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Abstract

We have developed a sophisticated modeling and display system for the Campus Power
System, meticulously crafted to enhance electricity management and monitoring at Zhe-
jiang University’s Haining International Campus. This system utilizes hourly data col-
lected from the campus’s support and security departments to perform accurate power
flow calculations. The results, which include metrics such as current, voltage, and active
power, are dynamically displayed using multicolored LED beads on a meticulously de-
tailed 1:1600 scale 3D printed model of the campus.By incorporating advanced technolo-
gies such as machine learning to improve grid behavior monitoring and management,
and by deploying event-driven fault simulations for emergency scenarios, the project lays
the groundwork for a proactive approach to energy efficiency. These enhancements are
crucial for pushing forward sustainable energy objectives. Our system, with its model-
ing and visualization tools, is strategically designed to steer the campus towards a more
sustainable and environmentally friendly future.

Keywords: Campus Power System, Energy Management, Load Forecasting, Power Event
Detection, Power Flow Calculations
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1 Introduction

1.1 Background

As an open and modern campus, Zhejiang University Haining International Campus has
state-of-the-art infrastructure and cozy single dormitories. However, this also leads to
a relatively high electricity consumption. In 2023, the Haining campus spent tens of
millions of RMB on electricity. High electricity consumption is also common in campus
around the world [1].

The following problems have been identified with the campus’ electricity consumption:

• Lack of Awareness and Sensitivity: There is a noticeable lack of awareness and sen-
sitivity among students and faculty regarding electricity consumption and energy
conservation practices.

• Insufficient Visualization Tools: The current visualization tools for power data lack
intuitiveness, which hinders effective management and understanding of energy
usage.

• Inadequate Emergency Response Capabilities: There is a need for improved re-
sponsiveness and expanded treatment options to effectively manage emergencies
such as over-voltage and short circuits.

Addressing these issues is essential for advancing sustainable energy goals. By integrat-
ing advanced modeling and visualization tools, our system is designed to guide the cam-
pus towards a more eco-friendly future.

1.2 Objective

Our proposed solution to address the situation is to develop an Advanced Modeling and
Display system for the campus power system.

1. Comprehensive Data Visualization

The raw power data undergoes accurate power flow calculations using a power flow
solver, which extracts relevant information vital for understanding power distribution
and load balancing across the campus. The resulting information, including current, volt-
age, power, and other relevant data, will be visually represented using LED strips with
varying brightness and colors on a physical model.

2. Advanced Load Forecasting and Strategic Anomaly Simulation

The system utilizes machine learning-based algorithms to forecast and monitor diverse
grid behaviors. The project leverages these algorithms for remote data analysis, scruti-
nizing historical power consumption patterns to facilitate accurate forecasting. Moreover,
the system incorporates power anomaly simulation techniques to anticipate potential dis-
ruptions in the power supply. These simulations are instrumental in assisting stakehold-
ers to assess contingency plans and refine response strategies effectively.
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Figure 1: Block Diagram

3. User-friendly GUI

The development of the Data Interaction Monitor equips users with an intuitive tool to
engage effectively with electricity data. This tool enables access to power data for all
buildings in the database, facilitating the observation of trends and comparisons between
buildings. Furthermore, the monitor is equipped to control LED strips for dynamic dis-
plays of power changes, offering a more intuitive visualization of evolving electricity
usage across the campus.

1.3 High-level Requirement

• Quantitative criteria for the front-end display. The envisioned physical model
must possess the capability to visually represent power consumption data across
the entire campus accurately. It should offer detailed representations of individual
buildings or substations, allowing users to discern usage patterns easily. In the case
of state changes, the LEDs are expected to exhibit the desired state within a delay of
2 seconds.

• Quantitative criteria for the machine-learning model. The machine learning model,
should be able to accurately forecast electricity consumption trends. Specifically, the
average MAPE should be 10% or less.

