

Automated IC Card Dispenser System for Residential College

By

Zhirong Chen (zhirong4@illinois.edu)

Xiaoyang Chu (xzhu458@illinois.edu)

Zicheng Ma (zma17@illinois.edu)

Dongshen Ye (dye7@illinois.edu)

Sponsored by

Asst. Prof. Meng Zhang

Project #1

Project Proposal for ECE445/ME470, SP2024

Mar 10th, 2024

ii

Abstract

There is a significant number of cases where students accidentally left their room and

locked the door while forgetting to bring their cards with them. Moreover, should it

happen after the office hours of the RC office, the student will need to call the

security personals to handle the situation. The current issuance procedure also failed

to fully identify the student which introduces potential security implications. In

response to the demand, we proposed and developed a system that automatically

identifies an authorized user and issues a temporal access IC card.

iii

Contents

1 Introduction .. 1

2 Design .. 2

2.1 Design Procedure... 2

2.1.1 KIOSK Terminal .. 2

2.1.2 Server-side Software – Authentication Part .. 7

2.1.3 Server-side Software – Backend Server and Web Server Part 8

2.1.4 Face Recognition – Local Model or Online Model............................... 9

2.2 Design Details ... 11

2.2.1 KIOSK Terminal – User Interface ... 11

2.2.2 KIOSK Terminal – Mechanical Subsystem.. 12

2.2.3 Server-side Software – Authentication Part 13

2.2.4 Server-side Software – Backend and Web Server Part 13

2.2.5 Server-side Software – Facial Recognition Part 14

2.2.6 Server-side Software – Access Control Part 15

3 Verification ... 16

3.1 QR Code Generation Test .. 16

3.2 Request Card and Return Card Test ... 17

3.3 Facial Recognition Test .. 18

3.4 Mechanical Test.. 18

4. Cost Analysis .. 19

5 Conclusion ... 19

5.1 Accomplishments ... 19

5.2 Uncertainties .. 20

5.3 Future Work ... 20

5.4 Ethical Consideration ... 20

iv

5.4.1 Safety of Authentication and Access control System 20

5.4.2 Reliability of Facial Recognition .. 20

5.4.3 Safety Concerns of Mechanical Systems ... 20

Reference ... 1

Appendix ... 3

Appendix A. Circuit Diagram for Mechanical Control .. 3

Appendix B. Similarity Score and Latency of Facial Recognition 5

1

1 Introduction

In the recent analysis of the access card system at our residential college, it was

found that between February 25th and March 3rd, 2024, there were 287 incidents

where residents requested temporary access cards due to misplacing their original

cards. This number excludes requests outside of office hours, which involve a

cumbersome process requiring intervention from security personnel. This procedure

not only poses challenges due to the diverse linguistic backgrounds of our student

population, but also raises significant safety concerns due to the risk of unauthorized

access, as the current method of issuing temporary cards lacks rigorous identity

verification.

To address these issues, we propose the implementation of an automated system

that enhances both security and convenience. This system includes a server and

multiple kiosk terminals strategically placed within the college. As depicted in Fig. 1,

this system is designed to integrate two robust methods of authentication: QR code

verification and facial recognition.

Fig. 1 Solution Structure

The division of the project into distinct blocks—server management, kiosk terminal

interface, Kiosk mechanical subsystem, QR code generation, and facial recognition—

allows for focused development and troubleshooting in each area, ensuring that each

component meets its specific performance criteria. In general, the following criteria

should be met:

2

⚫ Reliable, robust, and convenient authentication methods should be adopted to

keep the issuance process secure. The system should be invulnerable to

conventional cyber-attacks. A successful issuance process should take less than

60 seconds.

⚫ The mechanical card dispenser should have a failure rate less than 1/500.

⚫ The system should support multiple languages and can be easily maintained and

managed.

The mechanical subsystem is supposed to dispense cards automatically. Originally

the mechanical subsystem was designed to be hang on the shell of the card

dispenser. But during the designing process, the mechanical subsystem is set up on

the ground with two pieces of board supporting its bottom to keep its balance so that

the mechanical subsystem can operate stably.

Throughout the development of this system, we adhered strictly to performance

requirements that mandate a seamless user experience and robust security

measures.

2 Design

The entire project consists of two major parts: the KIOSK terminal and the server.

2.1 Design Procedure

2.1.1 KIOSK Terminal

The KIOSK Terminal consists of two subsystems: the user interaction subsystem and

the mechanical subsystem. The composition of the KIOSK terminal is shown in Fig. 2

Block Diagram of KIOSK Terminal Hardware.

