detect physical 

movement. This data provides context to the Wi-Fi-based respiration monitoring, enabling the system to 

differentiate between different types of movements (e.g., walking, falling). 

Event Classification: The system classifies detected movements into normal activities and potential 

emergencies using machine learning algorithms trained on datasets of elderly movement patterns. 

Features such as the intensity, speed, and nature of the movement are analyzed. 

Data Fusion and Analysis: Information from the motion sensors is fused with the respiration rate data 

from the Wi-Fi-based monitoring. This combined analysis allows for more accurate emergency 

detection, as it can identify situations where abnormal respiration patterns coincide with unusual 

physical movements. 

2.7.3 Implementation Details 

Phase 1: Planning and Design 

Define Objectives: Clearly outline what emergencies the system will detect (e.g., falls, abnormal 

inactivity indicating potential medical issues). 

Research: Investigate current technologies in Wi-Fi signal processing and motion detection. Focus on 

literature and existing projects that discuss Channel State Information (CSI) analysis for human 

movement and respiration rate monitoring. 

Design System Architecture: Decide on the architecture of the system. This includes the selection of Wi-

Fi devices for CSI data collection, types of motion sensors, and how data from these sources will be 

integrated. 

Phase 2: Hardware Setup 



12 
 

Select Wi-Fi Devices: Choose Wi-Fi routers or access points that support CSI data extraction, such as 

those with an Intel 5300 chipset. 

Acquire Motion Sensors: Obtain motion sensors that can be easily integrated with your system, like PIR 

(Passive Infrared) sensors for movement detection. 

Install and Position Devices: Install the Wi-Fi devices and motion sensors in a simulated environment. 

Ensure optimal placement for maximum coverage and data accuracy. 

Phase 3: Software Development 

CSI Data Collection Tool: Implement or utilize existing tools for collecting CSI data from WiFi devices. 

Ensure the tool can capture data in real-time. 

Signal Processing Module: 

Develop a module to filter and process the CSI data, extracting features relevant to respiration and 

movement. 

Apply techniques like wavelet transform for noise reduction. 

Motion Data Processing: Create software to read and interpret data from motion sensors, distinguishing 

between normal movement and potential falls. 

Integration and Analysis: 

Fuse data from both Wi-Fi and motion sensors to analyze for emergency situations. 

Implement simple algorithms to start, such as threshold-based detection for falls and basic pattern 

recognition for abnormal inactivity. 

Alert System: Develop a mechanism to alert caregivers or emergency services when an emergency is 

detected. This could be via SMS, email, or an app notification. 

Specific Methods we choose: 

The fully connected deep neural network (DNN) architecture has been applied to Wi-Fi sensing by 

directly processing CSI features to classify instances as motion or non-motion. DNNs are capable of 

learning intricate relationships within the data, especially where a larger amount of labeled data is 

available for training. The large amount of training-labeled data prevents overfitting in the case of DNN. 

Using appropriate activation functions, regularization techniques, and optimization algorithms, DNNs 

can effectively handle motion detection tasks using CSI data. 
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Figure 3: Accuracies 

 

Figure 4: Precision 

Phase 4: Testing and Evaluation 

Simulated Testing: Begin with controlled tests to simulate emergency scenarios and evaluate the 

system's response. Adjust detection algorithms based on test outcomes. 

Real-world Testing: If possible, conduct tests in a real environment with volunteers to simulate natural 

movement and emergencies, refining the system further based on this feedback. 
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Performance Evaluation: Assess the system's accuracy, speed of detection, and false positive/negative 

rates. Document any limitations or challenges encountered. 

Phase 5: Iteration and Refinement 

Review Feedback: Analyze data and feedback from testing phases to identify areas for improvement. 

Refine Algorithms: Based on feedback, make necessary adjustments to the signal processing and 

emergency detection algorithms to improve accuracy and reliability. 

User Interface Improvements: Enhance the alert system and user interface based on user feedback, 

ensuring it's intuitive and effective. 

Documentation: Compile detailed documentation on the system's design, implementation process, and 

operation guidelines. 

2.7.4 Additional Considerations 

Collaboration: Work in teams, dividing tasks based on individual strengths, to ensure efficiency and 

learning opportunities for all members. 

Ethics and Privacy: Consider the ethical implications and ensure privacy protection for all data collected 

and processed. 

Budget Management: Keep track of expenses related to hardware purchases and any software licenses 

to stay within your project budget. 

