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1 Introduction

1.1 Problem Statement

Many real-world systems involve flows over networks. Logistic systems, transportation
networks, and the Internet are all carefully designed to meet the capacity and cost require-
ments. However, in algorithm courses, flow optimization problems can be hard to imag-
ine. Students often struggle to quantitatively predict how each tune in the constraints will
affect the optimal solution using mere intuition.

Having a physical model can provide a more intuitive sense of “tuning” the network
by assigning a knob to each parameter and a strip of LEDs to each link. Such a model
also has the potential to dynamically visualize more complex scenarios in realistic flow
management, such as the presence of routing hubs, congestion, and packet delay.

1.2 Solution Overview

Our team aims to build a modular, reconfigurable hardware emulator to visualize network
flows under capacity constraints on links. Each node can be configured as a source, a sink,
or a “transfer station” that holds zero flux. Solutions will be computed on a connected
computer using the Ford-Fulkerson algorithm in Python. Display will be controlled using
an embedded STM32 microcontroller.

The intermodular communication protocol has gone through several revisions. We moved
from a MUX-driven protocol (first iteration) or direct access using Arduino (second iter-
ation) and instead opted for a more flexible peer-to-peer (P2P) communication model
(third iteration) where only one node maintains a direct UART connection with the com-
puter, and identical “configuration info” strings are distributed for local processing.

Specifically, in the final layout, we plan to simulate a simple yet realistic network topology
with “forwarding hubs,” incorporating 6 nodes and 9 links in total. We hope this toolset
will provide an intuitive visual aid and facilitate the understanding of flow algorithms
in a classroom setting, especially where the network in discussion is inherently dynamic
(e.g., routing packets in the Internet).

Figure 1: The network topology to be implemented.
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Figure 2: Layout of intermodular connections.

Meanwhile, we are making several assumptions that simplify the problem:

• This is a small-scale network with up to 4 links per node – that is, if the network is
ever to be reconfigured.

• The nodes don’t have buffers and is able to respond instantaneously to changes in
capacity constraints.

• All links are bidirectional, and both directions have the same capacity.

1.3 High-Level Requirements

• The physical model should be modular, i.e., each node has a number of “slots” re-
served for installing new links. We aim to serve 6 partially connected nodes.

• The software should communicate with all nodes and pipes and update the flows
in real-time (within 500ms) in response to changes in setup.

• The algorithm should handle and report edge cases such as a network with zero or
multiple feasible flows.
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2 Design

In our physical model, a complex network is abstracted into a series of pipes, represent-
ing the communication links characterized by their designated capacities (“link capac-
ity”). The embedded LEDs depict the dynamic flow (“link flux”) of data packets coursing
through the network.

Each node within this network, also represented by a dedicated PCB, is associated with
a “node flux” value, offering the flexibility to characterize each node as a source with
outgoing flow, a sink with incoming flow, or a neutral transfer station with no net flow.
This modular approach underpins the system’s design, ensuring adaptability and ease of
modification as the network model evolves. (We considered integrating potentiometers
(knobs) onto the PCBs, but soon realized that space is insufficient.)

The transition to the STM32 microcontroller platform on each PCB has substantially in-
creased the system’s capabilities. Tasked with collecting network configuration, the mi-
crocontroller reads from the network configuration string, control the LEDs correspond-
ingly, and forwards it to the next neighbor.

The Python code running on an external computer implements the Ford-Fulkerson al-
gorithm that computes network flows while considering all constraints (node flux and
link capacity). A software GUI displays the solution alongside the physical model due to
limited space (number of LEDs and pins for interconnection) in each node and link.

The following diagram details the UART interface between modules. The links are not di-
rectly connected to the computer, and thus the capacity values configured must be passed
indirectly through the nodes.

Figure 3: Intermodular communication interface signals.
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2.1 “Node” PCBs

We now investigate the circuit components and finite-state machine design in the mod-
ules, except for the external computer which is primarily concerned with the software
subsystem. Circuit diagrams are also provided wherever necessary.

