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Abstract

Projector-based Augmented Reality (AR) systems are widely used in various applications
such as interactive gaming, education, and training. Combined with the conventional
sandbox, the AR system provides a new way to visualize and interact with the real world
and intuitively understand concepts in geological, hydrological, and topographical sci-
ences. This thesis presents the design and implementation of an AR sandbox system that
projects a topographic map onto a sandbox in real time, provides an easier way to cal-
ibrate the AR system, and presents a more portable and easy-to-use system. With the
implementation of a calibration algorithm and the integration of the projector-camera
system, the AR sandbox system can calibrate itself without the need for manual interven-
tion. The calibration result is accurate and robust, and the system can be easily set up and
used by users without any technical background.

Key words: Computer Vision, Augmented Reality, Camera Calibration, Projector-Camera
System, Ray Casting
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1 Introduction

1.1 Problem Statement

Sandbox is a traditional educational tool that has been widely used in geography educa-
tion for children. It is a hands-on tool that allows children to learn about topography and
geography in a fun and interactive way. With Augmented Reality (AR) technology, sand-
boxes can be transformed into a more interactive and engaging learning tool. Currently
available AR sandboxes [1] [2] are mostly cumbersome and limited to public spaces like
activity centers rather than serving as personalized learning tools. For these sandboxes, a
significant lag can be noticed when sand is manipulated manually, as it causes contours to
be recalculated and re-projected onto the terrain. Meanwhile, contours are flickering on
the terrain parts that remain still for the whole time, showing a heavy amount of compu-
tational resources are wasted on the unnecessary parts thus restricting more delicate and
faster signal processing procedures on the terrain parts that need to be updated as soon
as possible. Furthermore, the existing projectors designed for sandboxes exhibit primi-
tive features, characterized by a notably low refresh rate and harsh direct light from the
projector that raise safety concerns for children’s eyesight.

This AR sandbox uses a different AR module design that can project contour maps in
real-time onto the sand surface and can be easily installed to adapt to various kinds of
sandboxes, making geography education for children not only informative but also sig-
nificantly more enjoyable. This solution aims to overcome the limitations of previous AR
sandboxes that are bulky and not user-friendly, offering a more accessible and personal
learning experience. It is designed to deliver a smoother experience with lower latency
that ensures a more comfortable and engaging educational tool for children.

1.2 Solution Overview

Kinect Camera

Projector

Sand Table

Scan the Height 
of the sand

Projecting 
topography

Jetson Nano

Transmit Depth, 
RGB, IR frames

Constructing Topography Graph.

Adjust the Position of Slider 
Based on Depth Info

Connect with Manual 
Focusing Lever on 

Projector

Slide Table, Stepping 
Motor and Drive Board

Communicates 
with 

Smartphone for 
Control

Figure 1: Visual Aid for AR Sandbox Project

The basic criteria for this sandbox are safe, easy to use, and low latency. The overall
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structure will be designed to be portable while ensuring both high load-bearing capacity
and stability. The AR module, including a depth camera, processing unit, and projector,
can be removed from the sandbox and installed on other sand tables. In general, this
project will ensure a latency of less than 1 s, and the contours can be accessed wirelessly
from portable mobile devices. The projector can be auto-focused to ensure display clarity.
The depth camera will be used to detect the height of the sand and collect RGB and IR
images. The projector will be of high luminance to display clearly on the sand and short
throw to match the camera’s field of view and lower the center of mass for safety.

1.3 Block Diagram

The AR sandbox project consists of six subsystems: sensor, processing, projection, pow-
ering, structure, and wireless display. The sensor subsystem acquires depth information
from the sand surface. The processing subsystem is responsible for processing the depth
information and projecting the correct topography graph onto the sand. The projection
subsystem is responsible for projecting the topography map onto the sand surface. The
powering subsystem provides power to all subsystems. The structure subsystem is re-
sponsible for storing the sand and connecting it with all other parts as a whole AR mod-
ule. The wireless display subsystem provides a web page to view contours and control
the sandbox. The block diagram is shown in Figure 2.

Database & 
Wireless Display System

Database & 
Wireless Display System

Sensor SystemSensor System

Processing SystemProcessing System

Projection SystemProjection System

RGBD
Camera

Sandbox

Projector

Construct
Topography 

Graph

Calibration

Structure System 
with all necessary physical supporting structure

Powering 
System

Powering 
System

Image Signal 
Processing

Auto 
Focusing

Motor 
Drive 
Board

Step 
Motor

Database
Mobile 
Devices Focus 

Lever

IR, Depth Data

Calculated Control signal

Img *= roi_mat

Save & Load Topography Files

Control

220 V

12 V

5 V

220 V

Processed Depth Data

PWM Output
Projected View

Physical Movement

Separable part 
Holding all electronic device

Recovery system
Recover the surface of sand 

before using

Mobility system
Making the AR sandbox 

convenient to move

Locating
Sandbox 
with IR 
Markers

Wireless Data

Depth

RGB, Depth

Calibrated Topography

Data

Figure 2: Block Diagram for AR Sandbox Project
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2 Design

2.1 Sensor Subsystem

The sensor subsystem in the AR sandbox project refers to the RGB-D camera that is re-
sponsible for acquiring depth information from the sand surface and collecting RGB and
IR images for detecting the shape of the sandbox.

For depth information acquisition, Microsoft Kinect V2 is chosen for its capability of pro-
viding depth information in low light levels, providing RGB and IR frames, and is color
and texture invariant. It has a color sensor with a 1920×1080 pixels resolution and a depth
sensor with a 512×424 pixels resolution. The operational area is delineated by a depth
span from 0.5 to 4.5 meters, with a viewing angle of 70◦ horizontally and 60◦ vertically
[3]. When detecting objects at a depth range from 0.5m to 2m, the average depth accuracy
error is less than 4mm according to Yang et al. [4]. The Kinect V2 camera is connected to
the processing unit through a USB 3.0 cable. The sensor communicates with the process-
ing unit through USB protocol. An open-source library called ”libfreenect2” [5] is used to
access the RGB, IR, and depth information from the Kinect V2 camera.

2.2 Processing Subsystem

2.2.1 Processor Selection

The chosen processor for our project is the Jetson Nano, a compact yet powerful computer
designed specifically for embedded applications and AI IoT [6]. The Jetson Nano delivers
the performance and capabilities required to run modern AI workloads efficiently.

The primary consideration for selecting the Jetson Nano was its balance of cost and per-
formance. Our project involves considerable Computer Vision (CV) tasks that require
robust GPU support. The specifications of the Jetson Nano are as follows:

• GPU: NVIDIA Maxwell architecture with 128 NVIDIA CUDA cores

• CPU: Quad-core ARM Cortex-A57 MPCore processor

• Memory: 4 GB 64-bit LPDDR4, 25.6 GB/s

• Operating System: Built-in Linux, facilitating development

These features and the price provide a compelling option for our needs.

2.2.2 IR Markers for Sandbox Boundary Detection

To achieve robustness and scalability, adaptable to sandboxes of various shapes, infrared
reflective markers were selected for this task, utilizing the Kinect v2 camera’s ability to
capture infrared (IR) information. These markers were strategically placed at each corner
of the sandbox, enabling the camera to capture these markers with minimal interference.
The markers are easily distinguishable from other objects in the IR spectrum, which fa-
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cilitates using OpenCV to identify these markers and ultimately determine the sandbox
boundaries.

Figure 3: Processed binary IR image(bottom right) and Detected Sandbox Edge after do-
ing blob detection(upper right)

Algorithm for IR Marker Boundary Configuration The pseudocode for IR marker de-
tection in Appendix E shows a structured framework for implementing IR marker detec-
tion by leveraging the Kinect v2 camera alongside image processing capabilities provided
by OpenCV. Details are as follows:

1. Preprocess IR Information: Convert the grayscale image to a binary image using
appropriate thresholds. This step isolates the relevant high-intensity areas for fur-
ther analysis.

