
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Display of Partial Differential Equations

Team #5

KEJIA HU

(kejiahu2@illinois.edu)
ZHUOHAO LI

(zhuohao5@illinois.edu)
QIANHE YE

(qianhey2@illinois.edu)
QIRONG XIA

(qirongx2@illinois.edu)

Advisor: Prof. Pavel Loskot
TA: Yue Yu

2024-05-29

Abstract

This project developed a 3D visualization system for accurately representing the solution
of 2D partial differential equations. Users could choose different partial differential equa-
tions and boundary conditions, and then our Raspberry Pi Pico will solve the equation
and control the movements of the sticks. Infrared sensors are implemented to get the
current height of each stick. The feedback from sensors made the display more accurate.
Finally, a canvas is put on the top of the sticks and a projector is projecting different colors
from the top for a better visualization. As a whole, this device can show users an intuitive
solution to the partial differential equation that they choose.

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Solution Overview . 1
1.3 Block Level Changes . 1

2 Design 2
2.1 Design Procedure . 2

2.1.1 User Interface . 2
2.1.2 Coloring Subsystem . 4
2.1.3 Control Subsystem . 4
2.1.4 Mechanical Subsystem . 5

2.2 Design Details . 5
2.2.1 User Interface . 5
2.2.2 Coloring Subsystem . 6
2.2.3 Control Subsystem . 7
2.2.4 Mechanical Subsystem . 9

3 Verification 14
3.1 User Interface . 14

3.1.1 Verification of User Interface . 14
3.1.2 Verification of PDE Solving . 15

3.2 Coloring Subsystem . 16
3.3 Control Subsystem . 17

3.3.1 Verification of motor driver . 17
3.3.2 Verification of stick height measuring 17

3.4 Mechanical Subsystem . 18
3.4.1 Choice of motor . 18
3.4.2 Optimization of 3D printed parts . 18

4 Costs 19
4.1 Labor Costs . 19
4.2 Electronic Components Costs . 20

5 Conclusions 20
5.1 Accomplishment . 20
5.2 Uncertainties . 21
5.3 Ethics Considerations . 21
5.4 Future Work . 21

References 23

Appendix A PCB Design Detail 24

Appendix B User Interface Code 26

iii

Appendix C Stick and Sensor Code 28

Appendix D Main Control Flow Code 30

iv

1 Introduction

1.1 Background

Understanding the behavior of complex systems in scientific and engineering fields of-
ten requires analysis of interactions between multiple variables over time and space. At
the same time, three-dimensional (3D) visualization offers superior expressiveness and
effectiveness in representing data information [1]. Modern software capabilities include
sophisticated 3D visualization tools that enhance data comprehension and facilitate inter-
active exploration and analysis [2]. However, the current screen-based 3D visualization
tools are confined to the dimensions of the display device, hindering the viewer’s ability
to perceive objects accurately from various angles and distances. There’s a pressing need
for innovative visualization tools capable of representing complex systems in 3D in real
time, providing a more intuitive understanding of their behavior. Such tools could find
applications in various disciplines, from mathematics to physics, biology, engineering,
and environmental science.

1.2 Solution Overview

To address the challenges posed by traditional visualization methods, our solution pro-
poses a user-friendly 3D visualization system for accurately representing 2D differential
equations. The system will dynamically visualize the changing behavior of the function
over time, projecting color onto the surface from the top to enhance interpretation. It
comprises four subsystems: User Interface subsystem, Control subsystem, Mechanical
subsystem, and Coloring subsystem. The User Interface subsystem collects the user’s dif-
ferential equation input and transmits it to the Control system. The Control subsystem
converts this information for mechanical devices to understand and adjust the height of
sticks, creating a smooth visualization surface. Finally, the Coloring Subsystem projects
different colors onto the canvas. A visualization of the device is shown in Fig 1. This solu-
tion not only improves data comprehension but also facilitates interactive exploration and
analysis, offering researchers a comprehensive tool for understanding complex systems’
behavior.

1.3 Block Level Changes

The final version of the block diagram is shown in Fig 2.

• User Interface Subsystem: There is no block-level change in the User Interface Sub-
system.

• Coloring Subsystem: Instead of connecting the coloring subsystem to the control
system, we connect it to the user interface subsystem as Raspberry Pi Pico does not
have a mature tool for generating color plots.

• Control Subsystem: Initially we use two development boards to control the 16 mo-
tors, in which the motor driving part is replaced by a PCB board in the later versions.

1

Figure 1: A pictorial representation of the device

The type of sensors also changes from the ultrasonic sensors to the infrared sensors.

• Mechanical Subsystem: Sensors and their bases were added to the mechanical sub-
system to measure the height of rods.

2 Design

2.1 Design Procedure

2.1.1 User Interface

The user interface (UI) subsystem is an important component that connects the user to the
visualization system and enhances interactivity through a user interface. Users can select
partial differential equations and boundary conditions through the UI subsystem. The
solutions of the selection are sent to the Raspberry Pi Pico, which solves the equations and
transmits the solutions back to the laptop for further display by the coloring subsystem.
In order to transfer data between the laptop and the Raspberry Pi Pico, we considered
using C or Python coding languages for development.

C Language allows for low-level control and is thus more efficient in terms of the execu-
tion time. The Universal Asynchronous Receiver-Transmitter (UART) package provided
with the Raspberry Pi Pico is suitable for real-time applications where data transfer timing
is critical. However, developing in C requires cross-platform compilation; the methodol-
ogy of compiling the code on a laptop to produce a binary stream that can be run on a
microcontroller introduces development complexity.

Python has high-level and easy-to-use API provided by libraries like PySerial. Mean-
while, its cross-platform compatibility makes it easy to port code between different sys-

2

Figure 2: Block Diagram for design

tems. Nevertheless, this method transfers data relatively slowly. Therefore, it might not
be suitable for real-time applications with strict timing requirements.