2.8 Requirements and Verification 

2.8.1 Wi-Fi Source Subsystem Analysis 

Requirements Verification 

1. Frequency and Channel Requirements:  

Requirement: The Wi-Fi device must operate on 
the 5 GHz frequency band to align with the 
operational frequency  

Quantitative Detail: The device should support 
configuration for at least 30 subcarriers, essential 
for compatibility with UT-HAR and Widar 
datasets. For adherence to NTU-HAR 
requirements, the capability to handle up to 114 
subcarriers is necessary. Moreover, specific 
channel operation, such as channel 165 (5.825 
GHz) as indicated for the Widar dataset, must be 
configurable.  

2. Bandwidth Requirements:  

1. Frequency and Channel Verification:  

Equipment: Utilize a spectrum analyzer or 
Software Defined Radio (SDR) for direct 
measurement.  

Procedure: Configure the device to operate on 
the specified channels and frequencies. Measure 
and record the frequency and subcarrier 
distribution using the SDR or spectrum analyzer.  

Result Presentation: Graphical representation of 
the frequency spectrum and subcarrier 
allocation.  

2. Bandwidth Verification:  
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Requirement: Essential bandwidth configuration 
of 40 MHz under the 5 GHz frequency band to 
meet the specifications listed for the NTU-HAR 
dataset.  

Quantitative Detail: The device must provide an 
option to select and operate under a 40 MHz 
bandwidth, ensuring the collection and analysis 
of Wi-Fi signals are conducted under precise and 
stipulated conditions.  

3. AP Support:  

Requirement: The system should integrate 
seamlessly with at least two TP-Link N750 APs or 
equivalent models to establish a network 
environment as per the NTU-HAR dataset's setup. 
Quantitative Detail: Ensure the Wi-Fi device's 
compatibility with specific Access Point (AP) 
models and support simultaneous connections, 
facilitating a robust network framework for data 
collection.  

4. Hardware Interface and Compatibility:  

Requirement: Provision of comprehensive 
hardware interface options, including USB, 
Ethernet, or Wi-Fi, to ensure seamless 
connectivity with a variety of operating systems 
(Windows, Linux, macOS) and programming 
environments.  

Quantitative Detail: Define clear compatibility 
metrics and interface standards (e.g., USB 3.0, 
Ethernet 10/100/1000 Mbps) to facilitate 
straightforward integration into the existing data 
collection and analysis infrastructure.  

5. Environmental Adaptability:  

Requirement: The Wi-Fi device must exhibit high 
performance and reliability across diverse 
environments – indoor, outdoor, varying 
temperatures, and humidity levels.  

Quantitative Detail: Establish operational 
parameters, such as operating temperature range 
(-10°C to 50°C) and humidity tolerance (10% to 
90% non-condensing), ensuring device resilience 
and consistent data collection quality across 
environments.  

6. Data Precision and Stability:  

Equipment: Network analysis tools (e.g., 
Wireshark).  

Procedure: Set the device to the 40MHz 
bandwidth mode. Use network analysis tools to 
capture and analyze the Wi-Fi traffic, verifying 
the operational bandwidth.  

Result Presentation: Summary report detailing 
bandwidth utilization and configuration 
adherence.  

3. AP Support Verification:  

Equipment: TP-Link N750 APs or equivalent, 
multiple Wi-Fi enabled devices.  

Procedure: Connect the Wi-Fi device to the APs 
set in the required configuration. Test the 
stability and throughput with multiple connected 
devices under various conditions.  

Result Presentation: Performance metrics report, 
including throughput rates, connection stability, 
and device compatibility confirmation.  

4. Hardware Interface and Compatibility 
Verification:  

Equipment: Various computing platforms with 
different OS.  

Procedure: Connect the WiFi device using its 
provided interfaces to the computing platforms. 
Test compatibility through data transmission 
tasks.  

Result Presentation: Compatibility matrix and 
performance analysis across different platforms. 

5. Environmental Adaptability Verification:  

Equipment: Environmental test chamber or 
equivalent setup.  

Procedure: Operate the device within an 
environmental test chamber set to varying 
conditions. Monitor performance and data 
integrity.  

Result Presentation: A detailed report 
highlighting performance metrics under each 
tested condition.  

6. Data Precision and Stability Verification:  
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Requirement: Achieve high precision and stability 
in data collection across different environmental 
and operational conditions, crucial for accurate 
behavior recognition and analysis.  

Quantitative Detail: Set specific performance 
metrics, like a maximum data variance threshold 
of ±5% under predefined conditions, to ensure 
reliability and accuracy in data capture and 
processing.  

Equipment: Standardized test environments and 
data analysis software.  

Procedure: Collect data using the Wi-Fi device 
under controlled conditions. Analyze the data for 
precision and stability metrics.  

Result Presentation: Statistical analysis report, 
including variance and error rates, with 
comparisons against predefined performance 
thresholds. 