• Quantitative criteria for the event-driven power accident simulation. For a simu-
lated power anomaly event, e.g., simulating a two-phase short circuit to ground in
North Building A, the anomaly detection module should react and trigger an alarm
within 5 seconds, and the macro-F1 score is expected to be no less than 0.95.
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1.4 Block Diagram

Figure 1 demonstrates the workflow and data flow of the entire system. The system first
collects and analyzes real-time and historical power data from substations. The Data
Analysis Subsystem processes this data to forecast usage, identify anomalies, and gener-
ate metrics like voltage and current. The Control Subsystem manages data display set-
tings and simulates anomalies for testing. The Physical Model and Monitor Subsystems
visualize the processed data, with the former using LEDs to show building usage and the
latter displaying numerical data, forecasts, and anomaly alerts. The Power Subsystem
provides electricity to the visualization components.

2 Design

2.1 Front-end Display System

2.1.1 Power Subsystem

The Power Subsystem powers the Physical Model and the Monitor subsystems, providing
the proper voltage to both through a transformer.

The Power Subsystem is responsible for supplying power to the LED strips of the Physi-
cal Model Subsystem and the monitor subsystem through transformers in order to obtain
different required voltages. First of all, for the light strips of the Physical Model Subsys-
tem, the LED strips must be supplied with a continuous current of at least 500mA and
a stabilized voltage of about 5V to ensure the stability of the LED strips. LED strips in
our project are controlled by a Raspberry Pi, which fails to provide such an amount of
power. We hence use a DC power supply to support the LED strips. We will also use the
Raspberry Pi to provide power to our display. The display needs a power supply of 220V
AC, which is also included in our Power Subsystem.

Figure 2: The Circuit of Power Subsystem
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2.1.2 Physical Model Subsystem

The Physical Model Subsystem visualizes the real-time electrical usage of each building
on campus. It receives display commands from the Control Subsystem and uses LED
strips of various colors to display electrical data such as voltage and power.

The Physical Model Subsystem will receive display commands from the Control Subsys-
tem within 500 milliseconds to ensure the timeliness of the visualized power data pre-
sented. The subsystem is equipped with WS2812 LED strips to display voltage, power,
and other data. The use of LED strips to display power data allows for a more intuitive
display of power data for individual buildings and zones by color. We use a Raspberry Pi
to control the LEDs on the LED strips. Since it’s hard for human eyes to distinguish LED
with different brightness, we choose to use different colors to represent different levels of
quantity of the data for each building.

Meanwhile, the campus building model needs to be as realistic as possible to facilitate
real-time troubleshooting and processing. So we created a more detailed electronic model
of the campus, as shown in Figure 3a and Figure 3b. The Physics International Campus
sandbox will be a square with 1 meter sides and a height of less than 30 centimeters. This
ensures the fineness of the individual buildings and leaves enough space for the place-
ment of the LED strips and their wiring, as shown in Figure 4a and Figure 4b. For the
base plate of the solid sand table model we use wood to ensure the strength of the model.
On top of that we used blue acrylic glass for the water and different colors of ABS plastic
for the pavement and green areas. For each building of the school we use architectural
modeling and 3D printing with different colors of ABS plastic to get a detailed and ac-
curate model of the building. The models were scaled to the actual distances and pasted
onto the plots of land. Based on this, some small models such as trees are pasted to make
the overall model more complete and close to reality. In addition, the Physical Model
Subsystem needed to include fail-safe mechanisms to deal with issues such as LED strip
failures in a timely manner.

(a) Electrical model (b) Local electrical model

Figure 3: Electrical model
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(a) Physical model (b) Local physical model

Figure 4: Physical model

2.1.3 Monitor Subsystem

To display the power data and make detailed analysis, we implement a Monitor Subsys-
tem with GUI support, which responds to commands from the Control Subsystem. The
GUI for the Monitor subsystem is implemented based on PyQt5. As shown in Figure 5,
the background of the window is a photo of the campus, and the three main functions of
the subsystem are at the top of the window, which can be switched by clicking.