Due to the limitation of the Rotation per Minute (RPM) of our motor, we don’t require
our device to be real-time. Plus, we implement our Control subsystem using Python.
Therefore, we decided to use Python for data communication and user interface.

Finite Difference Method (FDM) is used to solve the PDEs numerically. It’s a com-
mon method for solving differential equations, particularly partial differential equations
(PDEs), by discretizing the spatial and/or temporal domain into a grid of discrete points.
This method replaces derivatives in the differential equations with finite difference ap-
proximations, turning the differential equations into algebraic equations that can be solved
numerically. Approximating the first and second derivatives as follows:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
(1)

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
(2)

By replacing the derivatives with difference approximations, we are able to solve the
PDEs numerically.

3

2.1.2 Coloring Subsystem

Before the actual implementation of the Coloring subsystem, we think of two ways to
achieve canvas coloring. One is to use the Bluetooth module on the Raspberry Pi Pico W
to send heat plots to the projector for display, and the other way is to use the personal
computer connecting to the projector. After some exploration of Pico, we concluded that
Pico does not have a mature tool for generating heat maps for further display. Therefore,
we decided to integrate the User Interface Design 2.1.1 with the Coloring Subsystem. The
projector is directly connected to the laptop, and the laptop should be able to receive
signals from the Pico, decode the signals, and generate a heat map that is submitted to
the projector via an HDMI cable. The projector is vertically above the canvas so that we
do not need to rectify the displayed images.

2.1.3 Control Subsystem

Motor Types We initially considered using stepper motors and angular displacement sen-
sors to track the actual state of the motor motion. However, due to budget constraints,
we were unable to utilize the advanced features offered by stepper motors and opted for
a screw motor instead.

Motor Drivers Initially, the 16 motors in our system are controlled by two Raspberry Pi
Pico boards as the number of pins on one board is limited for controlling 16 sensors si-
multaneously. The motors and the development boards are connected to the breadboard,
which turned out to be unstable due to various reasons such as the low current provided
by the Pico that cannot meet the requirement for motors’ movement. We also found that
connecting via breadboard makes poor contact between the circuit components, further
increasing the instability of the system. Even though we have successfully enabled com-
munication between two boards by connecting the submission ring (the hardware-assist
queue) of one board to the receiving ring of the other board, the motors still fail to move
sometimes.

In our second attempt, the motors are connected to the output latches from two I2C ex-
pansion chips (type MCP23017), which are connected to one of the Raspberry Pi Pico I2C
channels. By receiving the control signals from the MCU, we are assuming that the 32
GPIO ports on the chips can provide power to the motors. However, the current supplied
by the expansion chip’s output ports is 7mA to 10mA, smaller than the working current
of motors.

Due to all these reasons above, we finally decided to use a Printed Circuit Board (PCB)
as a motor driver, to control the movements of all 16 motors. The design of the PCB has
gone through several modifications, the final version of the PCB has three major parts: (1)
the motor drivers, (2) the I2C expansion chips, and (3) the voltage regulator, as illustrated
in Fig 4.

Distance Measuring Sensors Initially, we considered using ultrasonic sensors for dis-
tance measurement. However, ultrasonic sensors require multiple pins per unit, making
it impractical to connect multiple sensors directly to a single Raspberry Pi Pico due to its

4

limited number of GPIO pins. This limitation led us to explore other sensor types.

We then evaluated the use of infrared sensors, which can be connected via the I2C com-
munication protocol. I2C allows for multiple sensors to be connected to a single port;
however, we faced a challenge with address conflicts as all the sensors shared the same
I2C address and could not be differentiated on a single I2C bus.

To resolve the addressing issue without increasing the number of required I2C pins, we
decided to implement multiplexers (MUXes). By using a MUX, we could connect multiple
sensors with identical addresses to different channels of the MUX, thereby isolating them
effectively. This setup allowed us to connect up to eight sensors per MUX.

Given our requirement to utilize more than eight sensors, we opted to use two MUXes.
Each MUX was configured with a unique I2C address and connected to eight sensors.
This configuration enabled us to manage 16 sensors in total using a single I2C bus on the
Raspberry Pi Pico.

The final design comprises a single I2C bus on the Raspberry Pi Pico connected to two
multiplexers. Each multiplexer interfaces with eight infrared sensors. During operation,
sensor data is collected via the I2C bus, which is then processed by the Pico to determine
the necessary adjustments for motor control. This design efficiently handles the sensor
data with minimal latency and uses the Pico’s limited GPIO resources effectively.

2.1.4 Mechanical Subsystem

The Mechanical Subsystem consists of rods that can move up and down dynamically
based on the displayed solution. Each rod is connected to a motor, which is fixed in a
base and aligned on a board, forming a 4×4 grid. The motor and a screw was used to
transfer rotation motion into translation, and the base for both motor and sensor was cre-
ated by CAD modeling and 3D printing. The detailed design is shown below. A layer
of silk stocking-like polyester fiber is secured to the top of each rod, ensuring the visu-
alization remains seamless. Inputs from the control subsystem dictate the movements of
this subsystem, which then executes these commands. Additionally, it provides feedback
to the control subsystem for adjustments and fine-tuning with sensors. The system is
designed to adhere precisely to the commands from the control system, aiming for high
accuracy and precision in movements. It’s built to be sturdy, effectively reducing minor
vibrations and environmental noise. In addition, to support the projector in the coloring
subsystem, a shelf is used.

2.2 Design Details

2.2.1 User Interface

The implementation for data transfer between the laptop and Raspberry Pi Pico involves
bidirectional serial communication [3]. On the laptop side, the code initializes a serial
connection with specified parameters including port and baud rate. Data is then encoded
as strings and sent over this serial connection to the Raspberry Pi Pico. On the Raspberry

5

Pi Pico side, the code continuously listens for input from the standard input (stdin), read-
ing characters until data reception is complete. After the Raspberry Pi Pico calculates the
solution of the indicated PDEs, it transmits the solution data over the serial connection
back to the laptop. The code for data transmission is shown in Appendix C.