Each node is a customized PCB board that includes

• one STM32 microcontroller that drives the display and signals,

• sixteen LEDs that indicates the “node flux”, and

• four groups of UART serial interfaces with link PCBs, the computer, or power.

The Node PCB forms a critical part of our toolbox, serving as the visualization point for
network traffic at each node within the system. Central to the Node PCB is the inte-
gration of the 74hc595 series shift registers. These components enable the expansion of
output ports through serial-to-parallel conversion, allowing the microcontroller to control
a larger array of LEDs while utilizing fewer I/O pins.

In the schematic, the connection of resistors R1 to R22 in series with the LEDs facilitates
the display of network traffic flow. Each resistor-LED pair acts as an individual indicator.
The binary states managed by the shift register correspond to the on or off states of the
LEDs, effectively demonstrating the flow through each node.

Figure 4: Circuit schematic and PCB layout for the nodes
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2.2 “Link” PCBs

We considered treating the links as mere LED strips and leave all capacity configurations
to the node PCBs, but this appears counterintuitive and would require a complex commu-
nication protocol to set up the network topology. Therefore, each link is also a customized
PCB board that includes

• one STM32 microcontroller that drives the display and signals,

• sixteen LEDs that indicates the “link flux” (exactly one LED is on at any time, and
the “rolling” speed indicates the flux amount), and

• two groups of UART serial interfaces with node PCBs.

The Link PCBs function as conduits for demonstrating the flow of data between nodes,
with LED arrays illustrating the link status and activity within the network.

Figure 5: Circuit schematic and PCB layout for the links.
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In the detailed schematic provided, the 74hc595 shift registers are used to control ar-
rays of LEDs, each corresponding to a particular link state, illuminated to represent the
presence of data flow. The shift registers enable the control of multiple LEDs while mini-
mizing the GPIO usage of the controlling microcontroller. Each LED is connected in series
with a resistor, which limits the current to prevent damage to the LEDs.

During operation, the shift register receives serial data from the microcontroller. Upon
receiving a clock pulse, the register shifts this data through, setting each LED’s state ac-
cordingly. Then a latch signal is applied, which updates the output pins and changes the
LEDs’ states simultaneously. This design allows for real-time updates to the network flow
visualization without perceptible lag to the user.

2.3 Power PCB

We used to have a MUX PCB that (1) helps simplify the interface to computer while (2)
supplying power, clock, and reset signals to all nodes and links. However, due to the
exceedingly large number of I/O ports, this part of design has been refactored to a dedi-
cated power PCB that supplies 5V power, ground, and clock signals to all PCBs.

Similar to the P2P communication network in which the protocol implies that only one
node needs to be connected to the external computer, we design the power supply such
that only one PCB needs to be connected to the power source.

Power management on the board is handled by the MEC6211 voltage regulator, ensuring
that the STM32 and other components receive a stable voltage, critical for maintaining
reliable operation. Surrounding are various passive components like resistors and capac-
itors, which stabilize the signals and power supply. The capacitors closer to the power
inputs, marked as C4 through C7, are likely for decoupling purposes, filtering out noise
from the power supply to the microcontroller and other sensitive components.

Figure 6: Circuit schematic and PCB layout for the power.
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The communication lines between the STM32 and other peripherals are safeguarded by
the psm712 diodes, which protect against voltage spikes that could otherwise damage
the microcontroller. There is also a crystal oscillator circuit, fundamental for providing a
precise clock signal and ensuring accurate timing for all operations.

2.4 Intermodular Communication

In our project, the communication between the Python application and the physical hard-
ware, specifically the printed circuit board (PCB), is facilitated through PySerial. This
is a Python library that provides a convenient interface to the serial ports, enabling the
sending and receiving of data over serial communication lines with minimal effort. The
choice of PySerial is driven by its simplicity and robustness, allowing developers to
manage serial communication through a few straightforward lines of code.