2. Blob Detection: Utilize OpenCV’s blob detection feature [7]. Configure the BlobDe-
tector to detect white blobs (high-intensity areas) and set parameters to filter blobs
by area and circularity, focusing on the near-square shape of IR markers. These
settings help ignore non-marker objects in the scene.

3. Obtain Region of Interest Matrix and Apply on Image: After detecting sandbox
boundaries, create a region of interest matrix (roi mat). Set the sandbox area to 1 and
other areas to 0. Use this matrix to filter the processed colored contours. Multiply
the filtered image with roi mat to isolate and display only the sandbox area in the
final image. This step enhances the visual output’s relevance and clarity.

2.2.3 Display – Generating Colored Contours from Depth Information

The purpose of this functionality is to visualize depth information more intuitively by
applying color mapping to depth data. This approach helps in identifying features at
various depths within a scene by representing them with different colors. The process
involves several key steps: clamping the depth values to a specified range, normalizing
these values, and then mapping them to a set of colors. Details are as follows:

1. Normalizing Depth Values: The depth values are first clamped to ensure they fall
within a user-specified range. This step is crucial as it filters out depth values that
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are either too close or too far, which may not be relevant to the analysis.

2. Mapping to Color Indices: These normalized values are then mapped to color in-
dices. The mapping translates the normalized depth into a discrete index, which
corresponds to a specific color in the colormap.

3. Creating a Custom Colormap: A custom colormap is created from the JET colormap
[8], which contains a gradient of colors. Only a specific number of colors defined
by n are selected to create this colormap, which helps in distinguishing between
different depth values more effectively.

4. Applying the Colormap: Finally, the custom colormap is applied. This step maps
the previously obtained color indices to actual RGB color values, which are then
used to produce the final visual representation of the depth data.

The function plot depth contour demonstrates this process. It takes a depth array
and parameters defining the depth range and the colormap specifics, and it returns an
image where the depth information has been transformed into a visually comprehensible
format using colors.

2.2.4 Concurrent Handling of Web and Display Using Multithreading

To enhance the responsiveness and efficiency of our system, which involves both display-
ing processed images and serving these images via a web interface, a multithreading ap-
proach is employed. This method allows the web server and the image display processes
to operate simultaneously without blocking each other, ensuring smooth execution. The
key to managing the shared resources, particularly the image frames, is the use of thread-
ing with a lock mechanism to handle concurrency safely.

The implementation involves two main threads: one for the Flask web server and another
for the image processing task. A global variable, current frame, is used to store the
latest processed frame, which is accessed by both threads. This variable is protected by a
threading lock, current frame lock, to prevent concurrent access issues such as race
conditions.

1. Web Server Thread: Runs the Flask app, including the /video feed route for
streaming video frames. The video stream function checks for the latest frame in
the current frame variable, locks it for thread safety, copies it, encodes it to JPEG,
and yields it in a multipart HTTP response.

2. Image Processing Thread: Processes incoming video data to generate color-mapped
contours or other outputs. Updates current frame with the new image under the
current frame lock to ensure safe access for the web server thread.
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2.3 Projection Subsystem

2.3.1 Projector Selection

The projector in the projection subsystem is responsible for projecting the topography
map onto the sand surface. Considering that topography is displayed on sand, the pro-
jection subsystem should be able to project the topography map with high luminance to
overcome the strong diffuse reflection of sand. To mount the projector lower on one side
of the sandbox for easier installation and to match the camera’s field of view, the projec-
tion subsystem aims for a short-throw projector. For this, this AR sandbox uses a high
luminance ultra short throw projector from EPSON with a resolution of 1024×768 pixels
and a zoom factor of 0.31 in horizontal direction and 0.41 in vertical. It has a refresh rate
of 60 fps and 2600 ANSI lumens. The projector connects with the processing unit through
an HDMI cable, which is compatible with the Jetson development board.

One feature of this projector compared to the projector previously used in the AR sandbox
project is that its projection is significantly off-axis, which means that the optical axis of
the projector does not coincide with the center of the projected image. This feature is
beneficial for the installation of the projector as it can be mounted lower on one side of
the sandbox and still project the topography map onto the sand surface. However, this
feature also brings challenges to the calibration of the projector-camera system, which
will be discussed in the Projector-Camera System Calibration section.

2.3.2 Projector Auto Focusing

As the projection subsystem uses a short throw projector, a small distance change between
the projector and the surface it projects to would bring a blurry image and require refo-
cusing with the focusing lever on the projector. To automatically adjust the focus of the
projector according to the height of the sand surface as the projector only allows for man-
ual focusing through a lever shown in Figure 4, an auto-focusing subsystem is designed.
It uses a stepper motor with a sliding table to control the projector’s lever automatically.
The stepper motor connects with the focusing lever on the projector through a customed
connector on a sliding table shown in Figure 4. The stepper motor would be controlled by
the processing unit and connected with the lever to change its position. The processing
unit would use the depth information from the sensor subsystem to adjust the focus of
the projector according to the height of the sand table.

The autofocusing system uses a 28HD2830 two-phase stepper motor with a 1.8◦ step an-
gle and a holding torque of 0.07N ·m. It is installed on a linear sliding table with 50mm
stroke. The stepper motor connects with the processing unit through a drive board. The
sliding table will go for 1mm per rotation of the stepper motor. The drive board con-
nects with the processing unit through GPIO pins and receives a PWM signal from the
processing unit. The Jetson Nano has GPIO pins that can be used as PWM output. The
acceleration and deceleration of the stepper motor can be controlled by the PWM signal.
Figure 5 shows the relationship between distance and speed of the stepper motor.

For more precise control of the stepper motor’s position, the motor is driven by a half-
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SOLIDWORKS Educational Product. For Instructional Use Only.
Figure 4: Focus Lever on EPSON EB-CU600X Projector and Connector Design

Figure 5: Stepper Motor Speed vs. Distance

step sequence, which is a sequence of 8 steps that the motor goes through to complete one
full activation loop. Compared to a full-step sequence that only has 4 steps per activation
loop, the half-step sequence provides higher precision and less vibration at low-speed op-
eration [9]. With a 1.8◦ step angle and a sliding table with 1mm lead, a half-step sequence
could achieve 0.0025mm accuracy in theory, which is enough for focusing lever control.
By controlling the delay time between each step, the stepper motor can be controlled to
move at different speeds. The motor function pseudocode is shown in Appendix D.

The drive board connects with the stepping motor through a 4-pin connector. L298N chip
drives the stepping motor, which is a dual H-bridge motor driver integrated circuit. The
L298N can drive up to 2A per channel and has a peak current of 3A per channel. The
L298N has a thermal shutdown feature to prevent overheating and a short-circuit protec-
tion feature to prevent damage to the stepping motor. It is simple to use and provides
low noise and high stability, which is suitable to control the focus lever.

The relationship between the position of the focusing lever and the distance between
the projector and the focused surface is determined after acquiring data points. As the
standard of being in focus is just determined by visual judgment, an approximated linear
relationship is used for its simplicity and effectiveness. The distance is obtained from the
sensor subsystem.
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Figure 6: PCB Design of Stepper Motor Drive Board

2.3.3 Projector-Camera System Calibration

Projector-camera system calibration is a crucial step in the AR sandbox project. Com-
pared with existing methods such as the KinectProjectorToolkit [10] that uses a printed
checkerboard pattern, this AR sandbox uses a different method to calibrate the off-axis
projector-camera system with just the projector. Considering that this AR sandbox aims
for educational use and the printed checkerboard pattern may be lost or damaged, this
would be a much better solution compared to the existing ones.