Partial Differential Equations chosen for display in our projects are the 2D Heat Equa-
tion, Wave Equation, and Laplace Equation. We use Equation 1 and 2 to solve the PDEs
numerically.

2D Heat Equation:
∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2

)
(3)

Solving the equation as:

un+1
i,j = un

i,j + k∆t

(
un
i+1,j − 2un

i,j + un
i−1,j

(∆x)2
+

un
i,j+1 − 2un

i,j + un
i,j−1

(∆y)2

)
. (4)

2D Wave Equation:
∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
(5)

Solving the equation as:

un+1
i,j = 2un

i,j − un−1
i,j + c2∆t2

(
un
i+1,j − 2un

i,j + un
i−1,j

(∆x)2
+

un
i,j+1 − 2un

i,j + un
i,j−1

(∆y)2

)
. (6)

2D Laplace Equation:
∂2u

∂x2
+

∂2u

∂y2
= 0 (7)

Solving the equation as:

un+1
i,j =

1

4
(un

i+1,j + un
i−1,j + un

i,j+1 + un
i,j−1). (8)

2.2.2 Coloring Subsystem

Color Projection In Sec 2.2.1, we transfer the solution from the Pico to our personal com-
puter and store the data in a file that facilitates our Coloring subsystem. Given the mem-
ory constraints of the Raspberry Pi Pico, we address 2D partial differential equations by
sampling 25×25 points. For a smoother visualization of the color plot, we do linear inter-
polation to increase the sampling points from 25×25 to 100×100.

To make the projector vertically above the canvas, we used a vertical cloth hanger and
fixed the projector on the top. An illustration of the color plot and the projector configu-
ration is shown in Fig 3.

6

(a) Example of the projected color for the heat function (b) Projector Configuration

Figure 3: The illustrations of coloring subsystem

2.2.3 Control Subsystem

Microcontroller We use the Raspberry Pi Pico as our microcontroller. Unlike other boards
developed by the Raspberry Pi Foundation, Pico cannot be installed with an operating
system, making it suitable for the control of lightweight electronic projects. The hard-
ware parameters of the Raspberry Pi Pico are shown in Tab 1. In our project, Pico is the
core controller, interacting with the UI subsystem, calculating the solutions of the PDE,
analyzing the feedback from the sensors, and integrating all the information to control
the movements of the motors.

Components Values

CPU Dual-core Arm Cortex-M0+ Processor

Clock freq 133MHz

Memory/storage
264kB SRAM

2MB on-board flash memory

Table 1: The built-in parameters of the microcontroller

Motor Drivers We incorporate three parts in our PCB, the voltage regulator, the motor
drivers, and the I2C expansion chips. The major parts of the circuit are shown in Fig 5,
and the overall circuit schematic and the PCB design are shown in Appendix A.

• Voltage regulator: The voltage regulator is the power supply unit for the whole
PCB. It consists of an L78M05 chip, which can take the input voltage ranging from
5V to 12V. The two capacitors connecting to the input and the output sides of the

7

L78M05 chip serve as the buffer for the sudden change of voltage and thus provide
more stability to the power supply.

• Motor drivers: Each motor driver unit can drive two motors, providing stable
power to the motors. Since there are 16 motors in our device, we duplicate the motor
driver unit 8 times in the circuit. The dual full-bridge motor driving chip with type
L298N is used. It takes Vs as the power supply for the chip and Vss as the logic
supply voltage. The PWM signals for the two motors are passed to the INPUTx
where x is the integer from 1 to 4. The OUTPUTx is the output signal connecting to
two motors, where x is the integer ranging from 1 to 4.

• I2C expansion chip: The two I2C expansion chips serve as a bridge between the
microcontroller and the mechanical parts. We choose the MCP23017 as the I2C ex-
pansion chip so that the 16 motors can be controlled by the microcontroller using
only two pins. The internal architecture of the MCP23017 chip is shown in Fig 5. The
Raspberry Pi Pico can send data to the expansion chips by specifying the address
of the chip. Every time the Pico will send two bytes to the chip, which is stored in
the 16 output registers on the chip. The output ports of the I2C expansion chips are
connected to the motor drivers’ inputs.

In conclusion, the PCB features logic input ports that receive the SDA and SCL signals
from the Raspberry Pi Pico microcontroller. These signals are then processed through
an expansion chip, which converts them into signals for motor movement. The PCB’s
power supply is connected to an existing power module, which can utilize a USB port on
a laptop to deliver a 5V output.

Distance Measuring Sensors For our project, we have utilized the I2C0 bus on the Rasp-
berry Pi Pico as the primary communication channel for sensor data. This bus utilizes
pin12 (SDA) and pin13 (SCL) as the I2C port. We have integrated two multiplexers
(PCA9548A) into the system, assigned with addresses 0x71 and 0x70 respectively, to fa-
cilitate the connection of multiple sensors without address conflict.

Each PCA9548A multiplexer offers eight I2C channels, enabling us to manage multiple
sensors that inherently share the same default I2C address (0x29). By selectively enabling
and disabling individual channels on the multiplexers, we can isolate and communicate
with each sensor independently.

The sensors used in this design are the VL53L0X, which are time-of-flight (ToF) ranging
sensors. We initialize 16 instances of these sensors corresponding to each channel of the
multiplexers. The distance measurement process involves sequentially pinging each sen-
sor to obtain distance readings. This is performed in a cycle where each sensor is accessed
one after the other, collecting distance data serially.

Once a complete cycle of distance measurements is accomplished, the collected data array
is transmitted to the motor driver. This enables the motors to adjust their operation based
on the distance measurements received. The loop of measurement and motor adjustment
continues until all sensor readings align with the predetermined target values, as defined
by the system’s design equations.