The Data Monitor page within the Monitor subsystem, depicted in Figure 5a, functions as
a dashboard that presents essential information about the campus power system. It dis-
plays the number of campus buildings, the total electricity consumption of these build-
ings over the past week, and the current status of the campus power system, with green
indicating normal conditions. To give users a clear numerical understanding of trends
and changes in the campus power data, the Data Monitor enables the selection of a spe-
cific time range to plot a line graph for a designated building. This graph not only il-
lustrates power usage over the selected period but also displays exact values adjacent to
each data point for enhanced clarity. Table 1 presents the selection of display times avail-
able on this page, which encompasses both the historical data retrieved from the school’s
electricity database and the predicted values for the upcoming 24 hours, as forecasted by
the data analysis subsystem.

Figure 5b demonstrates the anomaly simulation function. Given that power anomalies
are typically rare, brief, and challenging to record in real-world scenarios, this module
has been developed to enable users to test the anomaly detector’s capabilities. Users
can select a specific building and the type of fault they wish to simulate. Upon clicking
’Apply’, the test results and fault analysis will be displayed on the right side of the screen.
Concurrently, if the system successfully detects the fault, the three-phase voltage and
current for the selected building will be graphically represented on the left side of the
screen. Detailed information about the anomaly simulation module is further discussed
in Section 2.2.2.
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(a) Data Monitor (b) Error Simulation

Figure 5: Monitoring System GUI

The Monitor subsystem is required to receive display commands from the Control Sub-
system within 500 milliseconds. In anomaly simulation, the subsystem needs to trigger
an alarm within 5 second after detecting a power failure and record the time of the fail-
ure, so as to facilitate timely handling of power failures and post-inspection. To facilitate
collaboration with the Data Collection Subsystem and the Physical Model Subsystem, our
monitoring system was implemented on a Raspberry Pi. An external screen was utilized
to display the interface described above.

2.2 Remote System

2.2.1 Data Collection Subsystem

The Data Collection Subsystem collects and stores power usage data from each substation
provided by the Engineering Department. This subsystem then transfers the collected
data to the Data Analysis Subsystem for further analysis and utilization.

Table 1: The range of optional data displays, the meaning of the horizontal axis coordi-
nates and the data sources in the Data Monitor .

Timescale Frequency Data sources

Yesterday Hourly System database

Last Week Uniform sampling at 4 points / day System database

Last Month Daily (average of hours) System database

Forecast(24h) Hourly ML model outputs
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Following extensive consultations with the Support and Assurance as well as Engineering
departments, we have successfully secured authorization to access real-time data housed
within the database. This invaluable resource offers a granular perspective, with data
points recorded at hourly intervals, detailing the power consumption in kilowatt-hours
(kWh) over the preceding hour.

Furthermore, considering the unreliability of data within the distribution network, we
have expanded our dataset by obtaining detailed electricity use records for the entire
year 2023. These extra statistics include the aggregate energy usage within the campus,
which is thoroughly documented on a monthly basis, giving us a comprehensive view of
consumption trends and patterns over the course of the year.

To facilitate the collection of real-time data, a Python script has been developed to query
the campus database. Considering that the targeted data is stored within the database
and updated on an hourly basis, we have opted to execute the data collection process
daily. The Python script is hosted on the database server and is scheduled to activate at
2 a.m. each day. It performs queries to gather power usage data for each building. Upon
retrieval, the data is compiled into CSV files. Subsequently, these files are transmitted to
our server, enabling us to archive daily data for further analysis.

2.2.2 Data Analysis Subsystem

The Data Analysis Subsystem is the central hub for processing, calculating, and manag-
ing data flows (see Figure 6), and serves as the primary data source for the front-end
presentation system. It preprocesses power consumption data from each campus substa-
tion, converting it into active electricity consumption for individual buildings. This data
is then used by the automatic power flow calculation model to generate key metrics like
voltage and current. Additionally, real-time power usage data is fed into machine learn-
ing models, which leverage historical consumption data to forecast power usage and de-
tect anomalies in individual buildings. The processed data is subsequently transmitted
to the Physical Model and Monitor subsystems for visualization.

Figure 6: Data Flow in the Data Analysis System
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Automatic power flow calculation for distribution networks

The subsystem utilizes OpenDSS, an open-source software effective for simulating elec-
trical power distribution networks. By leveraging its advanced power flow calculation
capabilities, we aim to thoroughly analyze the dynamics of our distribution network,
capturing detailed power data for each building at every time node. This data includes
key parameters like active power, voltage, and current, providing deep insights into the
operational complexities of our infrastructure. OpenDSS enables detailed modeling and
simulation, allowing for comprehensive analysis of power flow, voltage regulation, and
fault analysis. The flowchart of this process is displayed in Figure 7a.