As in most AR applications, the relative position between the projector and the Kinect
camera is fixed. To speed up the calibration process when applying a transformation
to colored contours, this AR sandbox first uses a simple homography transformation to
warp the colored contours to the projector’s perspective. The equation used is defined
as:


xp

yp

1

 = H3×3


xc

yc

1

 (1)

Here, H3×3 is the homography matrix that maps the camera coordinate system to the
projector coordinate system. xp and yp are the pixel coordinates in the projector coordinate
system, and xc and yc are the pixel coordinates in the camera coordinate system. The
benefit of this method is that the processing speed is very fast and makes the AR sandbox
more responsive as it does not consider the depth information of the sand surface. The
drawback of this method is that it is not accurate and the final topography map offsets
more than 5 cm with the sand surface when the sand surface has a more than 5 cm height
difference. One homography applies when points in the image are on the same plane
and multiple planes in the image require multiple homography, one for each plane [11].
Considering that the sandbox this project uses contains sand with a maximum height
difference of around 10 cm, this method is not suitable for this project. Therefore, the AR
sandbox uses a more accurate method to calibrate the projector-camera system.

Our AR sandbox takes the depth information into account, which requires the intrinsic,
extrinsic, and distortion parameters of both the camera and the projector for accurate pro-
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jection. There are two main steps in the calibration process: camera calibration and projec-
tor calibration. The camera calibration considers the intrinsic parameters of the camera,
such as focal length, principal point, and distortion coefficients. The projector calibration
considers the intrinsic and extrinsic parameters of the projector, which is modeled as a
camera. The detailed calibration process and an overview of the projector-camera system
are shown in Figure 7. Some simplifications and assumptions made in the calibration
process will be discussed in the following sections.

Start Calibration

Calibrate Camera

Project ArUco
Markers with known
corners (u_p, v_p) in

projector's pixel
coordinates

Detect ArUco Markers using
camera with (x_w, y_w, z_w) in

world coordinate

Calculate projection matrix P
using Direct Linear

Transform(DLT)

Reprojection Error < 0.8 pixel? No

End Calibration

Yes

World Coordinate
(xw ,yw,zw)

Camera's 
Pixel Coordinate

(uc ,vc)

Projector's Pixel Coordinate
(up ,vp)

Pw, p

Pc, w

Figure 7: Flowchart of Projector-Camera System Calibration and Overview of Projector-
Camera System

Camera Calibration Camera calibration is the process of estimating the intrinsic param-
eters of the camera, such as focal length, principal point, and distortion coefficients. These
parameters are crucial for converting the pixel coordinates of the camera to real-world co-
ordinates. The relation between 2D data points in the camera coordinate system and 3D
data points in the world coordinate system is given by the following equation according
to the pinhole camera model proposed in Zhang’s paper [12]:

Zc


xc

yc

1

 = Kc

R t

0 1



Xw

Yw

Zw

1

 (2)

Kc =


1
dx

0 Cx

0 1
dy

Cy

0 0 1



fx 0 0 0

0 fy 0 0

0 0 1 0

 (3)
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By defining the world coordinate system’s origin to be the same as the camera’s pixel
coordinate system and aligning the pixel coordinate’s u-v plane with the x-y plane of the
world coordinate, the rotation matrix R is the identity matrix and the translation vector t
is a zero vector. For the distortion coefficients, the camera model uses a standard Brown-
Conrady model, which is a radial-tangential distortion model. The equation describing
distortion is in Equation 4 with tangential and distortion terms [13]. The intrinsic param-
eters and distortion parameters of the camera are provided in a paper [14] and source
code of a library for Kinect [15] as shown below:

cx cy fx fy k1 k2 k3 p1 p2

254.878 205.395 365.456 365.456 0.0905474 -0.26819 0.0950862 0.0 0.0

Table 1: Camera Parameters

xdistorted

ydistorted
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2p1xundistortedyundistorted + p2(r
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2 + 2y2undistorted) + 2p2xundistortedyundistorted


(4)
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oj
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Figure 8: Comparison between On-axis and Off-axis Projection

Projector Calibration Projector calibration is the process of estimating the intrinsic and
extrinsic parameters of the projector, which is modeled as a camera. Considering that this
projector exhibits strong off-axis projection as shown in Figure 8, the intrinsic matrix Kp

is different from the camera’s intrinsic matrix Kc. The relation between 2D data points
in the projector coordinate system and 3D data points in the world coordinate system is
given by the following equation:

Zp


up

vp

1

 = Kp

R t

0 1



Xw

Yw

Zw

1

 (5)
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where Kp is the intrinsic matrix of the projector, R is the rotation matrix, and t is the
translation vector. Considering that the origin of the world coordinate is fixed on the
camera, there is no need to calculate the intrinsic, rotation matrix, and translation vector
separately. Thus, the calibration process chooses to directly estimate the projection matrix
using the Direct Linear Transformation (DLT) algorithm.

For a 3-by-4 projection matrix Pw,p, 12 unknown parameters need to be solved, which
needs at least 6 corresponding points between the world coordinate system and the pro-
jector coordinate system. These points are obtained by projecting an ArUco [16] marker
board onto a surface and detecting the corners of the markers in the camera coordinate
system. The ArUco marker board is a planar board with a set of markers with known
dimensions and IDs, which does not require the camera to capture the whole board. The
world coordinates of detected corners of the markers are then calculated with the previ-
ously calibrated depth camera. The following equation is used to calculate the projection
matrix Pw,p:

Zp


up

vp

1

 =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34



Xw

Yw

Zw

1

 (6)

To solve for the parameters pij in Pw,p, the Direct Linear Transformation (DLT) [17] trans-
forms the equation into a linear system L ·p = 0 as shown in the following equation:

L =



X1 Y1 Z1 1 0 0 0 0 −u1X1 −u1Y1 −u1Z1 −u1

0 0 0 0 X1 Y1 Z1 1 −v1X1 −v1Y1 −v1Z1 −v1
...

...
...

...
...

...
...

...
...

...
...

...

Xn Yn Zn 1 0 0 0 0 −unXn −unYn −unZn −un

0 0 0 0 Xn Yn Zn 1 −vnXn −vnYn −vnZn −vn


(7)

p =
[
p11 p12 p13 p14 p21 p22 p23 p24 p31 p32 p33 p34

]T
(8)

The projection matrix Pw,p is then estimated by solving the linear system L · p = 0 using
the singular value decomposition (SVD) method. The following equation calculates the
reproduction error of the projection matrix:

Reproduction Error =

√∑n
i=1(up − ûp)2 + (vp − v̂p)2

n
(9)
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where ui and vi are the pixel coordinates of the ith point in the projector coordinate sys-
tem, and ûi and v̂i are the pixel coordinates of the ith point in the projector coordinate
system calculated by the projection matrix Pw,p. The projection matrix Pw,p is then used
to project the colored contours to the projector coordinate system. The reproduction er-
ror of the projection matrix is required to be less than 0.8 pixel for the calibration to be
considered successful.

Considering that the projector has a built-in distortion correction feature that cannot be
turned off and performs correction well, the calibration process ignores the distortion
coefficients of the projector.

Applying Projector-Camera System Calibration There are two steps to apply the projector-
camera system calibration. First, the sensor subsystem provides the depth information
of the sand surface. The depth information is then converted to real-world coordinates
based on the calibrated camera. Second, the projector’s projection matrix projects the real-
world coordinates to the projector coordinate system and produces the final topography
map.

When converting from the camera coordinate system to the projector coordinate system,
a vectorization method is proposed. The open source library called ”libfreenect2” [5]
provides a function getPointXYZ that can only perform the conversion for one point at
a time. To speed up the process, the function is vectorized to convert multiple points at a
time. The code is shown in Appendix F.

When projecting the real-world coordinates to the projector coordinate system, the pro-
jection matrix is used. The code is also vectorized to speed up the process. The vectorized
code is shown in Appendix G. Vectorizing the function shortens the processing speed by
20 times. The final topography map is then projected onto the sand surface. The final
topography map is shown in Figure 9.