2.8.2 Wearable Device Subsystem Analysis 

Requirements Verification 

Accelerometers should have a range of at least 
±2 g, gyroscopes should have a range of at least 
±360° 

 

We will use the MCU6050 IMU sensor and test it, 
while it is fixed on the wrist and other parts of 
the test personnel in the normal adult male 
standard larger test movements and real-time 
data recording to determine the required 
maximum range of range maintains a more stable 
condition. 

According to the need to output about 3.3 V (3 V 
- 3.6 V) and 5V (4.7 V- 5.3 V) more stable voltage. 
Output current no higher than 1 A. 

A multimeter is used to measure the battery and 
power supply module before official operation 
under simulated real load conditions, and the 
overall circuit is regularly monitored during the 
test to ensure that the power supply module 
maintains a more stable condition. 

1. Delays due to data processing operations 
should be less than 200 ms. 

2. The packet loss rate for data transmission 
over the Wi-Fi protocol should be no more 
than 1 per cent. 

 

1. After writing the data processing code on the 
finished processor, we try to calculate the 
time required using the timing-related 
libraries in the environment, and if the results 
do not meet the requirements, we evaluate 
the parts that must run on that processor and 
transfer the code that can be moved to the 
processor part to reduce the transfer latency 

After the subsystem docking test, we will conduct 
a transmission stability test of no less than 2 
hours, where the tester wears a wearable device 
to move around the room and simulate a normal 
life situation, and the processor subsystem part 
will be added in advance to monitor the packet 
loss rate and stability and alert the police if it 
exceeds the stipulated limits. 
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 2.8.3 Detector Subsystem Analysis 

Requirements Verification 

Processor for Signal Processing: A Raspberry Pi 4 
or a computer with sufficient processing power to 
handle real-time signal processing and analysis. 

Implementation Steps: 

Signal Acquisition: Set up the Wi-Fi router in a 
central location within the environment to ensure 
broad coverage. Use software tools like Linux 
802.11n CSI Tool on the receiver to capture CSI 
data from the Wi-Fi signals. 

Signal Preprocessing: Implement a high-pass filter 
using Python or MATLAB on the received CSI 
data. This can be done by designing a 
Butterworth filter with scipy.signal.butter in 
Python, specifying the high-pass frequency cutoff 
according to the expected minimum movement 
frequency of humans. 

Feature Extraction: Write scripts to calculate 
amplitude variance, phase change rate, and 
Doppler shift frequencies from the preprocessed 
CSI data. Use numpy and scipy libraries in Python 
for efficient computation 

Conduct experiments simulating various human 
movements within the coverage area of the Wi-Fi 
signals. Capture the CSI data and use a spectrum 
analyzer software or a MATLAB tool to analyze 
the frequency and phase accuracy of the 
processed signals. 

Noise Reduction: Implement a low-pass filter in 
the data processing script to remove unwanted 
high-frequency noise from the sensor data. The 
filter can be implemented similarly to the Wi-Fi 
signal preprocessing step. 

Feature Identification: Develop algorithms to 
identify features indicative of a fall from the 
motion sensor data, focusing on parameters such 
as peak acceleration and impact duration. 

Perform controlled drop tests with dummies 
equipped with motion sensors to simulate falls. 
Record the sensor data and analyze it to verify 
the accuracy of feature identification and the 
effectiveness of noise reduction. 

 

Model Training: Preprocess the collected Wi-Fi 
and motion sensor data and split it into training 
and testing sets. Use scikit-learn to train SVM 
models on the Wi-Fi data and Random Forest 
models on the motion sensor data. Optimize the 
models using grid search for hyperparameters. 

Ensemble Integration: Implement a weighted 
voting system in Python where each model's vote 
is weighted by its accuracy on a validation set. 

Test the ensemble method on a diverse dataset 
that includes both fall and non-fall scenarios not 
seen during training. Use k-fold cross-validation 
to ensure the model's generalization capability 
and document the system's performance in 
terms of sensitivity, specificity, and false alarm 
rate. 
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The ensemble method should output a fall 
detection result based on the combined votes. 

Fall Detection: Integrate the ensemble method 
into the system's central processing unit. The 
system should analyze incoming data in real-time 
and trigger an alert if a fall is detected. 

Programming the Microcontroller: Write a script 
for the microcontroller that sends a predefined 
message to the Bluetooth module whenever the 
ensemble method detects a fall. This message 
can include details like the time of the fall and the 
location if known. 