3

Fig. 2 Block Diagram of KIOSK Terminal Hardware

The client-side software will run on Raspberry Pi 4B which interacts with the user and

controls the mechanical subsystem. The hierarchy of the client-side software is

shown in Fig. 3.

Fig. 3 Block Diagram of Client-side Software

The design of the KIOSK terminal emphasizes human-computer interaction and

robustness of the automated card dispensing process, as well as the secure

processing of the card information.

We decided to use Raspberry Pi 4B as the main platform for terminal software

development. There are other alternatives such as LubanCat, Orange Pi and Jetson

Nano. We chose Raspberry Pi 4B for its relatively low price and large group of users.

Its broad community largely facilitated the development process. Domestic brands

such as LubanCat and Orange Pi are more economical options but there are issues

with hardware compatibility and supportive software utilities.

In terms of the KIOSK software design, we considered a range of GUI libraries and

frameworks. We’ve considered the following options: Flutter, Qt Desktop, Qt EGLFS,

and PyQt. We initially considered allowing Raspberry Pi to boot into a desktop

environment and then start software from there. But the approach risks malicious

user takeover through the OS managed response to user input. We wish to keep the

system secure and allow as few user inputs as possible. Hence, we decided to

directly manage the frame buffer and user input without an OS managed window

manager, such as Wayland or X-11. We explored a range of existing frameworks for

this purpose. We initially tried Flutter for Embedded Devices, yet we discovered that

the framework was in its early stage and not easily compatible with existing libraries

4

interacting with cameras. We then tried to develop the software with Qt with EGLFS.

EGLFS is a Qt application mode that directly interacts with the Direct Rendering

Manager (DRM) embedded in Linux kernel and perfectly matches our demand.

However, despite its high performance, developing with C++ also comes with its

shortages. Firstly, since Raspberry Pi 4B is equipped with Arm-based processors, a

cross-compilation toolchain and remote debugging are necessary. The process was

relatively slow, and it takes a lot of effort to achieve successful compilation. Secondly,

the memory management in C++ was an error-prone task and it is critical for a 24x7

running software. Hence, we again, migrated our software to PyQt framework which

preserves most features of Qt while providing the flexibility and translatability of

Python. It turns out that the task is not too heavy, and we didn’t sense tangible

performance degradation after the migration. We also preserved the user interface

design as it is written with QML language and dynamically loaded to the QML engine

when the software initializes.

We chose the existing NXP RC522 module as the card reader mainly because of

their support for the most popular communication protocols and their reliability.

Alternatively, we could design our own reader and integrate it into our PCB, but there

are a few issues to consider. The most prominent issue is that the design includes an

antenna that is to be embedded in the PCB, and such design requires efforts on EMI

analysis and fabrication considerations for the high frequency of the signals, which

will be too time-consuming for the purpose of the project.

Initially we planned to install a stand-alone bar code scanner for QR code scan, but

later we changed the design as we realized that the camera for facial recognition is

capable of the task. In this way, the cost of the project is reduced. We chose to

interact with users via a 7’ touchscreen as it’s highly efficient in terms of human-

computer interaction, compared to keypads or mouses.

To control the mechanical system, we used a standalone Raspberry Pi Pico. We’ve

also considered alternatives such as STM32 based microcontrollers. The major

reason for the choice is that Pico is economic and supports MicroPython, which is a

reduced version of Python and allows easy programming and testing. Also, it uses

the same voltage level as the Raspberry Pi 4B for communication, which obviates

extra voltage level conversion circuits.

Design Tools & Libraries:

⚫ Visual Studio Code: General purpose IDE for software development

⚫ Qt Design Studio: User interface designer for Qt Quick application.

5

⚫ Qt Linguists: Multilanguage support for the user interface.

⚫ Altium Designer: Circuit & PCB Design

The libraries included in our software are listed in Error! Reference source not

found..

Table 1 List of Libraries Used

Library License Description

PyQt5[7] GPL v3 This framework is used to render user interface

and manage the events and signals

paho-mqtt[8] OSI Approved

(EPL-2.0 OR

BSD-3-

Clause)

The library provided a Python implementation of

the MQTT protocol, allows us to communicate

with the broker easily.

PiCamera2[9] BSD-2-Clause The library interfaces with the new open-source

camera stack “libcamera” and provide video feed

from the camera

Pyzbar[10] MIT The library allows us to detect and decode QR

codes in the frame.