To calculate the input power data, we first construct the campus distribution network.
The modeling and simulation results are depicted in Figure 7b and 7c. Furthermore, to
improve the real-time monitoring capabilities of our system, we have integrated OpenDSS
seamlessly into our project framework. Utilizing OpenDSS’s versatile API interface, the
subsystem facilitate smooth data exchange, ensuring fast and efficient communication
between our simulation environment and external applications.

(a) Flowchart of Power Flow Calculation

(b) Distribution Grid Modeling

(c) Power Flow Calculation

Figure 7: Overview of the power flow calculation process
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Machine learning-based load forecasting

To enhance energy savings on campus, developing accurate short-term load forecasting
models for the electrical system is essential. Machine learning techniques can be used
to train models with historical power usage data from individual campus buildings, en-
abling predictions of future load data for specific time periods.

Based on thorough research and careful evaluation, we have selected the Long short-
term memory (LSTM) [2] algorithm as our base model. This decision to choose LSTM
models is influenced by three primary factors. First, LSTM is highly effective in capturing
time-dependent and seasonal variations in power system load data. It can autonomously
learn feature representations from input data, which is advantageous for load forecasting
where data is influenced by complex factors and nonlinear relationships. Second, LSTM
models are robust against noisy and outlier-ridden input data, with techniques such as
dropout and regularization helping to mitigate overfitting and enhance generalization.
Lastly, compared to more complex models recently used in time series analysis, LSTM
offers a simpler implementation and adaptation process. This simplicity, coupled with
reasonable training times, makes LSTM well-suited for continuous predictions on real-
time data, fulfilling our needs for developing online prediction schemes.

As shown in Figure 8, LSTM uses a memory unit to store information from past time
steps and decides whether to discard or retain specific information based on the current
input. The memory unit consists of three gates: input, forget, and output. The input
gate controls the amount of fresh information that enters the memory unit, whereas the
forget gate controls how much old information is maintained. Furthermore, the output
gate controls the use of information throughout the prediction process.

The LSTM model is tasked with generating power consumption predictions for the next
24 hours using data inputs. For a balance of accuracy and efficiency, we opted for a
single-step rolling prediction approach, which utilizes the previous week’s data and the
previous outputs to sequentially predict 24 future data points on a rolling basis.

Figure 8: Flowchart of the LSTM algorithm, from Wikipedia [3]

9



Power system data-driven event detection

Anomaly detection (or event detection), on the other hand, plays a critical role in address-
ing the overall problem. With the detection of faults (or events) in power system, man-
agers can promptly respond to issues, preventing potential losses and mitigating further
complications.

Power system events are classified into major physical events and power quality phe-
nomena. Major events, such as line trips, short circuits, generation-load imbalances,
equipment failures, and islanding, impact the bulk power system significantly, leading
to power quality issues, large disturbances, and potential cascading failures. Conversely,
power quality phenomena involve deviations in voltage, current, frequency, and power,
often due to minor factors like weather, contamination, equipment issues, or mainte-
nance. Major events can also precipitate severe power quality issues. These phenomena
are defined and analyzed according to IEEE power quality standards [4], [5].

In the campus electrical network, many of the scenarios described above are highly im-
probable or unlikely to occur. Therefore, we focus on several more common types of
anomalies: single-phase ground faults, two-phase ground faults, two-phase shorts, and
three-phase ground faults. Table 2 shows the current and voltage outputs of the sim-
ulation of the aforementioned events using OpenDSS. We performed event simulations
for Building 1A, and all buildings experienced changes in voltage and current conditions
from normal, with the most significant changes at the event location, which is the basis
for the model’s determination of where the event occurred.