Figure 9: Topography Map Projected onto Sand Surface

2.4 Powering Subsystem

The powering subsystem is responsible for providing power to the sensor, processing,
and display subsystems. The powering subsystem should be able to provide power to
the sensor, processing, and display subsystems with sufficient power and voltage. The
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powering subsystem should be able to provide power to the sensor, processing, and dis-
play subsystems with high reliability and high safety.

The Kinect sensor and projector take 220V AC power, while the processing unit takes
5V DC power and the drive board of the stepping motor takes 12V DC power. One
power converter safely converts 220V AC power to 5V DC power and provides 20W at
maximum for the processing unit. The Jetson Nano takes 5V DC power and 2A current at
maximum. The stepping motor takes 12V DC power and 2A current at maximum. One
power converter safely converts 220V AC power to 12V DC power for the drive board
of the stepping motor. The power consumption of these two parts is within the power
supply’s capacity. A power strip with high current and temperature protection connects
the Kinect sensor, projector, stepping motor, and processing unit to one plug and provides
at most 2500W power to the whole system. It is safe and reliable to use.

In the auto-focusing subsystem, a UZ1085 LDO (low-voltage dropout) voltage regulator
is used to convert the 12V DC power to 5V DC power for chips on the PCB board and
the stepper motor. The LDO voltage regulator can provide a stable 5V DC power and up
to 2A current, which satisfies the need of the stepper motor. The LDO voltage regulator
has a thermal shutdown feature to prevent overheating, short-circuit protection, and an
overcurrent protection feature to prevent damage to the processing unit. It is simple to
use and provides low noise and high stability voltage output.

2.5 Database and Wireless Display Subsystem

2.5.1 Selection

Database The database serves as a centralized repository for storing frame images that
are captured as requested by the user from the depth camera. Images captured by the
depth camera contain important depth information, making them necessary for calibra-
tion, segmentation, and contour painting. By structuring these images within a database,
retrieval, and management of the captured frames are ensured, and seamless access for
analysis and processing on the back end of the project becomes available for developers.
It is not only useful for debugging back-end programs but also important to the overall
user experience for the project. As a well-designed database, scalability is ensured so that
the system can accommodate increasing data loads without experiencing degradation in
responsiveness or reliability.

SQLite [18] was chosen as the database solution for this project due to several distinct
advantages it offers over alternatives such as PostgreSQL [19] and MySQL [20]. First of
all, SQLite is a simpler self-contained database that is lightweight and does not require
additional separate server processes to be running. Secondly, SQLite can smoothly inte-
grate with the Python environment in which most back-end programs of this project run.
Developers can perform CRUD (Create, Read, Update, Delete) operations with minimal
boilerplate code by using Python with SQLite. As the database in this project is designed
to perform only read, write, and delete, SQLite provides the perfect solution.
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Wireless Display The integration of wireless transmission capabilities within the web
page enables real-time streaming of the camera feed to end-users who are using either
mobile devices or PCs. Wireless transmission eliminates the need for physical connec-
tions, offering flexibility in accessing the camera feed from diverse locations and devices.
Through the web page, users can initiate live streams, navigate through archived frames,
and enjoy the view of colored contours. As the overseer of the sandbox, parents can mon-
itor their children’s behavior even if they are not near the sandbox, providing extra safety
precautions. To integrate into different devices, the web page layout is designed to be
responsive as every element can scale according to the size of the window to provide a
comfortable user experience everywhere. [21]

Flask [22] paired with pure HTML and CSS offers a lightweight, flexible, and efficient ap-
proach to web page development that aligns well with the requirements and constraints
of the project. This choice stands out compared to the other alternatives that are available
for this project. Being a lightweight micro-framework, Flask provides the essentials for
building web applications without imposing unnecessary complexity. By leveraging pure
HTML and CSS alongside Flask, it is easy to maintain a simple and straightforward de-
velopment workflow, and the debugging process can be a lot easier. SCSS [23] as the more
advanced version of CSS is discarded because the Linux system can not handle SCSS well
and some web page features may be inconsistent on different user devices. Javascript is
widely used to define button movement on web page development. Additionally, pure
HTML and CSS offer complete flexibility and make it possible to develop a simple but
fully functional responsive web page layout that can adapt to any window size well. On
the Javascript part, an alternative is to use the Babel [24] version of Javascript so that
many interesting visual effects can be realized. This approach is also discarded as Babel
requires additional installation on the Linux system that may not support full customiza-
tion to simplify the structure of this project.

2.5.2 Design Details

Database and wireless display are deeply connected with each other in this project, and
the design details of both shall be discussed together. As shown in Figure 10, overall
10Python Functions and 3 Javascripts for buttons have been implemented to realize both
database setup and web page layout.

2.6 Structure Subsystem

2.6.1 The Main Part of Sandbox

The main part of the sandbox is dedicated to the containment of sand and constitutes the
central and largest portion that interconnects with all other segments. This integral sec-
tion comprises the main body of the sandbox and a removable lid as shown in Figure 11.
With the lid in place, the sandbox assumes external dimensions of 600x400x150 millime-
ters, while the internal cavity measures 578x378x128 millimeters. The lid is a composite
structure made of two boards that are pivotally affixed using hinges, enabling a full 180-
degree swivel. The interface between the lid and the main body is established through
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Figure 10: Flowchart on database and wireless transmission subsystem

a pliable silicone sheet, which guarantees an unfettered 270-degree movement. The de-
sign rationale for this feature is to allow the lid to be manipulated with ease, enabling it
to be stored flush against the side of the sandbox during utilization. This configuration
ensures unobstructed access and convenience for the user around the entire perimeter of
the sandbox.

Figure 11: The CAD model of the main part and separable of sandbox

The material used for this section is pine wood. The box body is constructed by join-
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ing pine boards with a thickness of 12mm. The selection of materials for this part was
greatly influenced by budgetary constraints. The ideal material for fabrication would be
PLA (Poly Lactic Acid) plastic, which offers higher strength properties. However, cal-
culations and simulation validations have confirmed that the structural integrity of pine
wood is sufficient to support the weight of the sand, while also making the sandbox more
portable.

2.6.2 The Separable Part

The overall structure of the separable part is depicted in the diagram. Its function is to
house the projector, connect sensors, and accommodate all electronic devices. The top of
this part features a recess measuring 160x380x10 mm, slightly larger than the projector’s
base, allowing the projector to be securely inserted. The sensors will be mounted on a
pan-tilt mechanism and secured by a rod to the upper edge of the separable part. The
pan-tilt mechanism enables free rotation, facilitating the convenient use of the sensors.
The rod is made of aluminum alloy and is adjustable in length. The hollow center of the
separable part is designed for storing the processing system and power supply system,
ensuring that the entire system can be powered by a single wire extending from the box.
The open side will be covered with a rotating plate to maintain a sleek, integrated appear-
ance. The plate features a rectangular opening to aid in positioning the clamping point of
the rod connecting to the sensors. The connection between the main body of the sandbox
and the separable part is achieved using a dovetail joint structure. This design is based
on the reason that when the sandbox is placed horizontally, the joint will not be subjected
to significant force, but it must ensure stability. The simple structure also allows for easier
assembly and disassembly. The significance of this section lies in the ability to use our
electronic devices independently. This means that our electronic devices are not depen-
dent on the original sandbox but can be adapted to various scenarios and different sand
tables, increasing the flexibility of product use.

The material for the separable part is PLA, produced by 3D printing. In actual production,
more cost-effective methods such as injection molding can be considered. The strength
of the PLA-made separable part fully meets safety requirements. Cheaper materials with
slightly lower strength could also be suitable alternatives.