8

(a) The motor driver

(b) The I2C expansion chip (c) The voltage regulator

Figure 4: The circuit schematic

2.2.4 Mechanical Subsystem

Transmission mechanism Our project of visualization of PDEs features the accurate rep-
resentation of the relative position of different points on the solution of specific functions,
which is realized by the controlled height of several sticks. In order to convert rotation
to linear movement, the method of using a flange nut and screw was chosen. As shown
in Fig 7, when the motor operates, the screw rotates along with the motor. If the nut is
restricted from spinning, it will move up and down according to the rotating direction
of the screw, i.e. the motor. Since the Raspberry Pi Pico was chosen as the development
board to control and route the signal and provide power, the motor chosen is powered
by 3V. Also, considering the trade-off between torque and rotation speed, 500 RPM was
chosen.

CAD modeled and 3D printed parts

9

Figure 5: Internal Architecture of MCP23017

Figure 6: Sensor Design

Figure 7: The motor and screw

• Rod The end of the rod is attached to the canvas above so that the specific point
of the canvas can be moved up and down with the rod. The rod should not be
interfered with the screw that is attached to the motor, and be as stable as possible

10

when translating. The rod is hollow inside to avoid collision with the screw, and the
end of it is flat in order to connect to the canvas. Another end of the stick is designed
to connect with the flange nut using a nut and bolt.

• Motor base To form a 4×4 grid of solution points, the motors must be standing
straight up and fixed onto a baseboard. The motor base was designed via Solid
Works and 3D printed. As shown in Fig 8, the motor could be vertically inserted
into the base, and the vacancy behind was designed to let the wires soldered on the
motor pass through; a steel stick with a length of 10 cm could be inserted into the
hollow cylinder at the front, which serves to constrain the rotational motion of nut.
The length of the steel stick was carefully chosen to be no longer than the height of
the top of the rod when it is at its lowest position, as well as providing the restriction
of rotation to the end of the screw.

(a) 3D model (b) Printed version

Figure 8: Motor base

• Sensor base: Each motor requires a sensor to measure the position of the rod, so
there are 16 sensors in total. As shown in Fig 9, the sensor base could hold the sensor
to let the infrared module face upward, and the vacancy behind was designed to let
the wires inserted pass through. The sensor base is designed to be as low as possible
since the sensor does not perform well when it gets too close to the obstacle.

Assembly For the assembly, the motor and stick are inserted into the motor base, and the
rod is connected to the flange nut. The assembled body is shown in Fig 10. During the
movement of the motor, the flange nut moves along the stick, and its maximum travel
distance is determined by the length of the stick inserted in the cylinder.

Layout In order to represent the solution of functions relatively accurately as well as con-

11

(a) 3D model
(b) Printed and assembled
version

Figure 9: Sensor base

Figure 10: Assembly of one transmission unit

sidering the complexity, the capacity of the development board, and the budget, we de-
cided on the 4×4 grid of controlled units shown in Fig 11. Each unit is 7.5cm apart from
the other, and they are glued onto an acrylic board.

Canvas The canvas material on top of the rods that we chose was the silk stocking-like
polyester fiber because it has a low elasticity coefficient. It also has the color of white,
which makes it suitable for the projection of color. Previously, we have tried the silicone
pads, but the motors have no enough torque to pull the material apart. The final look is
shown in Fig 12.

12

Figure 11: 4×4 grid on board

Figure 12: The whole assembly covered by canvas

Wood chip As shown in Fig 13, laser cut was used to create 16 pieces of wood chips. Each
of the chips was secured somewhere in the middle of the rod to serve as an obstacle to the
sensor. When the rod moves, the distance between the chip and sensor changes, which
gives feedback to control the motor motion. The position of the chip does not matter, as
long as it is on top of the infrared module, since the control code provides an offset for
each sensor.

Shelf As shown in Fig 14, the shelf has a width of 1m and a height of 1.2m. With the help
of a Projector hanging bracket and tape, the projector can be hung on the shelf and project
color downward onto the canvas.

13

Figure 13: Wood chip

Figure 14: Shelf

3 Verification

3.1 User Interface

3.1.1 Verification of User Interface

We verify that users can interact with the graphical interface as intended. Fig 15 shows
the way that the user selects the partial differential equations and boundary conditions.
We ensure that the chosen equations are successfully transmitted to the Raspberry Pi Pico.
By comparing the result in Pico and data in our laptop, we confirm that the solution data
is received back from the Pico and displayed appropriately.

14

Figure 15: User Interface

3.1.2 Verification of PDE Solving

To verify that the Finite Difference Method (FDM) works, we compare the results solved
numerically using FDM with the analytical solution. However, it’s hard to find an ana-
lytic solution for every PDE. Inspired by [4], we explored the method of manufactured
solutions to get an idea of how accurate is our FDM method. The 2D Poisson equation is
given by:

∇2u(x, y) = f(x, y) (9)

where u(x, y) is the unknown function to be solved for, and f(x, y) is the source term.

We choose the exact solution to be the 2D Poisson equation is given by:

u(x, y) = sin(πx) sin(πy) (10)

where x and y are the spatial coordinates in the domain. Using Equation 9 and 10, we can
get:

f(x, y) = −2π2 sin(πx) sin(πy) (11)

To solve the 2D Poisson equation numerically using FDM, we discretize the domain into a
grid of points. Let ui,j represent the numerical approximation to the solution at grid point
(xi, yj). Using central difference approximation for the second derivatives, the discretized
form of the Poisson equation is given by:

ui−1,j − 2ui,j + ui+1,j

∆x2
+

ui,j−1 − 2ui,j + ui,j+1

∆y2
= fi,j (12)

where fi,j represents the source term at grid point (xi, yj), and ∆x and ∆y are the grid
spacings in the x and y directions respectively. We assume x and y are the same here.

Solving the equation as:

un+1
i,j =

1

4
(un

i+1,j + un
i−1,j + un

i,j+1 + un
i,j−1 −∆x2fn

i,j) (13)

This equation is solved iteratively. The process involves updating each grid point based
on the values of its neighboring grid points until a convergence criterion is met.

