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1 Introduction

1.1 Problem

Modern air travel involves the constant movement of passengers within airport premises,
often burdened with personal belongings and luggage. While airports strive to pro-
vide convenience, the process of moving from the check-in area to the departure gate
can be challenging for passengers, especially those carrying heavier bags or many
bags. This challenge is particularly relevant given the increasing trend of passengers
bringing additional luggage, with weights ranging from 2 to 3 kilograms. Although
the total weight might still in under the restriction of 50 lbs, the increased amount of
bags will add difficulties for people to hold with two hands.

1.2 Solution

The proposed solution for this problem is the development of a leg-wheeled robotic
system designed to accompany airport passengers with their luggage. The primary
objective is to enhance the passenger experience by offering a reliable and autonomous
companion capable of carrying bags weighing 2-3 kilograms. This robotic system will
intelligently follow passengers with the help of camera and vision control algorithms
as they traverse the airport, providing a hands-free and effortless solution to the bur-
den of carrying personal items. In instances where passengers face challenges, such as
staircases, the robot’s unique legged design allows it to overcome obstacles that tradi-
tional wheeled robots cannot. This robustness ensures smooth navigation in a variety
of airport environments.

1.3 Visual Aid

Figure 1: Overall Work Flow

1.4 High-level requirements list

1. The luggage weight must be around 2-3 kg.

1



2. The overall size of the robot needs to be around 500mm×500mm.

3. The distance between the legs and the robot should be within 1m throughout the
whole process.

As shown below, our design contains the following part: Power unit, the control unit,
the planning unit, sensor unit and motor unit. The control unit is the central unit of
our system, where the microcontroller receives the command and execute by sending
signals to different motors. The power unit is responsible for converting the battery
voltage from 24v to any voltage needed by different units. The motoe unit consists of
four leg motors and two wheel motors.

Figure 2: Top Level

2 Design

2.1 Design Procedure

2.1.1 Mechanical Structure

First we determined the overall size of the robot needs to be around 500mm×500mm,
so it can carry a normal-sized handbag. Second, we select proper leg types. We choose
a 5-bar linkage leg type, because this structure has been well researched and there are
plenty of open source about its control methods. Third for stability, we focus on the leg
joints. Many wheeled leg robots exhibit a splaying of the feet, which is due to gaps in
their leg joints, causing the robot’s lower legs to bend outward under high torque. Our
solution is to increase the diameter of the cylindrical shaft of the leg joint to suppress
the splaying phenomenon.
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Figure 3: Robot CAD in Fusion

Figure 4: Robot model in reality

2.1.2 Mechanical System

Motor selection

First, we need to select the right joint motors. We assume the weight of our balance
robot with carried weight is totally of 20kg, and then calculate the approximate torque
at hip joint is around 8Nm. Therefore, we use Unitree Technology’s A1 joint motor,
which has a peak torque of 33.5 Nm. In CAD model, we assigned the corresponding
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material to each part and got the predicted weight is 8.35kg. Assigning material prop-
erties also helps us directly get the position of the center of mass. The real weight we
measured is 8.2kg which matches our CAD surprisingly well.

Joint Design

At the Knee joints, we use CNC machined 6061-T6 aluminum parts and bowl group
bearings for joint fixation. This method allows for a larger joint shaft diameter, effec-
tively reducing the backlash in the leg joints. It also minimizes the parts number we
need.

Figure 5: Knee joint cross-section view
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At the wheel joints, we use XIAOMI’s Cyber Gear motors. Two 3D-printed parts are
introduced to lock the position of the KP035 bearing. The wheel is connected to the
wheel motor, and the step-shape structure inside the wheel will contact with the bear-
ing. This helps release the load on the motors’ rotor.

Figure 6: Wheel joint explosion view

At the hip joint, although the Unitree motor is able to bear huge loads, we still decided
to add a bearing to release the force act on the motor. Besides, we have to design a
physical restriction for the hip joint. This is because Unitree motor has only a single
encoder. Therefore, after going through a gear ratio of 9 speed reduction, the outside
rotor would have 9 zero points. So we plan to retract the leg when powering the
robot. Once the leg hits the upper restriction, the robot will record this as its initial
position.