The underlying communication protocol employed in the project is RS485, known for
its reliability and efficiency in enabling long-distance and high-speed data transmission.
The SP3485EEN handles the electrical aspects of RS-485 communication [1], [2], ensur-
ing robust data transmission even over long distances and in electrically noisy envi-
ronments. The STM32 sends and receives data to/from the SP3485EEN. It controls the
transceiver’s operation by managing the DE/RE pins to switch between sending and re-
ceiving modes.

2.5 Software Controller

We incorporate the Ford-Fulkerson algorithm that starts with an initial flow of zero and
repeatedly finds an augmenting path from the source to the sink within the residual graph
using Breadth-First Search (BFS). The augmenting path is a path in the residual graph that
has available capacity for increasing the flow. The algorithm increases the flow along an
augmenting path until no further augmenting paths are available. The maximum flow is
then the sum of the flows along all the paths from the source to the sink.

The Python software is expected to

• read the node configurations and link capacities from the GUI,

• computes the maximal flow using an optimized Ford-Fulkerson algorithm, and

• updates the flow display on each node and link in real-time.
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2.6 Graphical User Interface

The graphical user interface (GUI) receives the flow solution and visualizes the network
flow data. The design and development of the GUI are guided by user-centric principles
to ensure intuitiveness, ease of use, and functionality. The key functions are:

• Real-time flow visualization. The GUI should display the real-time flow of data
packets within the network, preferably assisted by animated changes in the network
diagram, correlating with the actual flow of data through the nodes and links.

• Algorithm control and monitoring. The user should be able to initiate, pause, or
stop the flow computation algorithm and monitor its progress. The GUI should
provide a console or log view to observe the real-time output from the algorithm,
including any alerts or error messages.

• Error handling and feedback. Prompt and clear feedback should be given for any
invalid actions or errors in configuration, e.g., when there are no or multiple feasible
solutions, or when the conservation principle is violated. This includes the visual-
ization of flow states that are not permissible due to the current network setup.

• Responsiveness and scalability. The GUI should be responsive to different screen
sizes and resolutions, ensuring usability across various devices.

The GUI will be developed in a modular fashion, allowing for future enhancements and
features to be added with minimal disruption to the existing system. By focusing on these
core functions, the GUI will facilitate an effective and educational experience.

2.7 Outer Packaging

The entire toolbox will reside on a vertical surface for convenient display on whiteboards.
We aim to make the outer packaging structure and overall appearance of the toolbox both
aesthetically pleasing and functional. The following considerations guide the design of
our product’s exterior:

• Acrylic casing. The node and link PCBs will be encased in high-quality acrylic
panels, allowing for the visibility of the internal components and LED indicators.

• LED indicators. The flow of data through the network will be represented by LED
lights housed in clear, durable tubes that not only protect the electronics but also
distribute light evenly, making the flow visually discernible from all angles.

• Modularity and expandability. The modular design will allow for the network to
be expanded or reconfigured. This includes detachable nodes and links, which can
be securely attached or removed without the need for specialized tools. Note that the
interface has a large number of signals, which may require a revision for over 6 nodes.

• Environmentally conscious. The design process will incorporate environmentally
friendly materials and practices, including recyclable plastics and efficient LED light-
ing, to minimize the ecological footprint of our product.
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3 Reliability and Verifiability

3.1 Requirements and Verification

Component Requirement Verification

Knobs The embedded ADC should map
the position of the knob poten-
tiometer to an 8-bit signed integer.

1. Power on a node PCB. We
don’t power on the knob inde-
pendently to allow data prepro-
cessing by the microcontroller.

2. Slowly turn the knob from
the minimum position to the
maximum position.

3. Observe that the displayed
flux values increase uni-
formly from −127 to 127.

“Node” PCBs The node PCB should respond to
a “read NODE” command within
1 clock cycle.