15

Eventually, we get the Mean Square Error (MSE) to be 3.86 × 10−5, and a comparison of
the numerical solution and the exact solution is shown in Fig 16. We can verify our FDM
method to get the solutions of PDEs is accurate.

Figure 16: A comparison of numerical solution and exact solution

3.2 Coloring Subsystem

The Coloring subsystem accurately interprets the solution data received from the UI sub-
system. The generation of heat maps based on the solution data is accurate.

Canvas Material Choice In order to project colors onto sticks of varying heights accu-
rately, it’s essential to place a stretchable canvas atop the sticks. This material enables
the canvas to accurately represent the peaks and troughs of the curve. We considered
different materials:

• Flannel is a soft texture with good absorbency. However, it has limited stretchability
and may not conform well to irregular shapes or curves. Also, it’s susceptible to
wrinkling and creasing, which might affect the accuracy of the representation.

• Rubber has high elasticity, allowing for excellent stretchability. It is also durable
and resistant to tearing, making it long-lasting. However, it’s a stiff texture that
requires a large force to stretch this material. Our motors are not powerful enough
to stretch rubber effectively.

• Spandex has exceptional stretchability, ensuring a snug fit over irregular shapes and
curves. The motor can easily change the shape of spandex because of its lightweight.
And it retains its shape well over time, maintaining the accuracy of the representa-
tion.

16

After trials, we decided to use spandex as the canvas.

3.3 Control Subsystem

3.3.1 Verification of motor driver

According to the motor’s datasheet, the RPM without workload is supposed to be 500,
while the RPM is reduced to 400 with workloads. The working current without work-
loads is 20 mA and 30 mA with workloads. When the motor is blocked and stops rotating,
the output current can be up to 100 mA, with the torque 0.15 kg · cm.

we measure the actual voltage and the current values outputted by a PCB using a volt-
meter and an ammeter. In our case, we only focus on the tests with workloads on the
motors. The measurement results are shown in Tab 2. The actual voltage of the motor is
0.5V lower than expected and the current is 4mA lower than expected. The inaccuracies
introduced by the PCB design are represented in the sticks’ linear speed. Therefore, we
measure the moving distance and the actual moving duration of eight sticks, which is
shown in 17. In this experiment, we let the sticks move from the lowest position to their
highest position and measured the completed time accordingly. The average moving dis-
tance is 10 cm, and the linear speeds range from 0.391 cm/s to 0.669 cm/s. Given the screw
lead is 0.5 mm/rev, the RPM ranges from 469 to 802.

Figure 17: Moving distance and the completion duration

3.3.2 Verification of stick height measuring

We use distance-measuring sensors to capture the height of the sticks. The response la-
tency of the 16 sensors is shown in Fig 18. The average duration between the micro-
controller sending the read request to the sensor and receiving the request is 620 µs.
Therefore, iterating all the 16 sensors takes at least 9.92 ms. Upon receiving the sensor’s
response, the microcontroller will send a request to the corresponding motor’s move-
ment. For a motor, the average period of (1) reading from the sensor, and (2) sending
a request to the motor is 10 ms. In this period, the motor’s moving distance is at least

17

Motor Index Voltage Working current Working power

1 2.46V 0.015A 0.0369W

2 3.76V 0.017A 0.0639W

3 2.42V 0.016A 0.0387W

4 2.43V 0.021A 0.0510W

5 2.38V 0.018A 0.0428W

6 2.42V 0.019A 0.0460W

7 2.32V 0.015A 0.0348W

8 2.25V 0.015A 0.0338W

9 2.38V 0.014A 0.0333W

10 2.45V 0.016A 0.0392W

11 2.49V 0.018A 0.0448W

12 2.44V 0.017A 0.0415W

13 2.28V 0.016A 0.0365W

14 2.33V 0.014A 0.0326W

15 2.47V 0.015A 0.0371W

16 2.34V 0.014A 0.0328W

Average 2.47V 0.016A 0.0395W

Table 2: The working power and current of the 16 motors

0.391cm/s×10ms = 0.00391cm, meaning that the electronic control is far quicker than the
mechanical movements, and achieves the control in small granularity.

3.4 Mechanical Subsystem

3.4.1 Choice of motor

There are several types of 3V motors with rotation speeds ranging from 10 RPM to 3000
RPM. With the higher speed, the stick could go to the assigned position more quickly, but
with the risk of being stuck because of the inadequate torque. During our test of different
types of motors, we discovered that the 500 RPM one is just enough to secure the rotation
while guaranteeing relatively high speed.

3.4.2 Optimization of 3D printed parts

Due to the inaccuracy nature of 3D printing and the small scale of the motor, the design
of parts needs several times of revisions. For the motor base, the first version’s space
to place the motor is too large, which makes the motor wobble inside the base during
the operation, and the wall of the cylinder to place the steel rod is too thin and cannot

18

Figure 18: Sensors’ response time

be printed out. In the second version, I fixed these problems and the motor base works
fine. For the rod on top of the flange nut, the first version has holes that are too close
to the stick, or the stick is too thick so that the bolt cannot be placed. Also, those holes
are not large enough to insert a shaft. In the second version, the holes’ size is adjusted,
but because of the limited space, it is still difficult to place the bolt, but the design is
usable. After optimization of these parts, the motor could stand stably during the whole
operation without noticeable wobbling, and the rod is firmly attached to the flange nut.
For the sensor base, the final version ensures the sensor is held as close as possible to the
baseboard to ensure functionality.

4 Costs

4.1 Labor Costs

According to public statistics of the average salary for a graduate from Illinois ECE [5],
the average salary per hour is roughly $45/hour, which is 315 RMB/hour. Assuming that
we are given 9 weeks to finish the project, every member works for at least 20 hours per
week, the total number of hours for each member is given by

20 hours/week × 9 weeks = 180 hours

Multiplying the total number of hours worked by the hourly rate gives the total labor cost
for a person, which is

315 RMB/hour × 180 hours = 56700 RMB

Therefore, the total labor cost for this project will be

56700 RMB/person × 4 persons = 226800 RMB

19

4.2 Electronic Components Costs

The cost for each component for our project is given in Tab 3.