RPi.GPIO[11] MIT The library provides a simple interface to

manipulate the GPIO interface on Raspberry.

Spidev[12] MIT The library provides an easy way to interact with

SPI devices

mfrc522-

python[13]

GPL v3 Based on spidev library, the library provide

interface to interact with the RFID module

Pyserial[14] BSD The library provides an interface to communicate

via UART.

opencv-

python[15]

Apache 2.0 The library provides a pretrained model for face

detection.

Fig. 4 Block Diagram of Mechanical Subsystem

6

In terms of the mechanical design, we adopt a vacuum suction system to grab and

carry IC cards. Beside the vacuum suction system, the mechanical subsystem

includes two linear screw actuators driven by step motors. One linear actuator is

placed horizontally while the other is placed vertically so that the mechanical

subsystem can move cards in the plane where card storage box and exit of the card

dispenser locate. During operation, the mechanical subsystem picks up cards from

the card storage box and moves the cards to the exit to send cards to users. When

the users return the cards, the mechanical subsystem picks cards at the exit and

moves them back to the same card storage box.

There exist other options to dispense cards. The simplest design might be to use an

actuator to push out the cards. But this design is not suitable for the situation

discussed in this report as the pushing mechanism cannot satisfy the requirement of

getting back the returned cards. And the cards must be placed with a distance

between adjacent cards to leave space corresponding to the width of the pushing

actuator so that only one card will be pushed out at one time, which dramatically

reduce the number of cards can be stored in the card dispenser. An alternative

method is using a friction wheel to roll the cards out from the storage box to the exit.

However, we did not adopt a friction wheel because we were worried that a friction

wheel would send out more than one card or cause the card to be stuck in the

machine if the size of the opening is not designed properly. In addition, it is difficult to

return cards back to the storage box using a friction wheel since the friction wheel

must press on the cards to produce the friction force needed to send out cards.

Another option is to replace the suction cup with a clamp. But clamps will also suffer

from the issue of sending out two or more cards for one user. By contrast, vacuum

suction system can relatively easily move cards back to the storage box. Moreover,

the vacuum suction system is robust at picking up exactly one card from the storage

box, which can be a challenging task for other card dispensing options, including

using a friction wheel or using a clamp to pick up cards.

To ensure that the suction cup can provide sufficient pressure to pick up an IC card,

the following equation can be used.

𝐹 =
𝜋𝑑2

4
𝑃

where F is the suction force, d is the diameter of the suction cup, P is the vacuum

pressure provided by the pump and 𝜋 is circumference ratio.

Design Tools:

7

⚫ Autodesk Fusion 360: CAD modeling

2.1.2 Server-side Software – Authentication Part

The design of the authentication system was guided by two main objectives: securing

the transmission of information and verifying user identity efficiently and securely. In

considering the architectural framework, we explored several alternatives:

1. Information propagation - HTTP vs. HTTPS: Initially, HTTP was considered for

simplicity; however, the need for secure transmission made HTTPS the

preferable choice. HTTPS provides an encrypted channel, thus enhancing

security against interception and unauthorized access. The way we authenticate

HTTPS data segments is using certificate signed by CA(Certificate Authority).

2. User Identity Verification - AD vs. Custom Database: We had the option to

develop a custom database for user credentials or utilize an existing system. A

custom database would have required users to register and maintain another set

of credentials, but this requires user to register before they use the login

functionality. Instead, we opted to leverage the existing Windows Active Directory

(AD) system. This choice was driven by AD's widespread use on campus,

because AD is already in use across campus services, providing a consistent

user experience. And AD has a robust security model that has been battle-tested

over the years. We can seamlessly integrate with Microsoft Azure Active Directory

what our campus is currently using after we tested our application.

3. Request Verification - Token-based vs. PIN-based: PIN-based is an approach

where each user is assigned a personal identification number (PIN) that they use

to authenticate requests. This method is commonly used in banking and access

control systems. However, it requires users to remember an additional set of

credentials and is susceptible to security risks if the PIN is compromised. We

selected a token-based verification system for its simplicity and effectiveness.

This method integrates seamlessly with our existing infrastructure and leverages

the secure environment provided by HTTPS, ensuring that tokens are transmitted

securely. Our token will be expired in 10 minutes so the risks of PIN

compromission is also lowered.

Design Tools and Equations:

⚫ Windows Cloud Server: We used a Windows Cloud Server to boot up AD.