Table 2: Simulation Results for Various Short Circuit Conditions in Building 1A on March
15, 2024, at 14:00 CST: Magnitudes and Phase Angles of Three-Phase Voltage and Current

Type Voltage
Magnitude

Voltage
Phase Angle

Current
Magnitude

Current
Phase Angle

Original [226, 226, 226] [-1.6, -122, 118] [53, 53, 53] [-20, -140, 100]

Single-phase
grounded

short circuit
[0.56, 279, 243] [-51, -131, 131] [38, 64, 59] [-13, -129, 86]

Two-phase
short circuit [111, 110, 220] [-62, -63, 119] [37, 37, 74] [-80, -80, 100]

Two-phase
grounded

short circuit
[0.65, 0.74, 263] [-32, -177, 121] [29, 28, 57] [-77, -78, 102]

Three-phase
grounded

short circuit
[0.74, 0.77, 0.72] [-42, -167, 75] [0.23, 0.24, 0.22] [-60, 176, 56]
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The four types of faults are considered common due to their potential occurrence from ev-
eryday activities and conditions in a school setting. For example, a single-phase ground
fault might happen due to aging or damaged insulation on wiring, which can occur over
time as building materials wear out. Two-phase ground faults and two-phase shorts can
result from accidental contact between wires during maintenance or construction activ-
ities, a situation that might arise during upgrades to school facilities or repairs. Lastly,
three-phase ground faults, while less frequent, can occur due to severe weather condi-
tions such as lightning strikes or heavy rain infiltrating electrical systems, both of which
are plausible in a school environment. Each of these faults impacts the stability and safety
of the power supply, necessitating their prioritization in our monitoring efforts.

Statistical based methods can be used for anomaly detection in power usage. Research
in related fields has shown that certain time series features can be used to determine the
occurrence of events. Using these features, we can develop a model that can automatically
categorize events.

The 3-Sigma method can be utilized for anomaly detection in power data, such as current
and voltage measurements. This method is based on the principle that normal variations
in the data should fall within three standard deviations from the mean. For three-phase
current and voltage data, we analyze 12 inputs from a given building at any specific
moment. By comparing this data with the statistical model derived from all historical
data, we can determine whether an event has occurred and identify its type.

2.2.3 Control Subsystem

The control subsystem acts as the crucial link between the front-end system and the back-
end data and models. It corresponds directly to the Monitor subsystem and facilitates its
back-end operations.

For the Data Monitor module, the control subsystem is tasked with retrieving the appro-
priate data from the database or invoking the load forecasting model for predictions.

For the Error Simulation module, it is responsible for generating random anomalies or
processing user-specified anomalies, which are then integrated into the power flow com-
putation model. This data is subsequently analyzed by the Data Analysis subsystem and
relayed back to the Monitor subsystem.

For LED Show requests from the Monitor subsystem, the control subsystem retrieves and
forwards the relevant data to the Physical Model subsystem.

By transmitting control signals to the Monitor Subsystem and the Physical Model Sub-
system, the Control Subsystem swiftly switches the power data display, with a response
time of less than 100 milliseconds. Additionally, effective communication with other sub-
systems is established through standardized protocols.
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3 Requirements and Verifications

Our testing is divided into three main components: power data processing (which in-
cludes data acquisition, grid modeling, and both offline and online testing), physical
model testing, and data analysis model testing. Table 3 outlines our testing schedule.

• Distribution Grid Modeling Testing: Conducted during the first two weeks, this
phase tests the system’s capability to accurately and reliably model the distribution
grid from the substation level to specific buildings, covering various grid compo-
nents.

• Power Flow Calculation Testing: This phase evaluates both offline and online power
flow calculations, assessing the accuracy and efficiency of the power flow calcula-
tion module using simulated data offline and real-time data online.

• API Interface Testing: Scheduled for the fourth week, this test focuses on the online
capabilities of the power flow solver API interface, checking its ability to access
real-time data and its responsiveness in delivering power flow solutions.

• Physical Model Testing: On the fifth week, this phase tests the LED and monitor
components of the physical model, which may involve visualizing the results of
power flow calculations or other system parameters on a physical display.

• Load Forecasting and Event Simulation Testing: Conducted in the last weeks, this
testing evaluates the system’s time series prediction functions and its ability to sim-
ulate faults within the distribution system, aiming to verify the system’s predictive
accuracy and its response to simulated real-world events.