Components Vendor Quantity Cost (RMB)/unit Total Cost (RMB)

DC Motor YongChuangXin Actuator 17 22 374

Raspberry Pi Pico Raspberry Pi 2 31 62

Raspberry Pi Pico W Raspberry Pi 2 59 118

I2C Expander Chip Microchip 2 9.5 19

Sensors Xintai Microelectronics 18 5.9 106.2

Components on the PCB Various vendors Multiple 95.18 95.18

PCB Jialichuang 1 10 10

Projector Jiying 1 438 438

HDMI Cable Hantangke 1 9.85 9.85

Canvas (Flannel) Shengshi Textile and Leather 1 6.5 6.5

Canvas (Rubber) Chunshi 1 3.7 3.7

Canvas (Spandex) Boya 1 30 30

Projector stands Tengtai cloth stands 1 121 121

Projector Power Supply Cable Shanze 1 19.8 19.8

Total 1413.23

Table 3: Cost for components

5 Conclusions

5.1 Accomplishment

In conclusion, our efforts led to the development of a user-friendly 3D visualization sys-
tem for representing 2D partial differential equations (PDEs). Through collaborative ef-
forts, we have integrated hardware and software components, enabling users to input
their desired PDEs and boundary conditions. Leveraging the computational power of
the Raspberry Pi Pico microcontroller, numerical solutions to the equations are efficiently
calculated. The design and implementation of a custom PCB have expanded the sys-
tem’s port capabilities, facilitating precise control over the height of sticks used for visu-
alization. Incorporating infrared sensors has enabled real-time feedback on stick height,
ensuring an accurate representation of curve features. Additionally, our system utilizes
a projector to project vibrant colors onto a stretchable canvas, spandex, yielding visu-
ally compelling visualization results. Overall, our accomplishment signifies a signifi-
cant step forward in enhancing data comprehension and facilitating interactive explo-
ration and analysis of complex systems’ behavior in diverse scientific and engineering
domains.

20

5.2 Uncertainties

While our project has achieved significant progress, it’s important to acknowledge the
remaining uncertainties and potential challenges. One such uncertainty pertains to the
attachment of the canvas to the top of the sticks. If the canvas is affixed too tightly, it may
impede the stick’s movement, limiting its ability to accurately represent the function sur-
face. Conversely, if the canvas is not securely fixed to the sticks, there is a risk of it falling
off, compromising the visualization process. Additionally, the large number of sticks ne-
cessitates a considerable amount of wiring, which could lead to potential instability in
sensor feedback due to wire entanglement. To address these uncertainties. modifications
to performance specifications could include exploring alternative attachment methods for
canvas that balance stability and flexibility, as well as implementing cable management
strategies to minimize wire interference and ensure reliable sensor feedback. By identify-
ing and mitigating potential challenges, we can enhance the robustness and effectiveness
of the visualization system.

5.3 Ethics Considerations

Prioritizing safety in the creation and application of any product is paramount. To ensure
”the safety, health, and welfare of the public” as outlined in IEEE’s ethical guidelines[6],
we should strictly adhere to relevant regulations throughout the research and develop-
ment phases, as well as inform users about the proper usage and to communicate the
potential risks with misuse.

Furthermore, to be forthright and grounded in reality when making claims or estimates
based on the data at hand[6], we should make it clear that the visualized differential
equation solution is an approximation. Despite aiming to mirror real-life situations as
closely as possible, these solutions cannot replace actual real-world solutions.

The essence of design lies in simplifying life and enhancing work efficiency. It’s crucial for
society to aim for respect, inclusivity, fairness, and balance, guaranteeing that everyone
can access the necessary tools and resources for a rewarding life, free from discrimination
related to race, religion, gender, disability, age, national origin, sexual orientation, gender
identity, or expression[6]. Fundamentally, we are dedicated to providing individuals with
an enhanced ability to interact with and learn from differential equations.

5.4 Future Work

There are several aspects that we can extend our projects for a wider application.

• Real-time Visualization: Implement real-time visualization capabilities so that the
system can dynamically update and show changes in the function’s behavior as
it evolves over time. Users therefore can have a better understanding of how the
PDEs change over time. Overcoming challenges such as motor speed limitations,
data transmission speed between PC and Raspberry Pi Pico, and projector response
time will be crucial for achieving smooth real-time visualization.

21

• Increase Stick Density for Higher Accuracy: Enhance the accuracy of the visualiza-
tion by increasing the number of sticks used to represent the function surface. This
will require expanding the system’s hardware capabilities, such as adding more
ports to accommodate additional sticks.

• Customizable Input and Parameters: Allow user to input their own partial differ-
ential equations (PDEs) rather than choose from predefined ones. To achieve this,
we need to explore more methods to solve different kinds of PDEs accurately. For
example, we can leverage the idea of neural networks to solve the equations [7].
Additionally, enables users to select specific regions of interest for visualization and
fine-tune parameters to adjust the visualization according to their needs. Further-
more, consider extending the system’s capabilities to visualize other types of 3D
models beyond PDEs.

• User Interface Enhancements: Polish the user interface to improve usability and
accessibility. Consider developing a dedicated website or more intuitive graphi-
cal user interface (GUI) for users to input differential equations, select visualization
parameters, and interact with the system more effectively. This can involve incorpo-
rating features such as tooltips, interactive tutorials, and visual aids to guide users
through the process of using the system.

By addressing these aspects in future development, the 3D visualization system can be-
come more versatile, user-friendly, and capable of providing valuable insights into com-
plex systems’ behavior across various domains.

22

References

[1] J. Wood, S. Kirschenbauer, J. Döllner, A. Lopes, and L. Bodum, “Using 3d in visual-
ization,” in Exploring geovisualization, Elsevier, 2005, pp. 293–312.