2.6.3 The Recovery Subsystem

The primary function of this system is to facilitate the rapid and convenient re-leveling
of used sand tables. To avoid complicating the use and maintenance of the sandbox with
electric equipment, a special shovel with a unique structure was designed to achieve this
purpose. The structure of the shovel is depicted in the diagram. Its mechanism operates
by pushing excess sand into the shovel when thrust forward, where it is stored in the hol-
low segment in the center, and upon returning, the stored sand fills the gaps through the
bottom slit. By placing the shovel on the guide rail as shown, the lower end of the shovel
is set at the original height of the sand surface in the sandbox. This design allows the user
to restore the sand surface simply by pushing the shovel. The edges of the shovel have
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been blunted after optimization to prevent accidental injury to the user. Furthermore,
the manual operation of the recovery system eliminates the risk of user harm, making it
decidedly more convenient and safe.

Figure 12: The CAD model of the shovel and the recovery system

The shovel is fabricated using PLA material via 3D printing, and in actual production,
more cost-effective methods such as injection molding can be considered. The guide
rail maintains the same pine wood material as the main body of the sandbox, which is
rougher than anticipated in the design phase. The friction can be reduced by applying
polytetrafluoroethylene (PTFE) tape to the surface of the rail.

2.6.4 The Mobility System

The purpose of this section is to make the entire AR sandbox portable. The weight of all
the structures of the AR sandbox, including the electronic equipment, approaches 30 kg.
Manual handling is impractical and also increases the risk of damage to the device. The
mobility system consists of two parts: a metal frame and wheels. The metal frame is
welded from angle steel with a thickness of 3mm and a width of 50mm, and it is rein-
forced with one longitudinal and three transverse cross braces at the bottom to enhance
strength and stability. The dimensions of the metal frame are 1500x400 millimeters, tak-
ing into account the need to move the projector for focusing. The material used for this
part is 304 steel, which has a very high hardness. There are a total of six wheels: the
four outer wheels are swivel casters with brakes, and the two in the middle are ordinary
swivel casters. The wheels are made of nylon and are 2 inches in size. This ensures that
the system can be fixed in place during use and will not move easily. Testing has shown
that the mobility system can support a weight of 200 kg without deformation, which fully
meets the usage requirements.
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3 Verification

A detailed requirement and verification table is in Appendix B.

3.1 Sensor Subsystem

By logging the frame rate and latency when fetching RGB, IR, and depth frames from the
Kinect camera, the performance of the sensor system can be verified. The frame rate of
the camera is higher than 30 fps with latency less than 20ms. The log is shown in Figure
13.

Figure 13: Log of Sensor System

3.2 Verification of Processing System - Colored Contour Display

The display system is designed to show 10 different colors, each representing a 5 cm
height change. To verify this feature, a tilted whiteboard was placed on the ground and
observed under the colored contour display. The verification results demonstrated that
the system could reliably differentiate the 5 cm height changes with an error margin of
±0.3 cm. Furthermore, when shaping the sand in the sandbox, the colored contours accu-
rately showed the ridges and valleys, confirming the system’s ability to display different
topographical features.

Figure 14: Color Display for Different Height Levels

18



Figure 15: Colored Contours Verification on Sand With and Without IR Markers

3.3 Verification of Processing System - Sandbox Edge Detection

To test the sandbox locating functionality, several IR reflective markers were placed on
the sand surface, and the locate button was pressed on the web interface. The display
region was then outlined by a polygon formed by these markers with minimal deviation.
During testing, the average error distance from each corner of the polygon to the center
of the IR reflective marker was found to be 1.2 cm. When changing the positions of the
markers, the display region is updated correctly to match the new positions, maintaining
the same level of accuracy.

3.4 Projection Subsystem

3.4.1 Auto Focusing

Although the current driving capability of the GPIO pins on Jetson Nano is only around
0.5mA, it is sufficient to drive the H-bridge chip and control the stepper motor. Figure
16 is the output of one of the GPIO pins on the Jetson development board, which shows
acceleration, steady speed, and deacceleration periods.

500.000 ms/div 8 k Samples at 1 ksps

CH 1 REF 1 REF 2

Figure 16: PWM Output of Jetson Nano

The stepper motor can control the position of the sliding table correctly and accurately.
The sliding table can move to the desired position and stop at the correct position. The
motor can also move in the opposite direction. This is verified by measuring the location
of the slide table with a ruler. The error of the movement is about 0.5mm.
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3.4.2 Projector-Camera System Calibration

The verification of the projection system is first achieved by checking the reproduction
error of the projected image. In Figure 17, 19 corner points are detected as valid data
points and used for projection matrix estimation. Below is the projection matrix estimated
with a projection error of 0.7941067124646294 using these points:


−2.86547238e− 01 2.77225866e− 01 −5.01825389e− 01 3.49394704e+ 02

−1.98248169e− 02 6.11044295e− 01 −5.56395603e− 01 4.34260722e+ 02

−3.97751643e− 05 7.87623720e− 04 −1.39620048e− 03 1.00000000e+ 00



Figure 17: Calibration of Projection System and Results

The effectiveness of the calibration process is also verified by checking the alignment of an
elevated surface with the topography projected on it, considering that this system deals
with the alignment of projected images with objects at different heights. Here a box with
a height of 11 cm is placed in front of the projector. The error of the alignment is about
0.6 cm for both the top and bottom of the box. The result is shown in Figure 17.

The speed of the calibration process is verified by timing the calibration process. The
calibration process takes on average 0.17 s to complete over 50 consecutive runs. The time
taken processing one depth frame is 202.45ms in total, which is within the requirement of
less than 1 s latency.

3.5 Database and Wireless Display Subsystem

For the database as well as the web page, testing is rather intuitive.

To test database functionalities, which specifically are read, write, and delete, another
DBreader.py (See Appendix K) is written so that directly viewing contents of the database
is available. All contents will be outputted into a folder named output, and by visually
checking the number of frames captured as well as the contents of each figure, it is easy
to determine whether Writing into the database is correct or not. Reading functional-
ity is checked by clicking the timestamp button on the web page after capturing frames.

20



If the frame correctly shows up on the desired area, then reading functionality is good.
There are two ways to check whether delete is implemented correctly or not. First of all,
by clicking the delete button beside the timestamp button, the corresponding line shall
be erased from the page. Secondly, DBreader.py is used before and after the delete
button is clicked, and if the number of frames decreases, then the delete functionality
is checked. There is a maximum amount of frames that can be stored in the database.
After reaching the hard cap, the newest frame will replace the most outdated frame. Us-
ing DBreader.py twice to access the contents of the database can decide whether this
functionality is implemented correctly or not.

The web page is designed to be responsive so that every element can comfortably scale
up and down based on the display devices of users. If the user opens the web page on
mobile devices, functional buttons including Capture frame, timestamp and delete
shall work just like on PC. The positions of every element shall move according to the
window size to provide a comfortable and stable user experience. The top navigation bar
shall be fixed on top and when scrolling down the page it is always visible. On the menu
list in the navigation bar, users can be able to click the titles and jump immediately to
corresponding areas. For example, by clicking the check button in the menu list, the user
shall be able to jump to the area where the frame list and the stored image display area
are. The QR code shall have consistency so that whether the user scans from the screen
of a PC or a phone the web page can jump to this web page correctly. The livestream area
shall display the contours correctly and constantly. The Back to Top button on the
bottom of the page shall correctly scroll the page back to the top after being clicked.

Figure 18: Performance Summary and completed web page testing on iPhone, when us-
ing the web page. Rendering, scripting, and painting processes each take less than 600ms
(Rendering being the slowest), which is fast enough.
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3.6 Structure Subsystem

When conducting a tolerance analysis of sandbox mechanical structures, it is considered
necessary to investigate whether structural errors and the influence of different materials
on product properties are acceptable. Models using ABS plastic [25] are fully capable of
meeting the functional needs of AR sandboxes, which has been confirmed. The samples
used were produced by 3D printing and can reproduce CAD models almost perfectly.
However, in actual production, it is difficult to achieve such precise production. Whether
it is the production method of 3D printing or the choice of ABS materials, it will increase
the cost of the product. Therefore, the tolerance analysis in this study focuses on whether
structural errors and the influence of different materials on product performance are ac-
ceptable.