Figure 7: Hip joint explosion view

Material

In the iteration process, we use cheap 3D-printed PLA parts and acrylic boards to build
prototypes. Even the knee joints and hip-bearing seats are printed PLA for tolerance
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testing. To fix joint motors, we use two boards to sandwich joint motors and attach
them to an aluminum square tube. The aluminum square tube functions as corner
pieces, which is convenient for connecting boards with 90° angle.

Our final robot uses carbon fiber materials for body structure because they have a
lighter mass compared to other materials at the same strength. We also planned to use
carbon fiber legs at the beginning. However, due to budget problems, we eventually
kept the 12mm-thick acrylic legs. In the progress of building this robot, we found
the acrylic boards aren’t as fragile as we used to believe. We also adopted topology
analysis to reduce as much weight as possible.

We are also using topology to minimize our robot’s weight and maintain the parts’
strength at the same time. The following is the topology optimization result in Fusion
360. By using this techniques, we are able to reduce around 30 percent of the robot’s
weight.

Figure 8: Upper leg topology result

2.1.3 Electrical System

Micro-controller Board

We are using STM32F407IGH6 for our microcontroller board. This is a new product
developed by ST in 2011 following the ARM Cortex-M4 architecture. Compared with
the previous products, the STM32F4’s new integrated FPU unit and DSP instructions
greatly enrich the functions of the STM32 chip, and at the same time, the STM32F4’s
main frequency has also been improved. The main frequency can reach up to 168Mhz
(can have 210DMIPS running speed), making the STM32F4 in floating point comput-
ing or DSP processing ability greatly improved, with a very wide range of application
prospects.

Motor Controll

We are using the joint A1 motor from Unitree and the wheel motor from XIAOMI. The
A1 motor uses RS485 to communicate and the wheel motor uses CAN (Controller
Area Network) to communicate. Because our micro-controller board doesn’t have
RS485 port, so we choose to use UART and a TTL to RS485 converter to control A1
motor.
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Embedded Software

To communicate with the peripherals, we use the standard API and the API from
HAL. What’s more, we decided to use a Real-time operating system to support the
multi-threads process. Therefore, we decided to use STM32CubeMX to generate the
basic code skeleton, and use VS Code as our code editor for its powerful add-ons. We
choose GCC, GDB, and OpenOCD as our toolchain and debug tool.

2.1.4 Control System

For the control system, the strategy mainly consists of two parts: the wheel part and
the leg part. As suggested in [1], we use the Linear quadratic regulator (LQR) algo-
rithm for the wheel part and use virtual model contorl algorithm (VMC) for the leg
part. We choose LQR because the mathematical principles of LQR are relatively sim-
ple to implement and it owns rapid response to system changes and strong robustness.
And the reason for using VMC is that the VMC algorithm comprehensively considers
both the posture and velocity of the robot without the need for inverse kinematics
calculations. It achieves high computational and control efficiency. Our design was
tested on matlab simulink and Webot for simulation and later on moved to the real
robot.

2.2 Design Details

2.2.1 Control System of Wheels

The forward motion of the wheel can be decomposed into forward motion and relative
rotation (pitch) around the center of mass P of the car body.
The force analysis diagram for the left and right wheels of the two-wheeled robot is
shown in the figure 9. The resultant force in the horizontal direction for the robot is
the vector sum of the frictional force Fr between the wheels and the ground, as well as
the horizontal force Hr acting between the chassis and the wheels. Since parameters
(mass, moment of inertia, radius) being the same for both wheels. Let’s conduct force
analysis using the example of the right wheel:

Figure 9: Wheel model

Horizontally, we can derive the equation that:

ẍr =
Fr −Hr

Mw

(1)
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ω̇r =
Tr − FrR

I
(2)