⚫ LDAP Queries: To interact with AD, Lightweight Directory Access Protocol (LDAP)

queries were used. These queries allow for efficient retrieval of user data from the

AD servers.

8

⚫ SSL/TLS Protocols: For securing data transmissions, SSL/TLS protocols were

employed to establish encrypted links between the client and the server.

2.1.3 Server-side Software – Backend Server and Web Server Part

In the development of the backend server for our project, the selection of server

architecture was crucial to accommodate high traffic and maintain efficient

performance. Our primary objectives were to ensure high concurrency, efficient

resource utilization, and scalability. We considered several architectural frameworks

and technologies before finalizing our choices.

1. Web Server - Nginx vs. Apache: We initially evaluated traditional web servers

like Apache; however, Nginx emerged as the superior option due to its ability to

handle significantly higher volumes of concurrent connections, which is pivotal

during peak periods such as the start of a new semester or exam times. Nginx’s

event-driven model allows it to process many requests concurrently, making it

highly efficient in environments requiring quick response times with minimal

memory usage. This selection was supported by numerous benchmarks showing

that Nginx could handle approximately four times more concurrent connections

than Apache while using fewer resources.

2. Database System Comparison – MySQL vs MongoDB: For the database

management system of our project, the decision to use MySQL over MongoDB

was guided primarily by ease of use and suitability to our specific needs. Here's

why MySQL was favored:

◼ SQL vs NoSQL: MySQL, a relational database management system

(RDBMS), uses structured query language (SQL) which is beneficial for our

application that requires complex queries and precise data integrity.

MySQL's ability to handle structured data and support complex transactions

is crucial for the operational demands of our server.

◼ Ease of Use: MySQL is generally considered easier to use for our

requirements, especially when dealing with relational data structures. Its

widespread adoption makes it easier to find resources and community

support.

◼ Schema Management: The structured schema in MySQL is advantageous

for our application, which depends on well-defined data formats and

relationships. This ensures data consistency and integrity across different

parts of our application.

3. Web Server Framework – Python Flask & Gunicorn v.s. React

9

In the web server stage, the choice of the Flask framework over React was

driven by its compatibility with our system requirements and ease of

integration with other features such as face recognition technologies: Python

Flask: Chosen for its flexibility and ease of use, Flask supports rapid

development, which is crucial in a fast-paced project environment. It allows

for efficient handling of dynamic content requests, such as user authentication

and QR code generation.

◼ Integration Flexibility: Flask provides more flexibility in integrating various

backend functionalities, which is crucial for incorporating advanced features

like face recognition into our system seamlessly.

◼ Ease of Use with Python: Flask, being a Python framework, naturally

integrates with the Python programming environment. This integration is

beneficial because Python offers extensive libraries and tools that simplify

the implementation of additional functionalities, such as data processing and

machine learning, which are integral to our project.

◼ Simplicity and Rapid Development: Flask is designed to be simple and easy

to use, enabling quick development and deployment of web applications.

This is particularly useful in a project with tight deadlines and the need for

frequent updates and iterations.

These design choices form the foundation of our backend server architecture,

ensuring it is robust, scalable, and capable of handling our specific needs

efficiently.

Design Tools and Equations:

⚫ Nginx: We utilized specific Nginx configurations to optimize handling of

concurrent connections and resource allocation. These configurations help in

tuning the server according to the expected load and traffic behavior.

⚫ Docker: Used to boot up Nginx and MySQL in a more lightweight way.

⚫ MySQL: Used to boot up the database and manage the database. Chosen for its

robust transactional support and ease of use in managing structured data and

complex transactions. MySQL excels in environments where data integrity and

precise query handling are necessary.

⚫ Python Flask: Utilized for its simplicity and flexibility, enabling rapid development

and easy integration of various functionalities, such as face recognition. Flask's

compatibility with Python also facilitates the use of extensive libraries for

additional features.

10

2.1.4 Face Recognition – Local Model or Online Model

We tried two different ways to implement the face recognition function. The first one

is to deploy the model in our own server, the other is to use the online model from

Hikvision, which is broadly used in the campus. We first tried to deploy the face

recognition on our server, but we met two main problems:

a. Since the financial support from residential college is not enough, we don’t have

enough money to buy the server with GPU. Without GPU, it’s hard to accelerate

the machine learning model. In our experiment, mapping a face picture in a

dataset of 10 images takes 49.8 seconds with the model from

https://github.com/ageitgey/face_recognition.

b. Another problem is dataset collection. If we deploy the model in our own server,

we need to collect the face images of all students, which would cause two

problems: 1. Collecting the images from all students needs many human

resources. 2. We need to guarantee the data security of face dataset.