1. Power on a node PCB.
2. Simultaneously monitor its

clock, read, and resp sig-
nals on an oscilloscope.

3. Drive 11 (“NODE”) on the
cmd bus and assert read.

4. Observe that resp is as-
serted within 1 clock cycle
and rdata matches the seg-
ment display.

“Link” PCBs The link PCB should respond to
a “read” command within 1 clock
cycle.

1. Power on a link PCB.
2. Simultaneously monitor its

clock, read, and resp sig-
nals on an oscilloscope.

3. Assert the read signal.
4. Observe that resp is as-

serted within 1 clock cycle
and rdata matches the seg-
ment display.

Table 1: Technical requirements and verification procedures (Part 1).

9



Component Requirement Verification

Algorithm The algorithm should respond to
changes in the network setup
within 500ms.

1. Power on the system.
2. Set the source and sink by

deviating some node knobs
from the “neutral” position.
Ensure the displayed node
flux values sum to zero.

3. Enable all links except for
leaving the last leap on a fea-
sible path at zero capacity.

4. Enable the “bottleneck” and
observe that the flow is redis-
tributed within 500ms.

GUI The system should report an error
when no feasible flow exists. 1. Power on the system.

2. Set all node and link knobs
to the neutral position except
for one single source and a
matching sink.

3. Turn on all links except for all
links entering the sink.

4. Observe that the LEDs dis-
play no flow while the GUI
reports an unsolvable case.

GUI The system should report an error
when the flow is not conserved. 1. Starting from the last exper-

iment, slightly tune the sink
flux to unmatch the source.

2. Observe that the LEDs dis-
play no flow while the GUI
reports a flow imbalance.

Packaging The system should attach firmly to
a magnetic whiteboard and be vis-
ible from a distance of 3 meters.

1. Configure the network such
that the solution uses over
90% capacity for all links.

2. Observe that all LEDs and
segment digits are clearly vis-
ible from 3 meters away.

Table 2: Technical requirements and verification procedures (Part 2).
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3.2 Tolerance Analysis

• (Node and Link PCBs) Tolerance of Resistors and Capacitors

– Impact: They affect the timing and signal shaping within the node’s circuitry,
possibly leading to misinterpretation of signals or timing mismatches.

– Analysis: Consider how the RC time constants change due to variations in
resistor and capacitor values, and how they could affect the signal levels and
timing, especially for signals interfacing with the MUX and links.

– Simulation: We may use RC response curves to illustrate how different RC time
constants affect the rise and fall times of the signal waveforms.

• (Node and Link PCBs) Accuracy of Knob Potentiometers

– Impact: It affects the precision with which node flux can be set, potentially
leading to inaccurate flow visualization.

– Analysis: Determine the range of actual values for a supposed set value and
how this affects the node’s status as a source, sink, or transfer station.

– Simulation: We may display a range of actual flux values corresponding to a
set position on the knob to highlight the variability due to tolerance.

• (Link PCBs) Variability of LED Display

– Impact: Variability in LED brightness and color could lead to inconsistent flow
visualization across different links.

– Analysis: Consider the variation in LED brightness and color due to current
and voltage tolerances and its impact on visual accuracy.

– Simulation: We may use a comparison chart to show the expected brightness
range of LEDs under different current and voltage conditions due to tolerances.

• (Intermodular Protocol) Voltage Levels and Noise Margins

– Impact: Fluctuations in voltage levels can affect the logic levels interpreted by
the microcontrollers and introduce errors in the protocol.

– Analysis: Examine how variations in voltage levels (due to power supply tol-
erances or signal integrity issues) might impact the detection of high and low
states in the communication protocol.