Table 3: Test Plans with Timelines

Date Test Name

3.25 - 3.31 Distribution grid modeling to substation level offline data testing

4.1 - 4.7 Distribution grid modeling to specific buildings offline data testing

4.8 - 4.14 Real data online power flow calculation testing

4.15 - 4.21 Power flow solver API interface access to real-time data testing

4.22 - 4.28 Physical model: LED and monitor testing

4.29 - Demo Load forecasting and event detection models testing

3.1 Result of Physical Model

Reliability of the Power Subsystem.

The power supply needs to provide continuous power to the LED strips of the Physical
Model Subsystem and the monitor subsystem. Any failure or interruption of the power
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supply may result in the loss of the visual display and alarm functions. At the same
time, the voltage and current supplied to multiple LED strips after passing through the
transformer may be unstable, which may lead to damage or malfunction of the strips.
Therefore, we have a backup power supply in case the main power supply fails. When
a mains failure is detected, the backup power supply activates within 1 second, which
ensures a seamless transition and avoids interruption of the LED strip operation.

The visual effect of the LED strips.

To enhance the clarity and intuitiveness of the LED display in the physical model sub-
system, we developed a color cross-reference table, as illustrated in Figure 9, to correlate
power levels with specific colors. According to Table 10, the distribution of values in this
table is non-uniform, intentionally designed based on historical observations of power
usage across campus. Power consumption varies significantly from one building to an-
other, influenced by different activities and usage patterns. Thus, this color comparison
table effectively utilizes a range of colors to visually represent variations in power us-
age.

Figure 9: Color Reference Table

Figure 10: Power Reference Table

Minimal
Power

Low
Power

Moderate
Power

High
Power

Extreme
Power

Level1 [0,1) [10,12) [20,25) [50,60) [100,120)

Level2 [1,3) [12,15) [25,30) [60,70) [120,150)

Level3 [3,6) [15,18) [30,40) [70,80) [150,250)

Level4 [6,10) [18,20) [40,50) [80,100) [250,∞)

3.2 Result of data collection and processing

Reasonableness of input data.

By examining and contrasting the statistical attributes of historical power consumption
data for each building, we have initially validated the reliability of the data sources. The
Gymnasium (Building 23) and the Student Center (Building 16) exhibit the highest aver-
age power consumption. Building 23, being larger in size, encompasses various sports
facilities such as the swimming pool, basketball court, and table tennis area, while Build-
ing 16 hosts the cafeteria, supermarket, and other bustling venues. Hence, it is reasonable
for these buildings to register the highest power consumption. Conversely, the lowest av-
erage power consumption is recorded in buildings 4 and 8, both of which are yet to be in-
augurated, and the multi-purpose hall (Building 7), which sees infrequent use aside from
large conferences. Additionally, we noticed consistent statistical patterns and power us-
age behaviors across several symmetrical buildings. This includes the three inaugurated
college (Buildings 11, 12, and 15), North Academic Buildings A and B (Buildings 19 and

13



20), and the East and West Lecture Halls (Buildings 5 and 6). These buildings within each
cluster share comparable dimensions, foot traffic, and electricity usage patterns, thereby
further validating the dataset.

Reliability of Distribution Grid Modeling.

For the substation level offline data test, we modeled each substation as a load. we used
80% of the capacity of each substation as the total power of each load. Power Factor 0.95
was used for modeling. The current calculation converged successfully and the active
power and voltage values were within a reasonable range.

(a) Power Flow Test 3.25 (b) Voltage Test 3.25

Figure 11: Offline Power Flow Test

In the building offline data test, all the in-use buildings on the campus were successfully
connected to their respective substations. For the real data online power flow calculation
test, we accessed the OpenDSS dssdirect API interface and developed a working python
version. In the test, the convergence of the trend results is very good, the missing data
is not obvious, and the test results are basically in line with the actual situation of power
consumption on the campus.

After that, our main focus has been to continuously improve the DSSDirect API inter-
face, which serves as the gateway to interact with OpenDSS. This key component enables
seamless communication and integration between external systems and the OpenDSS
platform, facilitating efficient data exchange and streamlining operations within the power
system domain.