Because of the above problems, we begin to consider the second method: use the

online model from Hikvision. This online model is broadly used in several buildings in

campus: Library, Residential College, Campus Gate, etc. The average latency of

detecting a face image using the Hikvision online model is 0.82 seconds, which is

acceptable. Additionally, the server from Hikvision has the face datasets from

students, so we don’t have to collect the images ourselves. We use the Hmac-

SHA256 algorithm to secure the communication between the backend server and

Hikvision server, so the security of dataset is guaranteed.

https://github.com/ageitgey/face_recognition

11

2.2 Design Details

2.2.1 KIOSK Terminal – User Interface

Fig. 5 KIOSK Terminal Software Flow Chart

Component Specifications:

⚫ Support for multiple languages: As described previously, the user interface

supports multiple languages, as shown in Fig. 6 below.

Fig. 6 User Interface

⚫ Facial / Barcode Detection: Once the user pushes the “Request” button, the

12

camera starts, and a preview of the camera feed is shown on the screen. Our

software is responsible for forwarding the video frames from the camera stack to

the buffer, while employing OpenCV and pyzbar libraries to detect any faces or

bar codes. Once detected, the software will automatically switch to a “In-

Process” tab and informs the user of the status. Meanwhile, the software will

validate the information with the server and, should the information be valid, the

software will instruct the peripherals to issue a new card to the user.

⚫ RFID Tag Processing: The software will decode the keys and write the

information to a registered blank card. When the user try to return a card, the

reader will also check its validity and reject the card if the card is not valid.

⚫ Mechanical Control: The Raspberry Pi 4B communicates with the microcontroller

via UART. The communication is in a request-response manner. Specifically,

when Pi asks the mechanical subsystem to move, the microcontroller will

immediately acknowledge the request, and later an “in-position” response is

returned. Should there be any unexpected mechanical error or a time-out

exception, the microcontroller will respond with an error signal, in which case the

software should notify the server of the incident.

2.2.2 KIOSK Terminal – Mechanical Subsystem

The vacuum suction system consists of a 5 Volts vacuum pump, a 30-mm diameter

suction cup, and a 12 Volts solenoid valve. The vacuum pump provides a 55 KPa

vacuum pressure by pumping out air, resulting in a suction force of 38.87 N, which is

much larger than the weight of an 8-gram IC card, also ensuring that the card will not

fall from the suction cup during motion even though the card might suffer from

collision or friction. The solenoid valve is adopted to destroy vacuum situation to

speed up card releasing process.

Several sensors are added to the mechanical subsystem to enhance its robustness.

⚫ Tact sensor: used to detect the height of the card stack so that the suction

cup can stop at the proper height where the suction cup can grab the card

and the suction cup will not run into the card stack.

⚫ SN04-N proximity sensor: Define the origin position of two linear actuators.

Based on the origin of the linear actuators, the actual positions of two linear

actuators can be determined. By defining the origin position, the motion of two

linear actuators can be limited to a certain range, preventing collisions with

other parts in the system

13

⚫ Optoelectronic sensor: Used to detect whether there is a card at the exit. This

function is added to ensure that the card has been sent to a proper position

when the user returns the card so that the suction cup can get the card back.

2.2.3 Server-side Software – Authentication Part

Fig. 7 Authentication Procedure

Component Specifications:

⚫ Database Configuration: In MySQL database, we created a table called “tokens”

and an action which will delete all the record generated 10 minutes ago.

Fig. 8 Database Content

⚫ Security Protocols: The certificate we used is signed by CA.

⚫ AD Server we used: Booted up on 10.105.5.97 named as izju.

2.2.4 Server-side Software – Backend and Web Server Part

Here, we want to mainly discuss the workflow about how to give a card and return a

card in our backend server.

The workflow about receiving a request sending a card is shown in Fig. 9 below,

14

Fig. 9 Workflow about Receiving a Request

2.2.5 Server-side Software – Facial Recognition Part

The facial recognition server is responsible for receiving images of faces from a

terminal, analyzing them using a machine learning (ML) model, and comparing them

against a predefined facial dataset to identify the student in the image. This system

primarily employs advanced ML models such as Deepface, FaceNet, and VGGFace.