First of all, in actual production, the high-probability production method is injection
molding. This is suitable for rapid, large-scale production and can effectively reduce
costs. However, the biggest drawback of the injection molding process is that the accu-
racy is not as good as 3D printing. According to the data, the typical tolerance for injection
molding is usually ±0.1mm, while the very strict tolerance is ±0.025mm. To ensure that
the results are convincing, the 0.1mm tolerance was enlarged tenfold in the analysis. This
means that the thickness of each part of the model will be reduced by 2mm.

Second, although acrylonitrile-butadiene-styrene (ABS) is a good choice, the significantly
lower price of polystyrene (PS) [26] and polypropylene (PP) [27] for the same weight
can undoubtedly reduce production costs. It is worth noting that the injection molding
process is also suitable for common materials such as polymethyl methacrylate (PMMA)
[28], nylon polyamide (PA), polycarbonate (PC) [29], polyethylene (PE) [30], thermoplas-
tic elastomer (TPE) [31] and thermoplastic polyurethane (TPU) [32]. Some of these materi-
als are too expensive (for example, PE is almost 1.5 times more expensive than ABS), while
others have obvious flaws in structural strength (for example, TPE is too soft). Therefore,
we do not consider these materials.

For PP and PS, the process of filling glass fibers is ignored to increase their strength.
Although this method is often used in everyday production, it reduces the generality of
our analysis. In summary, this study will simulate models of thinner PP and PS materials
to confirm that the design has very good tolerances. The selected analysis part is the
separable part with the most cavities, the highest pressure, and the most susceptible to
external interference. If this part is performing well, it shows that other parts are also
working effectively.

Starting with the control group, the representative was considered the perfect model, and
this study added the equivalent of 5 kg of force into the groove to simulate the weight of
the projector used. The force applied to the edge consists of two parts. First, a camera
will be placed in this position; Secondly, after analysis, it is determined that this position
is the most easy to deform, so it is the most suitable point for simulating external forces.
As shown in Figure 25 and 26, a downward force of 500N is applied to this position to
simulate the worst-case scenario. The study found that in this case, the pressure and
deformation of the separable part are still negligible.
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4 Cost and Schedule

The labor cost is calculated based on the assumed salary of $20 per hour per person.
The time spent on the project for each person is 25 hours per week. The total duration
for this project is 10 weeks. For components, non-standard parts like the structure part is
produced in the school laboratory for free. The PCB boards are printed in JLC for free. The
cost of consumables would not be included in the cost estimate as it is inconsistent.

name manufacturer part # quan-
tity

cost
(CNY)

JETSON NANO B01 with
5V, 4A power supply Yahboom B01 1 1199

Wooden Box Fanguo 60 cm * 40 cm * 15 cm 1 70

Acrylic Hinge Acrylic Accessory
Store 25mm * 35mm 4 12

EPSON CU600X Ultra Short
Throw HD Projector EPSON CU600X 1 584.5

Microsoft Kinect V2 camera Microsoft V2 1 770

IR Reflective Tape 3M 1m * 2 cm 1 12.79

RTL 8822CE Wireless Net-
work Card REALTEK 8822CE 1 25

Brushless Fan Delta Electronics AFB0412VHA 1 5

Superfine River Sand TIANSHISHUIZU unknown 3*5 kg 53.4

Screw Type Terminal Block KEFA C474881 4 2.5

L298N STMicroelectronics L298N 1 3.2

Desktop retractable stand Chenxin Digital
Accessories

1/4 inch - external
teeth 1 23.4

Linear Sliding Table with
Stepper Motor Ouli Transmission 28 T6*1-50 mm 1 85

Wiring Board Hanhu Electronics 2.8meter cord 1 30.8

Table 2: Cost of the Components

Total Labor cost = 20× 25× 10× 4 = $20000

Total Component cost = 2876.59 in CNY

A detailed table of schedule is shown in Appendix A.
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5 Conclusion

5.1 Accomplishments

This redesigned AR sandbox has a faster response, easier installation, and safer design
than existing solutions. It realizes a less than 1-second latency of projecting topography,
0.6 cm topography projection offset, accurate sandbox locating with IR markers, multi-
threading software backend, sturdy structure with detachable design, sand surface re-
covery design, reliable database and convenient wireless control. It is an easy-to-use AR
sandbox that has a responsive topography projection, safe and convenient installation,
and the ability to adapt to different shapes of sandboxes.

5.2 Uncertainties

Here are some uncertainties that may affect the performance of the AR sandbox and dis-
cussion of the reliability of the system:

• The accuracy of the calibration process is affected by the noise in the camera im-
age and the quality of the projected calibration board captured by the camera. The
calibration process may fail if certain points on the board are not detected correctly
or certain parts of the image are overexposed or underexposed. However, using
ChArUco board with at most 36 corners being detected in the image, the calibration
process has a high success rate and the reprojection error is within an acceptable
range. To further improve the accuracy of the calibration process, more complex
models of lens and nonlinear iterative optimizations can be used to improve the
calibration process.

• The calibration process is affected by the working distance of the camera. The cal-
ibration process may fail if the camera is less than 0.5m away from the calibration
board. However, the design of the sandbox ensures that the camera is always at
least 0.5m away from the calibration board.

• The accuracy of the depth information from the camera is affected by sunlight and
other light sources according to modeling of Kinect camera’s noise [33]. The accu-
racy of depth information would be largely affected if the light source is too strong.
However, the depth information is processed with a median filter to filter out some
of the noise and ensure the depth information is stable under normal indoor lighting
conditions.

• The projected image is not stable even when the sand is not moving. This image
flickering may affect the user experience. The main reason for this is the inaccurate
calibration of the projector-camera system and the noise from depth information.
This is improved by applying a filter to the depth information and the projected
image, but the flickering is still noticeable.
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5.3 Future Work

It can participate in education and make kids interested in geology in an interactive way.
This AR sandbox would be useful in other fields such as urban planning, water manage-
ment, and environmental protection, and become a useful tool for education and research
in the future.

In the future, this AR sandbox can be further improved in the following aspects:

• The AR module of the sandbox could be improved to be more compact and easy to
move.

• The calibration process could be automated to make it easier for users to set up the
sandbox.

• The calibration process could be improved to be more accurate by considering more
complex lens distortion models.

• The software could be improved to support more features such as water simulation,
landslide simulation, interaction with human hands, and more.

5.4 Ethical Issues

High-luminance projector would be energy-consuming. The user may forget to turn off
the AR sandbox after use. This would bring potential environmental issues. As stated
in the ACM Code of Ethics and Professional Conduct, ”human well-being requires a safe
natural environment. Therefore, computing professionals should promote environmental
sustainability both locally and globally”[34]. It is important to lower the power consump-
tion during use and automatically detect the leave of users.

Also, because people with different skin colors may have different reflection rates, the
depth camera may not work well for people with dark skin. This would be a potential
ethical issue and we need to consider it seriously, as mentioned in the IEEE Code of Ethics
that ”to treat all persons fairly and with respect, and to not engage in discrimination based
on characteristics such as race, religion, gender, disability, age, national origin, sexual
orientation, gender identity, or gender expression”[35]. Functionality testing with people
with different skin colors needs to be implemented.
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[16] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marı́n-Jiménez,
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Appendix A Schedule

start-
ing
date of
each
week

Haoze Gao Haowen Zheng Qiran Pan Yiheng Zhang

25-Mar

choose step-
motor and
material for
building physical
structure

configure the pro-
cessor and try to
run a basic demo.

finalize structure
design on the
container and the
supporter

try out some
contour painting
methods using
Python. Study
digital signal pro-
cessing methods
for processing
depth data.