Suppose ωr =
ẋr

r
, where r is the radius of each wheel, and combine (1) and (2). We can

obtain that :
(Mw +

I

r2
)ẍr =

Tr

r
−Hr (3)

The horizontal displacement of the center O of the car chassis x is:

x =
xl + xr

2
(4)

Therefore, applying equation (3) to the left wheel and combine them together, we
could obtain the equation 5:

(Mw +
I

r2
)ẍ =

Tl + Tr

2r
− Hl +Hr

2
(5)

Moving forward and backward

Figure 10: Moving forward and backward

For the vehicle body, according to Newton’s second law, we can derive the equation
horizontally:

Hl +Hr = M
d(x+ Lsinθ)

dt2
(6)

and vertically:

Vl + Vr = M
d(Lcosθ)

dt2
+Mg (7)

For the vehicle body, according to the rigid body rotation law with a fixed axis, we can
obtain the equation:

(8)
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Combining (6), (7) and (2.2.1), we could obtain:

θ̈ =
gsinθ − ẍcosθ − (Tl+Tr

ML
)

J
ML

+ L
(9)

Combining the equation (6) and equation (5), we can get:

(M + 2Mw +
2I

r2
)ẍ = ML(θ̈cosθ − θ̇2sinθ) +

Tl + Tr

2
(10)

When our vehicle body can keep balance and steady with a neglectable pitch angle θ,
we have the approximation as following:

cosθ = 1, sinθ = θ, θ̇2 = 0 (11)

Then the equation (10) can be linearized as :

ẍ =
Tl + Tr

(M + 2Mw + 2I
r2
)r

− MLθ̈

(M + 2Mw + 2I
r2
)

(12)

And the equation (9) could be linearized as:

θ̈ =
gθ − ẍ− (Tl+Tr

ML
)

J
ML

+ L
(13)

Solving the equation system composed of (12) and (13), we get the following formula
at last:

ẍ =
J +ML2 +MLr

JMr + r(J +ML2)(2Mw + 2I
r2
)
(Tl + Tr)− θ

M2L2g

JM + (J +ML2)(2Mw + 2I
r2
)

(14)

θ̈ = θ
MLg(M + 2Mw + 2I

r2

JM + (J +ML2)(2Mw + 2I
r2
)
−

ML
r

+M + 2Mw + 2I
r2

JM + (J +ML2)(2Mw + 2I
r2
)
(Tl + Tr) (15)

Rotation Motion

Figure 11: Rotation model

According to the law of rigid body rotation, we have :

Jϕϕ̈ =
D

2
(Hl −Hr) (16)
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ϕ̈ =
ẍl − ẍr

2
(17)

Then we can plug (3) into the equations above, resulting in:

ϕ̈ =
Tl − Tr

rMwD + ID
r
+

2rJϕ
D

(18)

LQR control system

With (12), (13) and (18, we can generate the state function of our control system in the
form of Ẋ = AX +Bu:

ẋ

ẍ

θ̇

θ̈

ϕ̇

ϕ̈


=



0 1 0 0 0 0

0 0 A23 0 0 0

0 0 0 1 0 0

0 0 A43 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


∗



x

ẋ

θ

θ̇

ϕ

ϕ̇


+



0 0

B21 B22

0 0

B41 B42

0 0

B61 B62


∗

Tl

Tr

 (19)

Where,

A23 = − M2L2g

JM + (J +ML2)(2Mw + 2I
r2
)

(20)

A43 =
MLg(M + 2Mw + 2I

r2

JM + (J +ML2)(2Mw + 2I
r2
)

(21)

B21 = B22 =
J +ML2 +MLr

r(JM + (J +ML2)(2Mw + 2I
r2
))

(22)

B41 = B42 = −
ML
r

+M + 2Mw + 2I
r2

JM + (J +ML2)(2Mw + 2I
r2
)

(23)

B61 = −B62 =
1

r(DMw + ID
r2

+
2Jϕ
d
)

(24)

According to LQR, we need to set u = −KX , where K denotes the feedback gain
matrix and minimize the cost function of LQR control algorithm:

J =
1

2

∫ ∞

0

(XTQX + uTRu)dt (25)

Where Q is the state vector weighting matrix of a semi-positive definite symmetric
constant, and R is the control rate weighting matrix of a positive definite symmetric
constant. Increasing the weighting matrix Q will decrease the overshoot and settling
time of the dynamic process, but it will correspondingly increase the energy consump-
tion of the control inputs. When the coefficients of the R matrix increase, it can reduce
the number of input variables of the system, but it will also decrease the response
speed of the system. To reduce the energy consumption of the system’s control, one
can appropriately increase the value of the weighting matrix R. However, if the value
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of the weighting matrix R is too large, it will result in too small control energy, which
is also disadvantageous for controlling the system.
Our final choose of Q, R and the resulting K is as below:

Q =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 5500 0 0 0

0 0 0 1000 0 0

0 0 0 0 6000 0

0 0 0 0 0 1


, R =

1 0

0 0.25

 ,

K =

178.280859 −21.821328 102.754738 83.116185 146.698730 6.788157

−64.954540 −26.935612 206.678773 104.540048 −127.912524 −6.057289


2.2.2 Control System of Legs

Five-Linkages leg model

The support structure of our robot consists of symmetric left and right legs. Fig:12
illustrates a five-linkages model of one leg as an example.

Figure 12: Five-linkage leg model

According to the leg structure, the rotational joints A and E are driven by motors, and
their angles can be measured using motor encoders. In our control task, the focus is on
the position of the end-point C of the 5-bars linkage mechanism, which can typically
be represented using Cartesian (Xc, Yc). The target of the leg control system is to set
the wheel point C at the expected position and keep the leg posture normal at the
same time. We set point A as the origin of the coordinate system. By solving the five-
linkages model for the Cartesian coordinates of point C, we can obtain the following
two sets of equations: {

xB + l2cosφ2 = xD + l3cosφ3

yB + l2sinφ2 = yD + l3sinφ3

(26)
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xB = l1cosφ1

yB = l1sinφ1

xc = l1cosφ1 + l2cosφ2

yc = l1sinφ1 + l2sinφ2

xD = l5 + l4cosφ4

yD = l4sinφ4

(27)

VMC control System

As suggested in [2], we utilize the concept of VMC (Virtual Model Control) in our
control system. VMC is a control method that uses virtual forces and components to
simulate actual actuator forces and torques. As depicted in the Figure 2.2.2-2, a virtual
leg is conceptualized extending to point C. This virtual leg aids in the calculation of
the necessary torques at the joints of the physical robot by applying virtual force Pl

at point C, which decomposed in the x and y direction i.e. Fx and Fy . φ5 denotes
the angle between l0 and the chassis AE. By establishing a mathematical relationship
between these virtual forces and the real joint torques—specifically at joints A, E—we
can derive the torque requirements that ensure the robot’s legs move as desired. Next,
we define the status of the end-effector (point C) as x = [xC , yC ]

Tand the target control
status of Motors A, E as S = [φ1, φ4]

T . Thus, we could obtain a forward kinematics
fomula for our leg model as following::

x = f(S) (28)

Take the derivative of this equation, we get:

∇x = J∇S (29)

According to the principle of virtual work, the external torque on a system in equilib-
rium is equal to zero. Therefore we can obtain:

T T∇S + (−F T )∇x = 0 (30)

Where T = [TA, TE]
T ,F = [Fx, Fy]

T . TA, TE are the torques of joint motor A and E
respectively. Fx, Fy is the decomposed forces of virtual force Pl at point C along the
direction of x and y. Combining (29) and (30), we can have the following formula to
transfer our virtual force to the expected actual torque for joints A, E:

T = JTF (31)

Take the derivative of xc, yc in (27), we can obtain:

[ẋc, ẏc]
T = [−l1φ̇1sinφ1 − l2φ̇2sinφ2, l1φ̇1cosφ1 + l2φ̇2cosφ2]

T (32)