If the server cannot find a match in the dataset, it immediately sends an error

message back to the client. However, if a match is found, the server sends a request

with the student's information to the RC server to facilitate the issuance of a

temporary card.

The workflow for this facial recognition subsystem is as follows: First, a terminal

captures an image of a student using a camera and sends it to the backend server.

This server converts the image into binary data and encodes it in Base64 format

before transmitting it to the facial recognition server. Upon receiving the data, the

facial recognition server decodes it back into an image format. It then uses a

computer vision model to compare this image with the stored images in the student

database, looking for the highest similarity. The server then sends the student's

information along with the computed similarity score back to the backend server. For

security purposes, the authentication process is deemed successful only if the

similarity score, which ranges from 0 to 100, exceeds a set threshold of 80.

15

Fig. 10 Workflow for Facial Recognition Authentication

2.2.6 Server-side Software – Access Control Part

The door access system comprises three distinct parts: dorm room access, block

access, and residential college door access. Each segment is controlled by different

entities, necessitating varied approaches.

For dorm room access, we face a limitation as the company managing this part,

along with the workers at the residential college, have declined to share their dataset

with us. Therefore, we can only duplicate the door access key from the student ID

card into our database system during the student registration process. Team

members Zicheng Ma and Xiaoyang Chu are tasked with overseeing this component.

For the block and residential college door access, we are supported by the Hikvision

platform, with the residential college staff granting us the necessary permissions to

manage access control. The access control subsystem operates as follows:

Initially, we must authenticate using the Hikvision platform, which employs an Access

Key/Secret Key (AK/SK) system for client identity verification. Upon user registration,

the platform assigns an AppKey and an AppSecret to each user. The authentication

process involves generating a signature that incorporates the Http Method, headers,

and Url (including path, query, and bodyForm). This signature, using the AppSecret

as a cryptographic key, is hashed with the Hmac-SHA256 algorithm to create a

message digest, which is then encoded in BASE64 format using UTF-8. The

resultant signature is included in the HTTPS request header, enabling the platform to

verify the client’s identity using the AppKey.

16

Fig. 11 Workflow for Facial Recognition Authentication

Post-identity verification, we utilize the student's name and ID to fetch their dorm

room number from our SQL database. This allows us to ascertain the corresponding

block ID and residential college ID. We then request the Hikvision platform to assign

a personID (distinct from the student ID) for the student, using their name and

student ID. We also retrieve the ID for the relevant devices (door locks) using their

names. With both the personID and device ID, we set up the access permissions for

the student by uploading the student ID, card ID, and device ID to the platform,

thereby enabling access. The same process is employed to revoke access once the

student returns their card.

Fig. 12 Workflow for Facial Recognition Authentication

3 Verification

3.1 QR Code Generation Test

Objective: Ensure that the QR codes generated by the system are accurate and

reliable for authentication purposes. Besides, the QR code really carries the 32 bytes

token we want.

Procedure: QR codes were dynamically generated on a web server accessible via

17

ZJUWLAN at port 8002. The generated codes were then tested at kiosk terminals to

authenticate user access, assessing the correctness of the encoded information and

the scanning system's reliability. The robustness of QR codes was also evaluated

under varying physical conditions, including different lighting levels and angles.

Outcome: All QR codes were successfully recognized and authenticated by the

kiosk scanners without any discrepancies, confirming the effectiveness of the

encoding and decoding processes. The tests also verified the resilience of QR codes,

maintaining readability under diverse environmental conditions.

3.2 Request Card and Return Card Test

Objective: To validate the functionality of the card request and return system, using

QR codes for card issuance and authentication, and ensuring backend and terminal

communication for successful key writing and door access control.

Procedure:

 Card Issuance: QR codes generated by the backend system were scanned at

the terminal using an integrated camera setup. The terminal established

communication with the backend to request card issuance.

 Key Writing: Upon successful QR code verification, a unique key was written to

the card, which was then used to unlock a test door lock, demonstrating the

operational effectiveness of the card in a real-world scenario.

 Card Return: After use, the card was returned to the terminal, which triggered

the backend system to rewrite the database entries associated with the card,

ensuring that all information was updated and consistent with system requirements.

Outcome:

 Issuance and Authentication: The QR code scanning and verification process

was flawless, with no errors in recognition or decoding. The backend efficiently

handled the card issuance request and communicated the necessary data to the

terminal.

 Key Functionality: The key written to the card successfully activated the door

18

lock, confirming the system’s ability to handle secure transactions and control access

effectively.