As a result of the development of this API interface, the following functions were im-
plemented by me: input period and time automated distribution network modeling, bad
data filling and data optimization, voltage and current calculation and data analysis, and
event-driven fault simulation. The current obtained from the API interface is shown in
Figure 13a and the voltage is shown in Figure 13b, both of which are at the normal level
of the distribution grid.
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(a) Voltage Profile 4.8 (b) Circuit Summary 4.8

Figure 12: Online Power Flow Test

(a) Current Data (b) Voltage Data

Figure 13: API interface Test

3.3 Result of Load Forecasting and Event Detection Models

The Load Forecasting Model

The error in the Load Forecasting model is the difference between the power value pre-
dicted by the model and the actual power value. The metric used to measure model
performance is MAPE (Mean Absolute Percentage Error).

MAPE =
1

M

M∑
i=1

∣∣∣∣ x̂i − xi

xi

∣∣∣∣× 100

where x̂i represents the predicted value, xi represents the true value, and M is the number
of samples. According to our Design Document, the forecasting model is required to
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achieve a maximum MAPE of 10%. This stipulates that for each test, the average MAPE
across all buildings must be less than 10%.

Table 4 displays the average MAPE outcomes for 32 distinct load forecasting models. The
”Single-step Forecast” column denotes the MAPE associated with predicting data at the
subsequent time point using a time series input, while the ”One Day Rolling Forecast”
column indicates the MAPE for forecasting data over a consecutive day by iteratively
rolling the previous forecast output into the input. It is evident that both approaches
meet the error tolerance, albeit the latter exhibits a larger error magnitude. This disparity
arises from the accumulation of errors over successive forecasting steps. Furthermore, the
results underscore the critical role of timely data access in achieving forecasting accuracy.
Figure 14 provides a specific case study, and it can be seen that both capture the trend of
the data, with Single-step’s predictions being more accurate.

Table 4: Average MAPE of the LSTM load forecasting models

Single-step
Forecast

One Day
Rolling Forecast

MAPE 7.68% 9.90%

(a) Single-step Forecast example (b) One Day Rolling Forecast example

Figure 14: Load Forecasting results of Single-step Forecast and One Day Rolling Forecast
for Building 2B

Errors in the Event Detection

In our design, the task of event detection in power systems can be conceptualized as
a classification problem. The verification tasks encompass (1) detecting events, (2) ac-
curately categorizing four types of short-circuit events, and (3) ensuring precise cate-
gorization down to the three-phase level. These tasks correspond to 2-classification, 5-
classification, and 11-classification scenarios, respectively. Precision and recall stand as
commonly utilized metrics for evaluating the effectiveness of classification models.

Precision measures the proportion of correctly predicted positive samples out of all the
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samples predicted as positive. Recall measures the proportion of correctly predicted pos-
itive samples out of all the actual positive samples.

Precision =
TP

TP + FP
Recall =

TP
TP + FN

where TP represents True Positives and FP represents False Positives. A higher precision
indicates a higher accuracy in predicting positive samples.

where TP represents True Positives and FP represents False Positives. A higher precision
indicates a higher accuracy in predicting positive samples. A higher recall indicates a
better ability to capture true positive samples.

In anomaly detection tasks, the macro-F1 score is commonly used as the primary evalua-
tion metrix. This is because anomaly detection problems typically involve highly imbal-
anced classes, with the normal class vastly outnumbering the anomaly class. Macro-F1
effectively captures the performance on the anomaly class, which is of greater interest,
by computing the F1 score for each class independently and then taking the average.
Precision and recall alone may not provide a comprehensive assessment, while micro-
F1 can be skewed by the dominant normal class. Macro-F1 strikes a balance, ensuring
that the model’s performance on the rare but crucial anomaly class is adequately repre-
sented.

macro-F1 =
1

2

(
2× precisionp × recallp

precisionp + recallp
+

2× precisionn × recalln
precisionn + recalln

)

We performed experiments on 160 sets of simulated data, where anomalies were ran-
domly generated, and the probabilities were uniformly distributed across different event
types. The experimental findings are depicted in Table 5. Notably, the results of the latter
two tasks exhibit complete consistency. This is primarily attributable to the classification
of short-circuit types being heavily reliant on individual phase anomalies. Consequently,
once a phase is identified as anomalous, the short-circuit anomalies are essentially deter-
mined, and vice versa.