[2] A. R. Teyseyre and M. R. Campo, “An overview of 3d software visualization,” IEEE
transactions on visualization and computer graphics, vol. 15, no. 1, pp. 87–105, 2008.

[3] M. M. Shilleh. “Transfer data from raspberry pi pico to local computer.” (2023), [On-
line]. Available: https://www.hackster.io/Shilleh/transfer-data-from-raspberry-pi-
pico-to-local-computer-54ea9e.

[4] P. J. Roache, “Code verification by the method of manufactured solutions,” J. Fluids
Eng., vol. 124, no. 1, pp. 4–10, 2002.

[5] U. E. Department. “Salary averages.” (2024), [Online]. Available: Salary%20Averages
(visited on 03/27/2024).

[6] IEEE. “Ieee code of ethics.” (2020), [Online]. Available: https : / / www. ieee . org /
about/corporate/governance/p7-8.html (visited on 03/05/2024).

[7] A. Koryagin, R. Khudorozkov, and S. Tsimfer, “Pydens: A python framework for
solving differential equations with neural networks,” arXiv preprint arXiv:1909.11544,
2019.

23

https://www.hackster.io/Shilleh/transfer-data-from-raspberry-pi-pico-to-local-computer-54ea9e
https://www.hackster.io/Shilleh/transfer-data-from-raspberry-pi-pico-to-local-computer-54ea9e
Salary%20Averages
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html

Appendix A PCB Design Detail

The top and bottom layers of the PCB in both 2D and 3D models are shown in Fig 19. The
schematic of the PCB is shown in Fig 20.

(a) Top layer of the PCB in 2D (b) Bottom layer of the PCB in 2D

(c) Top view of the PCB in 3D (d) Bottom view of the PCB in 3D

Figure 19: Top and bottom layers of the PCB in 2D and 3D

24

Figure 20: The overall schematic of the PCB

25

Appendix B User Interface Code

The following code shows the implementation of User Interface.

1 import serial
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.interpolate import interp2d
5 import time
6

7 # Configure the serial connection
8

9 port = "/dev/cu.usbmodem1201" # Adjust the port to match your setup
10

11 baudrate = 115200
12

13 serial_connection = serial.Serial(port, baudrate)
14

15 # Read and write data until the transfer is complete
16

17 # Prompt user for the range of data to send
18

19 print("Choose the partial differential equation type and boundary
conditions:")

20 print("1. Heat equation -- Fixed temperature at boundaries (0 C on
left and bottom, 100 C on right and top)")

21 print("2. Heat equation -- Linear boundaries (linear temperature
gradient from 0 C to 100 C along each edge)")

22 print("3. Wave equation -- Dirichlet (zero values at boundaries)")
23 print("4. Wave equation -- Periodic (wrap-around boundary conditions)")
24 print("5. Wave equation -- Stochastic (add stochasticity to the

boundary values)")
25 print("6. Laplace equation -- f(x) = sin(pi*x) at left boundary")
26 print("7. Laplace equation -- f(x) = xˆ2 at left boundary")
27 print("8. Laplace equation -- f(x) = exp(-x) at the left boundary")
28

29 while True:
30 boundary_choice = input("Enter your choice (a number from 1 to 8):

")
31 if boundary_choice.isdigit(): # Check if input is a digit
32 boundary_choice = int(boundary_choice)
33 if 1 <= boundary_choice <= 8: # Check if input is within the

specified range
34 break # Break the loop if input is valid
35 print("Invalid input. Please enter a number from 1 to 8.")
36

37 # Read and write data until the transfer is complete
38 # for i in range(start, end + 1):

26

39 # print(i)
40 # serial_connection.write((str(i) + ’,’).encode())
41 # time.sleep(0.01)
42 print(boundary_choice)
43 serial_connection.write((str(boundary_choice) + ’,’).encode())
44 print(’write’)
45

46

47 time.sleep(5)
48

49 # Open a file on your computer to write the received data
50 file_path = "color_info.txt"
51 destination_file = open(file_path, "wb")
52

53 # Read and write data until the transfer is complete
54 while True:
55 data = serial_connection.read(128)
56 print(data)
57 destination_file.write(data)
58 if (b"EOF" in data) or (b"EO" in data) or (b"E" in data):
59 break
60

61

62 # Close the files and serial connection
63 destination_file.close()
64 serial_connection.close()
65

66 printed_array = ""
67 with open(file_path, "r") as file:
68 for line in file:
69 # Strip whitespace and newline characters
70 line = line.strip()
71

72 # Check if the line is "EOF", if so, stop reading
73 if line == "EOF" or line == "EO" or line == "E":
74 break
75

76 # Append the line to the text_before_eof string
77 printed_array += line # Add newline character to preserve line

breaks

27

Appendix C Stick and Sensor Code

The following code shows the implementation of Stick Class. This Class has two methods–
measure and move. The first method is to measure the current position of the stick and
the second is to control the stick to move up and down.

1 from MUX_open_close import open_channel, close_channel
2 from VL53L0X import VL53L0X
3 from time import sleep
4 import reverse
5 class Stick:
6 def __init__(self,num,channel,mux_addr,doffset,std_value,pin,i2c):
7 self.num=num
8 self.channel=channel
9 self.channel=channel

10 self.mux_addr=mux_addr
11 self.doffset=doffset
12 self.std_value=std_value
13 self.pin=pin
14 self.i2c = i2c
15 print("I am stick", self.num)
16

17 def measure(self,flag,tof):
18 if flag[self.num-1] == 0:
19 stick_rt_1 = tof.ping()-self.doffset
20 stick_rt_2 = tof.ping()-self.doffset
21 stick_rt_3 = tof.ping()-self.doffset
22 stick_rt_4 = tof.ping()-self.doffset
23 stick_rt = round((stick_rt_1+stick_rt_2+stick_rt_3+

stick_rt_4)/4)
24 return stick_rt
25 else:
26 return self.std_value
27

28 def motor_move(self,stick_rt,flag):
29 if stick_rt<-5:
30 reverse.reverse(self.pin,0)
31 else:
32 if self.std_value>stick_rt+2: #move upward
33 self.pin[0].output(0)
34 self.pin[1].output(1)
35 elif self.std_value<stick_rt-2: #move downward
36 self.pin[0].output(1)
37 self.pin[1].output(0)
38 else: #stop moving
39 self.pin[0].output(1)
40 self.pin[1].output(1)
41 flag[self.num-1] = 1

28

42 return flag

29

Appendix D Main Control Flow Code

The following code shows the main control flow of the control system.