Then we take the derivative of (26):{
l3φ̇3sinφ3 = ẋD − ẋB + l2φ̇2sinφ2

l3φ̇3cosφ3 = ˙yB − ˙yD + l2φ̇2cosφ2

(33)
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Take φ̇3 out of (33), we can get the following formula about φ̇2:

φ̇2 =
(ẋD − ẋB)cosφ3 + ( ˙yD − ˙yB)sinφ3

l2sin(φ3 − φ2)
(34)

Plug (34) into (32):{
ẋc = −l1φ̇1sinφ1 − l2sinφ2

( ˙xD− ˙xB)cosφ3+( ˙yD− ˙yB)sinφ3

l2sin(φ3−φ2)

ẏc = l1φ̇1cosφ1 + l2cosφ2
( ˙xD− ˙xB)cosφ3+( ˙yD− ˙yB)sinφ3

l2sin(φ3−φ2)

(35)

Since we can derive the expression of ẋD, ẋB, ˙yD, ˙yB with only constant value(li) and
variable φ1, φ4 from (27), with the sum and difference formulas in trigonometry, we
get the final equation as following:ẋC

ẏC

 =

 sinφ3
l1sin(φ12)
sin(φ23)

sinφ2
l4sin(φ34)
sin(φ23)

−cosφ3
l1sin(φ12)
sin(φ23

−cosφ2
l4sin(φ34)
sin(φ23

 ∗

φ̇1

φ̇4

 (36)

where, φ12 = φ1 − φ2, φ23 = φ2 − φ3, φ34 = φ3 − φ4.
According to (30), we derived the following relationship between the expected torque
of the joint motor and the virtual force:

TA = l1sinφ3
sinφ12

sinφ23

Fx − l1cosφ3
sinφ12

sinφ23

Fy (37)

TE = l4sinφ2
sinφ34

sinφ23

Fx − l4cosφ2
sinφ34

sinφ23

Fy (38)

2.3 Trajectory Planning Module

For this part, we are going to accomplish a module which is responsible for tracking
objects. This is corresponding to the application scenarios where our users can grab a
beacon tag, put their luggage on the robot and then the robot can follow their users in
the airport.

To create a more user-friendly scenarios (which means our users should take as easy
and simple approach as possible to use our product. We finally use a UWB module to
provide the position of the users and robots, then use camera if necessary to avoid the
obstacles. Then a tracking algorithm is used to give the command to the robot. All the
computation work needed will be solved in the host computer since we are afraid of
the computing power of the microcomputer.

2.4 Perception Module: UWB positioning technology

Ultra-Wideband (UWB) is a radio communication technology that enables highly ac-
curate tracking by measuring the time it takes for radio waves to travel between de-
vices. This precision, along with its ability to penetrate obstacles and its resilience
against signal interference, makes UWB an excellent choice for robotic systems that
require reliable real-time location tracking.
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Figure 13: UWB

To set up a positioning system using Ultra-Wideband (UWB) technology, we install
three UWB anchors in distinct locations and use two tags that communicate with these
anchors. The system calculates the distance from each tag to the anchors based on the
time it takes for signals to travel, and then applies triangulation to determine the exact
position of the tags in real-time.

Figure 14: UWB

2.4.1 Trilateration

To solve the trilateration problem using matrices and pseudoinverse, consider three
known points A,B, and C with distances dA, dB, and dC from an unknown point P .
Linearize the equations by subtracting the squared distances, then express this system
in matrix form.

Linear Equations:

2(xB − xA)x+ 2(yB − yA)y + 2(zB − zA)z = d2A − d2B + x2
B − x2

A + y2B − y2A + z2B − z2A,

2(xC − xA)x+ 2(yC − yA)y + 2(zC − zA)z = d2A − d2C + x2
C − x2

A + y2C − y2A + z2C − z2A.