3.3 Facial Recognition Test

We test the similarity scores and the latency with four resolution sizes and 20

images. For the image dataset, we include all angles of the face photos, including left

face, right face and the middle face.

Based on the latency and similarity score result shown below, we finally decided to

resize the input image into 384 x 512 pixels, which can maximize the similarity score

and minimize the latency as much as possible.

Fig. 13 Average Latency and Similarity Score by Resolution

3.4 Mechanical Test

To test the stability of the mechanical subsystem, the mechanical subsystem is run to

simulate the scenario of borrowing and returning cards for 20 times. And it turns out

that the mechanical subsystem operates properly every time without human

intervention. Although the number of tests is not sufficient to prove that the failure

rate of the mechanical subsystem is below 0.2%, it still provides an evidence about

the mechanical subsystem’s robustness.

19

4. Cost Analysis

Table 2 Human Labor Cost Analysis

Labor Quant. Amount

(CNY)

Develop the face recognition subsystem 50 h 2000

KIOSK Software Development 75 h 3000

Build a QR code web server 40h 1200

Build database and import RC data 30h 1000

Build mechanical subsystem 40h 1200

Table 3 Parts Cost Analysis

Parts Quant. Amount

(CNY)

Raspberry Pi 4B Development Kit 1 775.90

RFID Analyzing Tool 1 345.92

Vacuum pump and suction cup 1 30.39

XY actuator 1 480

Raspberry Pi Pico Microcontroller 1 39

Camera Module 1 29.9

Miscellaneous Cables & Components 276.43

5 Conclusion

5.1 Accomplishments

We finish the implementation and verification of the backend subsystem, facial

recognition subsystem, access control subsystem, Kiosk Terminal Subsystem, and

20

Mechanical Subsystem.

5.2 Uncertainties

Since some of the students don’t register their face images in the Hikvision system,

we are not sure how many students can pass the face recognition authentication.

5.3 Future Work

For now, the backend software and the mechanical part haven’t been assembled.

Next week we will finish the assembly.

5.4 Ethical Consideration

5.4.1 Safety of Authentication and Access control System

The safety concerns for the software system primarily relate to data protection,

system reliability, and user privacy. Ensuring the safety of these aspects is critical, as

breaches could lead to identity theft, unauthorized access, or service disruptions.

⚫ User Privacy and Encryption: The system must maintain user privacy by

ensuring that personal data is not exposed to unauthorized entities. This

requires all data stored and transmitted to be encrypted using industry-standard

cryptographic protocols to prevent unauthorized access. Therefore, we plan to

adopt SHA-256, which is a relatively secure, difficult, and costly encryption

method in the current industry.

⚫ System Reliability: The RC Server must offer high availability and fault tolerance

to avoid service interruptions, which could lead to safety issues in systems that

rely on constant connectivity for critical functions. Although the traffic and

demand on campus may not be large, the stability and load capacity of the

server are also to be considered.

5.4.2 Reliability of Facial Recognition

It is guaranteed that the face dataset of students is safely stored in the facial

recognition system. We will also make sure that when the camera take a picture of

student, the picture will only be used for facial recognition, but not for other purpose.

5.4.3 Safety Concerns of Mechanical Systems

⚫ Since mechanical system uses vacuum suction cup to grab IC cards, which

involves the production and use of compressed air flow. It should be checked

that the compressed air is processed properly so there will be no leak or

21

explosions.

⚫ It should be ensured that the mechanical subsystem will not hurt the users’

hands when the user puts his or her hand at the exit of the card dispenser to

pick up the card or return the card. When a user picks up the card, the user

opens the door at the exit of the card dispenser to get the card. The suction cup

and the linear actuators cannot move when the user opens the door.

⚫ The mechanical subsystem should have the ability to recycle IC cards at the exit

back if the users do not pick up the cards in 5 minutes after the cards are sent

out. That function can prevent the risk that someone else taking away the cards,

in order “to protect safety of others” [5].

⚫ The mechanical subsystem should wear the card as little as possible to " comply

with ethical design and sustainable development practices” [5] and reduce the

frequency of replacement of cards. Suction cup is adopted since it will do little

wear to the cards.

I

Reference

[1] “MQTT - the standard for IoT messaging.” https://mqtt.org/

[2] Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). DeepFace: Closing the

Gap to Human-Level Performance in Face Verification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

[3] Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A Unified Embedding

for Face Recognition and Clustering. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

[4] Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep Face Recognition. In

British Machine Vision Conference (BMVC).