Developing the Notification App: Create a simple 
mobile application that listens for Bluetooth 
messages from the paired Bluetooth module. 
Upon receiving a message, the app should display 
a notification, sound an alarm, or even send an 
SMS to a predefined contact list, depending on 
the severity of the alert and user preferences. 

Conduct extensive testing to ensure the 
Bluetooth module reliably connects to the 
notification device and that the alert system 
activates correctly under fall conditions. Simulate 
various environments and distances to ensure 
the system's robustness. 

 

Figure 5: Accuracies for Wearable Device Detector 
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Cross-Validation: 

• Objective: To ensure the model's robustness and its ability to perform consistently 

across different datasets. 

• Methodology: Application of k-fold cross-validation techniques to the fall detection 

algorithms, using both the simulated and real-world data to evaluate model consistency 

and generalizability.[6] 

Expected Results for Testing Metrics: 

• Sensitivity and Specificity: These metrics will be closely monitored to ensure the system 

maintains high accuracy in fall detection (targeting >85% sensitivity) and minimizes false 

positives (aiming for >90% specificity). 

• False Alarms: The number of false alarms will be recorded and analyzed. The goal is to reduce 

false alarms to less than one per day per test subject in a real-world testing environment. 

3 Cost and Schedule 

3.1 Cost 

Our fixed development cost is ￥40/hour for four people for 10 hours per week.[7] We believe that 

Within the semester (10 weeks), we will have completed all the final design,  so the estimate of our 

labor cost is: 

￥40

ℎ𝑟
 × 

10ℎ𝑟

𝑤𝑘
 ×  10𝑤𝑘 ×  4 =  ￥16000 

Our parts and manufacturing prototype costs are estimate as ￥749.64 each: 

Parts Cost (Prototype) 

Breadboards, Dupont cables, data cables, etc. 
(Taobao; generic) 

￥20 

IMU sensor module (Taobao; MPU6050) ￥10.4 

Wi-Fi module (Taobao; ESP8266) ￥36.5 

Battery box and power supply module (Taobao; 
18650/RunesKee) 

￥26.24 

Wi-Fi router (Taobao; TP-LINK AX1500) ￥159 

Microcontroller (Taobao; Raspberry PI 5) ￥479 

Bluetooth module (Taobao; HC-02)  ￥18.5 
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3.2 Schedule 

Week Jincheng Zhou Junyue Jiang Pu Lin Zizhao Cao 

3/4/24 Meet with the 
Sponsor to 
identify the 
project topic and 
review relevant 
papers. 

Meet with the 
Sponsor to 
identify the 
project topic and 
review relevant 
papers. 

Meet with the 
Sponsor to 
identify the 
project topic and 
review relevant 
papers. 

Meet with the 
Sponsor to 
identify the 
project topic and 
review relevant 
papers. 

3/11/24 Confirm the 
overall idea of the 
project and 
delineate the 
subsystems for 
which each is 
responsible. 
Responsible for 
the algorithm part 

Responsible for 
receiving control 
and alarm 
components 

Responsible for 
the Wi-Fi signal 
transmitter 
section 

Responsible for 
wearable device 
subsystems 

3/18/24 Review of relevant 
literature to 
identify algorithm 
implementations 
with required 
environments and 
datasets 

Review of 
relevant literature 
and budget to 
determine 
required 
component types 

Review of 
relevant literature 
and budget to 
determine 
required 
component types 

Review of 
relevant literature 
and budget to 
determine 
required 
component types 

3/25/24 Perform the 
required model 
training 

Perform building 
the circuit for the 
processor section 

Perform the Wi-Fi 
router portion of 
the deployment 

Perform building 
the circuit for the 
wearable device 
part 

4/1/24 Finish the 
required model 
training 

Finish building the 
circuit for the 
processor section 

Finish the Wi-Fi 
router portion of 
the deployment 

Finish building the 
circuit for the 
wearable device 
part 

4/8/24 Testing the 
effectiveness of 
model training 

Test the normal 
functioning of the 
processor section 
for compliance 

Test the Wi-Fi 
router to see if it 
delivers compliant 
data 

Test wearable 
device circuits for 
proper 
functioning and 
providing correct 
data 

4/15/24 Accuracy of the 
test model on the 
data obtained 
from the 
measurements 

Test that the 
model can be 
successfully 
deployed on the 
processor and 
that it runs as fast 
as required 

Test that the data 
provided by the 
Wi-Fi router 
meets the model 
requirements 

Test that the 
wearable part of 
the device 
measures and 
correctly 
transmits 
compliant data 
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4/22/24 Optimize changes 
in response to 
changes suggested 
by TA and Sponsor 