– Simulation: We may show the acceptable voltage levels for logic 0 and logic 1
for the microcontrollers and how variations might lead to incorrect logic level
interpretation.
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4 Cost Analysis

Estimated labor costs [3]: 4 people×10 hrs/week×8 weeks×RMB 200/hr = RMB 64,000

Component Quantity Cost

Magnetic Isolation USB 485 Bidirectional Serial Converter 1 RMB 59.00
Chip Resistor 1 set RMB 25.00
Switching Mode Power Supply 1 RMB 51.00
High-power Two Pin Plug 2 RMB 7.20
Spacing Plug-in Terminal Block 3 RMB 1.92
Curved Pin Socket 3 RMB 0.36
FFC/FPC Connector 30 RMB 8.40
2.54mm PIN 3 RMB 6.60
FC Double Headed Ribbon Cable 3 RMB 7.20
ST - LINK V2 STM 32 1 RMB 19.80
High Brightness SMT LED 500 RMB 11.00
XH 2.54 Terminal Wire 4 RMB 90.00
XH 6P Recumbent Patch 1 RMB 30.48
PCB Source 5 RMB 46.60
PCB Node 20 RMB 58.92
PCB Link 20 RMB 63.07
AMS1117 50 RMB 12.74
LDO 50 RMB 22.10
TVS/ESD 50 RMB 15.15
RS-485 45 RMB 66.35
Shift Register 85 RMB 38.16
304 Stainless Steel Bolt Set M5*70 1 set RMB 6.9
304 Stainless Steel Bolt Set M5*60 1 set RMB 6.9
304 Stainless Steel Nut M5 50 RMB 2.9
M3 Diamond Pointed Round File 1 RMB 11.00
Chevrolet Board 1200*450 1 RMB 60.00
Acrylic Board 1200*450 2 RMB 260
Cable ties 1000 RMB 5.36
Software Copyright Fee / RMB 580.00

Total RMB 1574.11

Table 3: Cost breakdown of all circuit components.
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5 Conclusion

5.1 Ethical Concerns

To avoid ethical breaches in the development and deployment of our toolbox, we commit
to adhering closely to the principles outlined in both the IEEE Code of Ethics [4] and the
ACM Code of Ethics [5]. Key considerations include but are not limited to

• Respecting intellectual honesty (ACM, Clause 1.5), acknowledging contributions ac-
curately, adopt secure coding practices, and avoiding plagiarism in development.

• Committing to inclusivity and accessibility (ACM, Clause 1.4). For example, both
the model and the GUI should be designed to be usable by a broad spectrum of
individuals and accommodate users with diverse technical backgrounds.

• Supporting sustainable development (ACM, Clause 3.4; IEEE, Clause 1). This includes
choosing recyclable and sustainable materials for hardware components and de-
signing the embedded electrical system for energy efficiency.

• Mitigating the risk of overreliance by positioning our tool as a supplementary, instead
of replacement, of traditional educational resources, in compliance with the IEEE’s
commitment to continuous learning (IEEE, Clause 6).

By fostering an environment of transparency, responsibility, and respect for user rights,
we aim to not only comply with professional ethical standards but also contribute posi-
tively to the educational and technological communities.

5.2 Safety Concerns

This project involves the use of diodes, microcontrollers, and light bulbs to simulate the
network information transmission flow. Recognizing the associated electrical, fire, me-
chanical, chemical, and operational hazards both in the development and deployment
stages, we will abide by the IEEE National Electrical Safety Code [6] through

• Implementing comprehensive safety measures including protection against electric
shocks (e.g., insulated tools) and fire precautions (e.g., circuit breakers, fuses) to
prevent overheating and short circuits.

• Securely mounting all PCB board components to ensure mechanical robustness.

• Using protective gears during assembly involving batteries and soldering opera-
tions, and safely disposing hazardous chemical waste.

• Ensuring the safety of users (ACM, Clause 2.9; IEEE, Clause 1) by rigorously testing
the system to prevent any operational hazards. For instance, the number of small
parts in the physical model should be minimized to prevent choking hazards.

• Training in safe handling practices and emergency procedures.
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