[5] IEEE, “IEEE Code of Ethics,” ieee.org, Jun. 2020.

https://www.ieee.org/about/corporate/governance/p7-8.html

[6] National Institute of Standards and Technology, “Secure Hash Standard (SHS),”

U.S. Department of Commerce, Aug. 2015. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[7] Riverbank Computing Limited, The Qt Company, "PyQt5 Reference Guide,"

[Online]. Available: https://www.riverbankcomputing.com/static/Docs/PyQt5/.

[Accessed 15 April 2024].

[8] Eclipse Foundation AISBL, "Paho," [Online]. Available: https://eclipse.dev/paho/.

[Accessed 15 April 2024].

[9] Raspberry Pi Ltd, "The Picamera2 Library," 27 November 2023. [Online].

Available: https://datasheets.raspberrypi.com/camera/picamera2-manual.pdf.

[Accessed 15 April 2024].

[10] D. Ferens, Alex, I. Bento and @jaant, "pyzbar," [Online]. Available:

https://github.com/NaturalHistoryMuseum/pyzbar/. [Accessed 15 April 2024].

[11] B. Croston, "raspberry-gpio-python," [Online]. Available:

http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/. [Accessed 15 April 2024].

[12] S. Caudle, "py-spidev," [Online]. Available: https://github.com/doceme/py-

spidev. [Accessed 15 April 2024].

https://mqtt.org/
https://www.ieee.org/about/corporate/governance/p7-8.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

II

[13] Aditya and N. Downing, "MFRC522-python," [Online]. Available:

https://github.com/1AdityaX/mfrc522-python. [Accessed 15 April 2024].

[14] C. Liechti, "pySerial," [Online]. Available:

https://pyserial.readthedocs.io/en/latest/pyserial.html. [Accessed 15 April 2024].

[15] OpenCV Team, " OpenCV Team," [Online]. Available:

https://github.com/opencv/opencv-python. [Accessed 10 May 2024].

III

Appendix

Appendix A. Circuit Diagram for Mechanical Control

Fig. 14 Circuit Diagram for Vacuum Pump Control

Fig. 15 Circuit Diagram for Solenoid Valve Control

IV

Fig. 16 Circuit Diagram for Proximity Sensor Signal Processing

V

Appendix B. Similarity Score and Latency of Facial

Recognition

Table 4 Similarity scores with different image resolution

Image Index / Resolution 1536 x 2048 768 x 1024 384 x 512 192 x 256

1 89 88 89 86

2 89 88 90 88

3 90 92 91 89

4 88 87 90 87

5 84 87 87 86

6 87 86 89 91

7 87 91 91 90

8 86 89 90 91

9 85 86 86 88

10 94 85 86 86

11 88 88 90 90

12 89 89 90 87

13 83 89 86 86

14 85 87 86 87

15 88 89 87 85

16 88 89 88 88

17 89 91 90 89

18 86 88 88 87

19 82 90 89 91

20 86 89 89 88

VI

Table 5 Latency of online model with different image resolution

Image Index/Resolution 1536 x 2048 768 x 1024 384 x 512 192 x 256

1 0.738295794 0.628719091 0.651124716 0.640042067

2 0.758849859 0.642990112 0.58182621 0.545042753

3 0.744408131 0.633938551 0.583513021 0.558713436

4 0.751494408 0.581557751 0.691009521 0.584634542

5 0.854304314 0.726917028 0.721786499 0.612939596

6 0.83710289 0.766220093 0.70773983 0.555555582

7 0.761623383 0.744357347 0.682974577 0.598637581

8 0.712453604 0.672476292 0.618635416 0.578127861

9 0.798819304 0.730727196 0.705238342 0.652128696

10 0.815337896 0.669465542 0.653531075 0.609490156

11 0.785992622 0.710080385 0.683963537 0.603325844

12 0.826137781 0.816992521 0.665312529 0.599835396

13 0.755683184 0.722836018 0.642542124 0.606658936

14 0.749848127 0.730558157 0.657264948 0.635754347

15 1.25428915 0.696682215 0.637785673 0.680992126

16 0.772652388 0.728740931 0.672860622 0.583869934

17 0.804905891 0.740184069 0.644750595 0.536188602

18 0.75211525 0.670586586 0.635467529 0.550262451

19 0.801511526 0.684829712 0.679459095 0.591224909

20 0.77336359 0.738835573 0.643973112 0.595976114