Matrix Form:

A =

2(xB − xA) 2(yB − yA) 2(zB − zA)

2(xC − xA) 2(yC − yA) 2(zC − zA)
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p =


x

y

z

 , b =

d2A − d2B + x2
B − x2

A + y2B − y2A + z2B − z2A

d2A − d2C + x2
C − x2

A + y2C − y2A + z2C − z2A


Pseudoinverse Solution:

p = (ATA)−1ATb

This approach minimizes the least-squares error in the distances, providing a robust
estimate for the coordinates of point P .

Figure 15: UWBsetting

2.4.2 UWB communication protocol

The serial communication protocol is the data actively uploaded by the UWB module.
We define the message protocol as the following, the main content of which is the
distance between each label and each anchors. We obtain the position information of
each label by using the trilateral measurement method on the host computer

Field Length Description

HEAD mc Header, indicates ’mc’

USER 00 User ID, default is 00, used to distinguish different
users or devices

RANGE0 00000663 Distance to anchor A0, in hex, representing the dis-
tance in mm, for example, 1.635m

RANGE1 000005a3 Distance to anchor A1, in hex

RANGE2 00000512 Distance to anchor A2, in hex

RANGE3 000004cb Distance to anchor A3, in hex

RANGTIME 00146fb7 Measurement time, from the start of transmission to
the measurement, in ms

15



rIdt:IDa a0:0 Lower byte of ID, anchor ID, tag ID; IDt tag ID short,
IDa anchor ID short

END \r\n End character

2.5 Tracking algorithm

Given the current position of the robot (xr, yr) and its orientation θr, and the position of
the target object (xt, yt), the algorithm first calculates the Euclidean distance d between
the robot and the target:

d =
√

(xt − xr)2 + (yt − yr)2

The algorithm then calculates the angle θtarget from the robot to the target using the
arctangent function:

θtarget = atan2(yt − yr, xt − xr)

The robot must rotate to align its orientation with θtarget. If the calculated distance d
is greater than the desired following distance dfollow plus a buffer (in this case, 20cm),
the robot should move forward. If d is less than dfollow, the robot should stop or move
backward to maintain the desired following distance.

This step is foundational for the tracking algorithm, ensuring that the robot accurately
identifies the target direction and estimates the distance to it. This information is cru-
cial for subsequent movement decisions and adjustments.

2.5.1 Velocity Window and Dynamic Window Approach

Integrating DWA, the algorithm considers the robot’s dynamic constraints to deter-
mine the set of possible velocities (v) and angular velocities (ω), forming the velocity
window Vallowed.

Vallowed = {(v, ω) | vmin ≤ v ≤ vmax, ωmin ≤ ω ≤ ωmax}

The Dynamic Window Approach enables the algorithm to optimize velocity selection
not only based on the current position and the target’s position but also considering
the robot’s physical capabilities and safety requirements. This flexibility allows the
robot to navigate efficiently while adapting to potential obstacles and environmental
changes.
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Figure 16: dwa

2.5.2 Velocity Evaluation and Optimal Velocity Selection

The algorithm uses an evaluation function J(v, ω) to select the optimal velocity com-
bination, taking into account the proximity to the target, the consistency of heading,
and the appropriateness of speed.

J(v, ω) = α · (dtarget) + β ·∆θ + γ · v

This function assesses each velocity combination for its effectiveness in approaching
the target, heading alignment, and speed appropriateness. By maximizing J(v, ω),
the algorithm selects the most suitable speed and angular velocity at the moment,
ensuring efficient, smooth, and safe adjustments to the robot’s trajectory towards the
target.

2.6 Master/slave communication

To achieve efficient communication between the host and the robot, the choice to use a
USB virtual serial port is driven by its advantages in compatibility and transfer speed.
The virtual serial port allows the host to communicate data with the robot’s microcon-
troller through a standard USB interface, simplifying the hardware interface require-
ments while ensuring sufficient transmission rates to meet real-time control needs.
Since the host is not mounted directly on the robot, it remotely retrieves the robot’s
current orientation, position, and speed information, which are crucial for computing
the control commands to be sent back to the robot.