1 import MC
2 from machine import Pin, I2C
3 from time import time_ns,sleep
4 from Stick_Unit import Stick
5 from MUX_open_close import open_channel, close_channel
6 from VL53L0X import VL53L0X
7

8 RUN_MOTOR = 1
9

10 i2c1 = I2C(1, scl=Pin(19), sda=Pin(18), freq = 10000)
11 print("device:", i2c1.scan())
12 mcp0 = MC.MCP23017(i2c1, 0x20)
13 mcp1 = MC.MCP23017(i2c1, 0x21)
14

15 i2c_mux1 = I2C(id=0,scl=Pin(13),sda=Pin(12),freq=400000)
16 for dev in i2c_mux1.scan():
17 print("mux dev: ", hex(dev))
18 flag_finish = [0]*16
19

20 stick1 = Stick(1,3,0x71,46,30,[mcp1[4],mcp1[5]],i2c_mux1)
21 stick2 = Stick(2,6,0x71,44,30,[mcp1[10],mcp1[11]],i2c_mux1)
22 stick3 = Stick(3,3,0x70,111,30,[mcp0[8],mcp0[9]],i2c_mux1)
23 stick4 = Stick(4,7,0x71,35,30,[mcp0[4],mcp0[5]],i2c_mux1)
24 stick5 = Stick(5,8,0x71,53,30,[mcp1[6],mcp1[7]],i2c_mux1)
25 stick6 = Stick(6,4,0x70,60,30,[mcp1[8],mcp1[9]],i2c_mux1)
26 stick7 = Stick(7,5,0x70,42,30,[mcp0[10],mcp0[11]],i2c_mux1)
27 stick8 = Stick(8,6,0x70,89,30,[mcp0[12],mcp0[13]],i2c_mux1)
28 stick9 = Stick(9,7,0x70,47,30,[mcp0[14],mcp0[15]],i2c_mux1)
29 stick10 = Stick(10,4,0x71,43,30,[mcp0[2],mcp0[3]],i2c_mux1)
30 stick11 = Stick(11,1,0x70,51,30,[mcp1[12],mcp1[13]],i2c_mux1)
31 stick12 = Stick(12,8,0x70,56,30,[mcp0[6],mcp0[7]],i2c_mux1)
32 stick13 = Stick(13,1,0x71,56,30,[mcp1[2],mcp1[3]],i2c_mux1)
33 stick14 = Stick(14,5,0x71,54,30,[mcp1[14],mcp1[15]],i2c_mux1)
34 stick15 = Stick(15,2,0x71,57,30,[mcp1[0],mcp1[1]],i2c_mux1)
35 stick16 = Stick(16,2,0x70,55,30,[mcp0[0],mcp0[1]],i2c_mux1)
36

37

38 sticks=[stick1,stick2,stick3,stick4,stick5,stick6,stick7,stick8,stick9,
stick10, stick11,stick12,stick13,stick14,stick15,stick16]

39 tofs=[]
40 num=len(sticks)
41 sticks_std= [40]*num
42

43

30

44 for i, stick in enumerate(sticks):
45 stick.std_value = sticks_std[i]
46

47 sticks_pre_rt=[0]*num
48 sticks_rt = []
49

50 for i in range(0,num):
51 open_channel(sticks[i].channel,sticks[i].mux_addr,sticks[i].i2c)
52 tofs.append(VL53L0X(sticks[i].i2c))
53 close_channel(sticks[i].channel,sticks[i].mux_addr,sticks[i].i2c)
54 print(tofs)
55

56

57 for i, stick in enumerate(sticks):
58 open_channel(sticks[i].channel,sticks[i].mux_addr,sticks[i].i2c)
59 sticks_rt.append(stick.measure(flag_finish,tofs[i]))
60 close_channel(sticks[i].channel,sticks[i].mux_addr,sticks[i].i2c)
61 print(sticks_rt)
62

63 while(True):
64 for i in range(0,num):
65 open_channel(sticks[i].channel,sticks[i].mux_addr,sticks[i].i2c

)
66 sticks_rt[i] = sticks[i].measure(flag_finish,tofs[i])
67 close_channel(sticks[i].channel,sticks[i].mux_addr,sticks[i].

i2c)
68 if RUN_MOTOR:
69 sticks[i].motor_move(sticks_rt[i],flag_finish)
70 print("sticks real-time height:",sticks_rt)
71 print("sticks std height:",sticks_std)
72 sleep(0.1)
73 if all(value == 1 for value in flag_finish):
74 break
75 #

31

	Introduction
	Background
	Solution Overview
	Block Level Changes

	Design
	Design Procedure
	User Interface
	Coloring Subsystem
	Control Subsystem
	Mechanical Subsystem

	Design Details
	User Interface
	Coloring Subsystem
	Control Subsystem
	Mechanical Subsystem

	Verification
	User Interface
	Verification of User Interface
	Verification of PDE Solving

	Coloring Subsystem
	Control Subsystem
	Verification of motor driver
	Verification of stick height measuring

	Mechanical Subsystem
	Choice of motor
	Optimization of 3D printed parts

	Costs
	Labor Costs
	Electronic Components Costs

	Conclusions
	Accomplishment
	Uncertainties
	Ethics Considerations
	Future Work

	References
	Appendix PCB Design Detail
	Appendix User Interface Code
	Appendix Stick and Sensor Code
	Appendix Main Control Flow Code