1-Apr

Collect data for
training segmen-
tation algorithm
of body parts.

connect depth
info with color
and do a simple
projection

combine pro-
jector and the
sensor into a
unified structure.

learn OpenCV
in C++ about
denoising and
dehazing

8-Apr do segmentation
training

realize projecting
contours onto
sand

do physical test-
ing on the mod-
els and build pro-
totypes

write program
that does ISP and
do some testing

15-Apr

design PCB for
motor control
and write pro-
gram on turning
RGB color into
auto-focusing
control signal

build database
for temporary
contour storage

build the sand-
box and the con-
tainer

help build the
container and the
sandbox

22-Apr
solder PCB and
route with step-
motor

learn about wire-
less transmission
protocol

build the sup-
porting pillar and
connect all struc-
ture together

configure power
system and test
on the active
power
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29-Apr
help organize
parts in the
container

write program
on wireless
transmission

organize parts in
the container

write program on
automatic recog-
nition of projec-
tion range so that
sandbox bound-
aries can be de-
fined

6-May Mock demo Mock demo Mock demo Mock demo

13-
May Final demo Final demo Final demo Final demo

20-
May

final individual
design report

final individual
design report

final individual
design report

final individual
design report

Table 3: Schedule of the Project

Appendix B Requirements and Verification Table

Requirement Verification

The RGB, IR and depth frames should trans-
mit to the processing unit at a frame rate of
at least 30 fps.

Run a program with basic frames retrieving
and displaying function. Log the frame rate
and the log shows a stable transmission of
frame data of 42 fps on average over 10 min-
utes.

The depth sensor should provide
depth information with a resolution of
512×424 pixels.

The dimension readings of depth data from
the code is 512×424 pixels.

The depth sensor should run for a long time
without overheating or performance issues.

Run the sensor for an one hour and log the
frame rate. The frame rate keeps above our
desired value of 30 fps.

The topography rendering module should
be able to construct a topography map from
depth information and project the topogra-
phy map onto the sand surface.

Build sand models in different shapes and
check if the contour line and color is cor-
rectly assigned.
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The system must ensure that the wire-
less connection, facilitated by the REAL-
TEK 8822CE network card, is stable and can
support multiple users. Also, the database
shoud be updated correctly when multiple
users are saving models or loading models
at the same time.

Use more than 5 devices to access the web-
site at the same time and each do operations
like reloading homepage, saving or loading
a model. Then check the connection sta-
bility and see if the save and load opera-
tions are correct. Each user connected wire-
lessly should not experience operation delay
longer than 3 seconds.

The calibration algorithm should be able to
track the projected image alignment with the
sandbox and the alignment error should be
less than 1 cm when installed with our sand-
box.

Use the calibration algorithm to track the
projected image alignment with the sand-
box. Put boxes with known dimensions on
the sandbox and project the image. Check if
the offset between the projected image and
the boxes is within the acceptable range.

The auto focusing algorithm should be able
to adjust the focus of the projector according
to the height of the sand surface.

Use the auto focusing algorithm to adjust the
focus of the projector according to the height
of the sand surface. Adjust the height of
sand table and project image with thin lines
with one pixel wide onto it. Check if the pro-
jected lines are clear.

The powering subsystem should be able to
provide power to the sensor, processing, and
display subsystems with sufficient power
and voltage.

Connect the sensor, processing, and dis-
play subsystems to the powering subsystem.
Check if the sensor, processing, and display
subsystems are powered on. Put all subsys-
tems at work for more than an hour, check if
sufficient power is provided and no compo-
nents failed.

Design a sturdy and stable support struc-
ture capable of safely holding the weight
of the AR sandbox (25 kg) and the projector
set(5 kg) without risk of collapse or instabil-
ity during use. The weight of the sandbox
and projector should be distributed evenly
across the support structure.

Conduct load testing to verify that the sup-
port structure can safely withstand the com-
bined weight of the AR sandbox, sand and
the projector set. Apply enough sand to sim-
ulate real-world usage scenarios. Check for
any signs of stress concentration or uneven
loading that could compromise stability.

Ensure that the design minimizes potential
hazards for children interacting with the AR
sandbox. Eliminate sharp edges, protrud-
ing components, or other features that could
cause injury.

Perform a safety inspection of the support
structure to identify any potential hazards
or safety concerns. All edges should be
rounded, sharp corners be eliminated, and
there are no small parts that could pose
choking hazards to children.
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The projector set on top should be separable,
and the separable part should be able to be
used separately and can adapt to different
use environments and scenarios.

Conduct a practical test where the projec-
tor is detached from the support structure.
Verify that the separable part functions inde-
pendently and can be easily moved to differ-
ent locations or setups as needed. Then as-
sess the reattachment process to confirm that
it can be securely and quickly reconnected to
the support structure without compromising
stability or safety.

The restoration system should achieve the
re-tiling of the sand surface in a simple way.

Conduct a practical test where the sand
is deliberately disturbed or unevenly dis-
tributed. Use the restoration system and ob-
serve its ability to re-tilt the sand surface to a
uniform level. Then evaluate the consistency
and smoothness of the restored sand surface
to by projecting topography onto the sand.
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Appendix C PCB Design of Stepper Motor Drive Board
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Figure 19: Circuit Design of Stepper Motor Drive Board
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Appendix D Pseudocode for Motor Control

Algorithm 1 Motor Function Pseudocode
1: procedure MOTOR(distance, direction)
2: Import necessary libraries (GPIO and time)
3: if distance is not valid or direction is not valid then
4: Exit procedure
5: end if
6: Set GPIO mode to BOARD
7: Define control pins and set them as GPIO output
8: Define halfstep sequence for the motor
9: if direction is -1 then

10: Reverse the halfstep sequence
11: end if
12: Calculate total steps required
13: Define minimum and maximum delay times for motor control
14: Define acceleration, deceleration and steady time
15: Initialize counter i to 0
16: while i is less than total steps do
17: Get the current halfstep based on i
18: Calculate the delay time based on the current step number
19: Output the corresponding value in halfstep
20: Pause for delay time
21: Increment i by 1
22: end while
23: Cleanup GPIO
24: end procedure
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Appendix E Pseudocode for Locating Sandbox Edge

Algorithm 2 Locate Sandbox Edge Pseudocode
1: function LOCATESANDBOXEDGE(img)
2: Apply histogram equalization to the input image
3: img hist← CV2.EQUALIZEHIST(img)
4: Apply a binary threshold to the image
5: binary ← CV2.THRESHOLD(img hist, 250, 255, cv2.THRESH BINARY )
6: Initialize parameters for blob detection
7: params← CV2.SIMPLEBLOBDETECTOR PARAMS
8: params.blobColor ← 255
9: params.filterByArea← True

10: params.filterByCircularity ← True
11: Create a blob detector with specified parameters
12: detector ← CV2.SIMPLEBLOBDETECTOR CREATE(params)
13: Detect blobs in the binary image
14: keypoints← DETECTOR.DETECT(binary)
15: if LEN(points) ¡ 3 then
16: Print ”No sandbox detected”
17: return im with keypoints, points, binary
18: end if
19: Compute the convex hull of points
20: hull← CV2.CONVEXHULL(points)
21: Draw the convex hull as the contour on the image
22: CV2.DRAWCONTOURS(im with keypoints, [hull], 0, (0, 255, 0), 3)
23: return im with keypoints, points
24: end function
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Appendix F Code for Converting Camera’s Pixel Coordi-
nates to World Coordinates

def depthMatrixToPointCloudPos ( z , s c a l e =100) :
C, R = np . i n d i c e s ( z . shape ) . astype ( np . f l o a t 6 4 )

np . s u b t r a c t (R , CameraParams [ ’ cx ’ ] , out=R)
np . mult iply (R , z , out=R)
np . divide (R , CameraParams [ ’ fx ’ ] * sca le , out=R)

np . s u b t r a c t (C, CameraParams [ ’ cy ’ ] , out=C)
np . mult iply (C, z , out=C)
np . divide (C, CameraParams [ ’ fy ’ ] * sca le , out=C)

return np . column stack ( ( R . r a v e l ( ) , −C. r a v e l ( ) , z . r a v e l ( ) /
s c a l e ) )
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Appendix G Code for Converting World Coordinates to Pro-
jector’s Pixel Coordinates