Therefore, a complete communication process is established to ensure that data is ac-
curately and timely transmitted between the host and the robot. The following de-
scribes each step of the communication process in detail:
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Host Robot

Send Poll Request
Process Interrupt

Data Ready
Receive Request

Send Feedback (current Ori, Vel)

Receive Feedback
Compute Tracking Cmd

Cmd Ready
Send Control Cmd
Adjust Movement

The communication process between the host and the robot starts with the host peri-
odically sending Poll requests via a USB virtual serial port to inquire about the robot’s
current state. This polling serves as a trigger mechanism that alerts the robot to trans-
mit the latest data, including its orientation and speed, back to the host. Upon receipt
of each Poll request, the robot processes this input through its USB communication
interrupt program, which is crucial for ensuring the robot can respond immediately
and prepare the state data for transmission. This immediate processing is vital for
maintaining the accuracy and timeliness of the data transfer.

Once the robot has processed the request, it sends the required feedback data back to
the host through the same USB virtual serial port. The host then uses this data to com-
pute new control commands based on its built-in algorithms. These commands are
specifically tailored to guide the robot’s next actions, which may include adjustments
to its direction or alterations to its speed to better navigate its environment.

After computing the appropriate commands, the host sends these back to the robot
through the USB virtual serial port. Upon receiving these control commands, the
robot adjusts its behavior according to the instructions provided, ensuring it operates
according to the latest guidance from the host. This continuous loop of communica-
tion and control allows for precise management of the robot’s operations, ensuring it
behaves as expected in its operational context.

The below two tables show the Feedback protocol and the Control Cmd protocol. The
poll protocol obeys the same rule, while its three channels are empty, so there is no
need to put its protocol here.

As we can see here, the Message mainly composes of four channels, each contains four
channels, one has 11 bits, representing one message. This table only includes the data
with valid information. For check bit and parity bit and End bit are not included.

In our communication design, everything is done periodically, which means the above
process will happen every 0.3 second. Every time when robot get a poll request, it will
send his newest info to host for update, and host sends back the new control command
for further tracking.
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First, for the feedback protocol sent by robot to host for updating information. It con-
sists of three valid info: the current orientation (Yaw angle of robot), the type of mes-
sage ( identify it as the poll msg) and the current speed for DWA algo. In order to
make everything easy, we set all the value to be unsigned int. As for ori and speed
which may be negative, i apply a offset to make them all positive.

Channel Description Values En-
coded

Bits Used Bit Position Across
Bytes

ch1 Current Speed Capped at
RC MAX, 1024

11 bits byte0 [0:7], byte1
[0:2]

ch2 Msg type (Type
channel)

Message Type
(POLL, Feed-
back or CMD)

11 bits byte1 [3:7], byte2
[0:4]

ch3 Current Ori Yaw Angle *
100 + 36000
[unsigned int
for negative]

11 bits byte2 [5:6], byte3
[0:7], byte4 [0]

ch4 Unused 0 11 bits byte4 [1:7], byte5
[0:3]

Table 2: Feedback Protocol in robot control communication protocol

Next, for the cmd protocol sent by host to robot for updating control command. It
consists of three valid info: the forward speed of two wheels, the type of message (
identify it as the cmd msg) and the turning speed to turn around. In order to make
everything easy, we set all the value to be unsigned int.

Channel Description Values En-
coded

Bits Used Bit Position Across
Bytes

ch1 Turning speed
(or fixed 1024 for
cmd type = 1)

Capped at
RC MAX, 1024
if cmd type=1

11 bits byte0 [0:7], byte1
[0:2]

ch2 Msg type (Type
channel)

Message Type
(POLL, Feed-
back or CMD)

11 bits byte1 [3:7], byte2
[0:4]

ch3 Unused (always
set to 0)

Always 0 11 bits byte2 [5:6], byte3
[0:7], byte4 [0]

ch4 Forward speed
(or fixed 1024 for
cmd type = 1)

Capped at
RC MAX, 1024
if cmd type=1

11 bits byte4 [1:7], byte5
[0:3]

Table 3: CMD Protocol in robot control communication protocol
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3 Tolerance Analysis

For this project, we use SimuLink to test and observe the variables in our designed con-
trol algorithms and use Webots to do the simulation in a physical simulated world.