Optimize changes 
in response to 
changes 
suggested by TA 
and Sponsor 

Optimize changes 
in response to 
changes 
suggested by TA 
and Sponsor 

Optimize changes 
in response to 
changes 
suggested by TA 
and Sponsor 

4/29/24 In conjunction 
with the sub-
systems, conduct 
overall 
deployment tests 
to test the 
accuracy of 
judgement on pre-
programmed 
actions 

In conjunction 
with the sub-
systems, conduct 
overall 
deployment tests 
to test the 
accuracy of 
judgement on 
pre-programmed 
actions 

In conjunction 
with the sub-
systems, conduct 
overall 
deployment tests 
to test the 
accuracy of 
judgement on 
pre-programmed 
actions 

In conjunction 
with the sub-
systems, conduct 
overall 
deployment tests 
to test the 
accuracy of 
judgement on 
pre-programmed 
actions 

5/6/24 Preparing Final 
Demo, Starting 
Final Report 

Preparing Final 
Demo, Starting 
Final Report 

Preparing Final 
Demo, Starting 
Final Report 

Preparing Final 
Demo, Starting 
Final Report 

 

4 Ethics & Safety 
Our Emergency Detection System for Elderly Care is designed with a strong commitment to ethical 

standards and safety, drawing guidance from the IEEE Code of Ethics and the ACM Code of Ethics. Key 

ethical considerations include the protection of privacy and confidentiality, as outlined in the ACM Code, 

and the imperative to avoid harm, a fundamental aspect of the IEEE Code.[6] We prioritize these ethical 

principles by implementing data encryption, anonymization, and employing system designs that 

minimize the risk of false alarms and missed emergencies. 

Proactive measures to avoid ethical breaches include regular reviews by an ethics board, comprehensive 

team training on ethical conduct, and strict data protection measures. Potential safety concerns, such as 

device malfunction and data breaches, will be mitigated through rigorous testing, the development of 

clear emergency response protocols, and advanced cybersecurity measures. 

Our approach ensures that the Emergency Detection System not only enhances the safety and care of 

the elderly in care facilities but does so with utmost respect for their dignity and privacy, embodying the 

principles of ethical responsibility and safety compliance.  



22 
 

References 
[1] Department of Ageing and Health, "National Development Bulletin on Ageing 2020," 15 10 2021. 

[Online]. Available:  

[2] “Older persons invisible and vulnerable in emergencies,” OHCHR. Accessed: Mar. 10, 2024. 

[Online]. Available: https://www.ohchr.org/en/stories/2019/10/older-persons-invisible-and-

vulnerable-emergencies 

[3] L. Low, D. Lee, and A. Chan, “An exploratory study of Chinese older people’s perceptions of privacy 

in residential care homes,” Journal of advanced nursing, vol. 57, pp. 605–13, Apr. 2007, doi: 

10.1111/j.1365-2648.2006.04116.x. 

[4] J. Hung, “Smart Elderly Care Services in China: Challenges, Progress, and Policy Development,” 

Sustainability, vol. 15, no. 1, Art. no. 1, Jan. 2023, doi: 10.3390/su15010178. 

[5] N. Bao et al., “The Intelligent Monitoring for the Elderly Based on WiFi Signals,” in Advances in 

Multimedia Information Processing – PCM 2017, B. Zeng, Q. Huang, A. El Saddik, H. Li, S. Jiang, and 

X. Fan, Eds., Cham: Springer International Publishing, 2018, pp. 883–892. 

[6] J. Hung, “Smart Elderly Care Services in China: Challenges, Progress, and Policy Development,” 

Sustainability, vol. 15, no. 1, Art. no. 1, Jan. 2023, doi: 10.3390/su15010178. 

[7] IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available: https://www.ieee.org/ 

about/corporate/governance/p7-8.html (visited on 02/08/2020). 

[8]  “Undergraduate Earnings Analysis Book Database.” Accessed: Mar. 26, 2024. [Online]. Available: 

https://www.pishu.com.cn/skwx_ps/initDatabaseDetail?siteId=14&contentId=14490234&contentT

ype=literature&type=%25E6%258A%25A5%25E5%2591%258A 

[9] Vellas, B., Cayla, F., Bocquet, H., De Pemille, F., & Albarede, J. L. (1987). Prospective study of 

restriction of activity in old people after falls. Age Ageing, 16(3), 189-193. 

 

https://www.pishu.com.cn/skwx_ps/initDatabaseDetail?siteId=14&contentId=14490234&contentType=literature&type=%25E6%258A%25A5%25E5%2591%258A
https://www.pishu.com.cn/skwx_ps/initDatabaseDetail?siteId=14&contentId=14490234&contentType=literature&type=%25E6%258A%25A5%25E5%2591%258A