Here is the code for converting world coordinates to pixel coordinates in the projector.
This is optimized for speed by using vectorized operations in NumPy and changing the
data types to float32.

def cameraToPro jec tor f32 ( color , depth , P p r o j e c t o r ) :
i f P p r o j e c t o r i s None :

return c o l o r

points in wor ld = depthMatrixToPointCloudPos ( depth . astype ( np .
f l o a t 3 2 ) )

po ints in wor ld = points in wor ld . reshape ( −1 , 3 ) . astype ( np .
f l o a t 3 2 )

world points h = np . hstack ( ( points in world , np . ones ( (
po in ts in wor ld . shape [ 0 ] , 1 ) , dtype=np . f l o a t 3 2 ) ) )

p o i n t s p r o j e c t o r = np . dot ( P p r o j e c t o r . astype ( np . f l o a t 3 2 ) ,
world points h . T ) . T

p o i n t s p r o j e c t o r = p o i n t s p r o j e c t o r [ : , : 2 ] / p o i n t s p r o j e c t o r
[ : , 2 : ]

c o l o r p r o j e c t o r = np . zeros ( ( DISPLAY HEIGHT , DISPLAY WIDTH, 3)
, np . uint8 )

v a l i d i n d i c e s = ˜ np . isnan ( p o i n t s p r o j e c t o r ) . any ( a x i s =1)

v a l i d p o i n t s = p o i n t s p r o j e c t o r [ v a l i d i n d i c e s ] . astype ( i n t )

v a l i d i n d i c e s = ( v a l i d p o i n t s [ : , 0 ] >= 0) & ( v a l i d p o i n t s [ : ,
0 ] < DISPLAY WIDTH) & \

( v a l i d p o i n t s [ : , 1 ] >= 0) & ( v a l i d p o i n t s [ : ,
1 ] < DISPLAY HEIGHT)

v a l i d p o i n t s = v a l i d p o i n t s [ v a l i d i n d i c e s ]
v a l i d i n d i c e s = v a l i d i n d i c e s . nonzero ( ) [ 0 ]

c o l o r v a l u e s = c o l o r . reshape ( −1 , 3 ) [ v a l i d i n d i c e s ]

c o l o r p r o j e c t o r [ v a l i d p o i n t s [ : , 1 ] , v a l i d p o i n t s [ : , 0 ] ] =
c o l o r v a l u e s

return c o l o r p r o j e c t o r
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Appendix H Simulation Results of the Structure Subsys-
tem

Figure 20: Bottom and Side Pressure Simulation of the Sandbox with Sand in the Box

Figure 21: Pressure Analysis on PS Material Defects
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Figure 22: Deformation Analysis on PS Material Defects

Figure 23: Pressure Analysis on PP Material Defects

Figure 24: Deformation Analysis on PP Material Defects
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Figure 25: Pressure Analysis on ABS Material Standard Part

Figure 26: Deformation Analysis on ABS Material Standard Part
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Appendix I PCB Design of Stepper Motor Drive Board
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Figure 27: Circuit Design of Stepper Motor Drive Board
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Appendix J Database and wireless transmission block di-
agram dig-in

Decorator: @app.route(’/’)

Decorator: @limit users(10)

Function: index

Description: This function serves as a route handler for the root URL (’/’). It limits access
to a maximum of 10 users concurrently using the limit users decorator. The function
increments the count of active users when a new user accesses the page and deletes the ex-
isting ’frames.db’ database file, which is the database that saves and loads frame profiles.
It then fetches the list of captured frames from the database using the get frame list
function. After generating a QRcode for the current URL, it saves the QRcode image and
renders the ’index.html’ template, passing the frames and QRcode image path as context
variables.

Decorator: @app.route(’/static/images/<path:path>’)

Function: send image

Description: This function serves static images located in the ’static/images’ directory. It
takes a path parameter representing the image file path relative to the ’static/images’ di-
rectory. It uses Flask’s send from directory function to locate and send the requested
image file, which is the QRcode to the client.

Decorator: @app.route(’/video feed’)

Function: video feed

Description: This function serves as a route handler for video feed. It streams video
frames using the generate frame function, which continuously takes in frames from
RGB portal of the depth camera. It returns a Flask Response object with the generator
function generate frame() as its content.

Decorator: @app.route(’/get frames’)

Function: get frames

Description: This function serves as a route handler for get frames. It fetches the list of
captured frame named after their timestamp from the database using the get frame list
function. It then renders the frame list.html template, passing the fetched frames as
context variables.

Decorator: @app.route(’/capture frame’, methods=[’POST’])

Function: capture frame

Description: This function serves as a route handler for capturing a frame via POST re-
quest. It starts by checking if the current frame is available, returning a status code of
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500 if it’s not. It then converts the current frame to a JPEG image, retrieves the cur-
rent timestamp, and saves the JPEG image to a BytesIO object. After connecting to the
SQLite3 database, it creates the ’frames’ table if it doesn’t exist and checks the count of
frames currently stored in the database. If the count exceeds the maximum frame limit
(MAX FRAMES), it overwrites the oldest frame with the newest. Finally, it inserts the cur-
rent frame into the database with its timestamp. The function returns an empty response
with a status code of 204 (No Content) to indicate that the frame has been successfully
captured and saved to the database.

Decorator: @app.route(’/get image/<timestamp>’)

Function: get image

Description: This function serves as a route handler for fetching an image corresponding
to a given timestamp from the database. It takes the timestamp as a parameter in the
URL. The function connects to the SQLite3 database, executes a query to select the image
data for the given timestamp, and fetches the row. If the row exists, it retrieves the image
data and returns it as a response using Flask’s send file function with the mimetype
set to ’image/jpeg’. If the image is not found for the given timestamp, it aborts with a
status code of 404 (Not Found). In case of any exception during the process, it prints an
error message and aborts with a status code of 500 (Internal Server Error).

Decorator: @app.route(’/delete image/<timestamp>’, methods=[’POST’])

Function: delete image

Description: This function serves as a route handler for deleting an image corresponding
to a given timestamp from the database via a POST request. It takes the timestamp as a
parameter in the URL.The function connects to the SQLite3 database, executes a delete
query to remove the image data for the given timestamp, and commits the changes. If the
deletion is successful, it prints a success message and returns an empty response with a
status code of 204 (No Content). In case of any exception during the deletion process, it
prints an error message and aborts with a status code of 500 (Internal Server Error).

Decorator: @app.route(’/active users count’)

Function: active users count

Description: This function serves as a route handler for fetching the count of active users.
It returns a JSON object containing the count of active users.

Decorator: @app.teardown request

Function: teardown request

Description: This function is registered as a teardown handler by Flask using the @app.teardown request
decorator. It is called after each request. Within the function, it attempts to remove the
session ID of the current user from the active users set, effectively decrementing the
count of active users when a user leaves the page. If an error occurs during this process,
it is caught and printed for debugging purposes.
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Appendix K dbReader.py

Algorithm 3 Export Images from Database Pseudocode
1: function EXPORT IMAGES FROM DB(database file, output folder)
2: Connect to the SQLite database using database file
3: Create a cursor object
4: if output folder does not exist then
5: Create output folder
6: end if
7: Execute SQL query to fetch names of all tables in the database
8: Store result in tables
9: for each table in tables do

10: Extract table name from table
11: Execute SQL query to select ’image’ and ’timestamp’ columns from

table name
12: Store result in images
13: for each (image data, timestamp) in images with index do
14: Construct image filename using table name, timestamp, and index
15: Open a new file in output folder with name image filename in write

binary mode
16: Write image data to the file
17: Close the file
18: end for
19: end for
20: Close the database connection
21: end function
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