3.1 SimuLink verification

To assess the stability of our control system, we constructed a path featuring several
bars with a radius of 1.5cm, and set the target velocity to 2m/s. Through Simulink,
we observed the robot’s behavior, and the simulation results are depicted in Figure
18. The observed oscillations in the speed curve, resulting from the obstacles on the
path, align precisely with our expectations, demonstrating the resilience of the entire
system.

Figure 17: Bar on path

Figure 18: simulation result
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3.2 Webots simulation

In this design, we utilized the powerful physics engine and simulation environment
provided by Webots, as well as the flexibility and efficiency of the C language, to
realize a stable, balanced car system. Our control algorithms are based on Linear
Quadratic Regulator (LQR) and Virtual Model Control (VMC), enabling the car to
maintain balance under various external disturbances.

To evaluate the feasibility and stability of the design, a tolerance analysis was per-
formed. Through simulation in Webots, we assessed the system’s performance, par-
ticularly its ability to maintain balance in the presence of external disturbances. The
simulation results confirm that the car effectively maintains balance, demonstrating
the resilience of the control system. By implementing physics simulation and control
algorithms in Webots, we are able to effectively verify the feasibility and stability of
the design, optimize control parameters, and ultimately achieve a high-performance
balanced car system.

Figure 19: Simulation world in Webots

3.3 Real world testing

The following is the pitch data we measure in real real world testing. The orange line
curve is the target pitch angle set by the remote controller, the blue curve is the real
pitch read by the IMU unit. We can see the robot responds quite well.

Figure 20: Pitch angle measure without disturbance
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4 Cost and Schedule

subsectionCost Analysis The total cost now is 10371 RMB. Four joint motors from
Unitree spent 6400 RMB, almost 50 percent of the total cost. The acrylic boards for
iteration don’t cost as much as we expected, only around 500 RMB.

Figure 21: Bill of material for current robot

4.1 Schedule

Figure 22: Schedule
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5 Discussion of Ethics and Safety

5.1 Ethical concern

Our design does not interfere with any life-related experiment or social problem. How-
ever, military use of robots or any other misuse of our design that intends to turn the
helper robot into a killer is against the IEEE Code of Ethics[3]. Therefore, we promise
that we will not open-source the Control System and the Sensor Unit.

5.2 Safety concern

To prevent injuries resulting from collisions with the human body and to address po-
tential experimental accidents during the assembly process, we will implement a col-
lision detection mechanism for the robot. Additionally, an external emergency shut-
down button will be installed to prevent any potential hazards. For safety during our
robot test, we utilize a stop trigger on our remote control. By pulling this trigger, all the
input signal to our robot will be switched to zero and the robot will be automatically
shut down.
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Appendix A Denotation of the variables

A.1 Variable explanation

Table 4: Variables used in our model

Variable Explanation Unit
Mw The mass of each wheel kg
M The mass of the whole robot kg
r The radius of each wheel m
D The distance between the left and right wheel m

xr, xl The horizontal displacement of the wheel m
wr, wl The angular velocity of the wheel rad/s

g The gravity constant N/kg
Tr, Tl The torque of the wheel N*m
Fr, Fl The horizontal friction force by the ground N
Hr, Hl The horizontal force on the wheel by the motor N
Vr, Vl The vertical force on the wheel N
θ The pitch angle of the body rotated around z-axis rad
ϕ The yaw angle of the body rotated around z-axis rad
I The moment of inertia of the wheel kg*m2

J The moment of inertia of the body rotated around z-axis kg*m2

Jϕ The moment of inertia of the body rotated around y-axis kg*m2

L The distance from the center of mass of the body to the z-axis m
Djoint The distance between the two joint motors m

A.2 Measurement of the variables

Table 5: Variables used in our model

Variable value Unit
Mw 0.5 kg
M 8.341 kg
r 0.06225 m
L 0.1225 m

Djoint 0.15 m
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