Table 5: Results of Precision, Recall, and Macro-F1 Experiments for Three Tasks

2-classes 5-classes 11-classes

precision 0.9917 0.975 0.975

recall 1.0 0.9832 0.9832

Macro-F1 0.9979 0.9721 0.9721
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4 Cost and Schedule

4.1 Cost Analysis

Table 6: Cost Analysis

Category Item Price

Microprocessor RaspberryPi 4B 600RMB

Physical

Model

Campus Building Model 800RMB

Display 400RMB

Display Bracket 300RMB

LED*80 160RMB

Power Supply 36V DC Power Supply 300RMB

GPU RTX 3080 Ti(Rental servers) 650RMB

Labor 4 people * 100hours * 100RMB/hour 40000RMB

Total 43210RMB
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4.2 Schedule

Table 7: Schedule - 1

Date Erkai Yu Yilang Feng Tiantong Qiao Jiahe Li

3/11 Write Python
scripts to make
database queries
and send power
consumption
data to local
server

Construct a digi-
tal model for the
physical model
and made data
usage require-
ments to verify
compliance.

Confirm data
types with Sup-
port and Assur-
ance to prepare
for access to the
database

Researching
Power Forecast-
ing and Anomaly
Detection Algo-
rithms

3/18 Learn how to
control the LEDs
with single-chip
microcomputers

Modeled the cam-
pus based on the
physical campus
landscape

Confirming the
connection of
each substation in
the distribution
network and
starting modeling

Selecting alterna-
tives for the al-
gorithm; design-
ing the UI for the
Monitor Subsys-
tem

3/25 Implement
scripts for Rasp-
berry Pi board to
control LEDs

3D printing and
sandboxing from
already built 3D
models and elec-
tronic models

Modeling the
campus distri-
bution network
down to the sub-
station level

Conducting se-
lected algorithms
on historical data
and testing for
acceptable errors

4/1 Test and debug
the script for
Raspberry Pi
to control LED,
install Raspberry
Pi with LED

3D printing and
sandboxing from
already built 3D
models and elec-
tronic models

Completing mod-
eling of the school
district’s distri-
bution network
and completing
testing of the
offline version of
the model

Selection based
on data char-
acteristics and
adapting existing
algorithms

4/8 Test the connec-
tion between
Raspberry Pi and
the data server,
implement local
script to receive
and store data on
Raspberry Pi

3D printing and
sandboxing from
already built 3D
models and elec-
tronic models

Preparing python
version of online
modeling using
OpenDSS API
interface

Completing the
code for the final
time-series model
and designing
interfaces with
other subsystems
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Table 8: Schedule - 2

Date Erkai Yu Yilang Feng Tiantong Qiao Jiahe Li

4/15 Design database
on Raspberry Pi
to store the power
data

Finish the sand-
box and put LED
strips around the
building and con-
nect the wiring

Completing
python version of
online modeling
using OpenDSS
API interface

Interfacing with
real-time data,
testing code on
real-time data,
checking for
errors

4/22 Integrate real-
time data power
flow calculation
on Raspberry Pi,
feed it with data
stored locally

Connect the
wiring between
the display and
the sandbox so
that the display
can control the
display state of
the sandbox

Completing the
online version
of the real-time
data power flow
calculation test

Interfacing Model,

Data and Monitor

4/29 Design user inter-
action interface
with screen on
Raspberry Pi

Connecting the
sandbox to the
siren so that the
siren can give a
timely alert in
case of power
data failure

completing
power flow cal-
culations for
successful inter-
facing with led
displays

5/6 Integrate monitor
subsystem on
Raspberry Pi,
help with in-
stalling the final
model

Check all circuit
connections, add
LEDs and a cir-
cuit fault alarm
system, and add
a backup power
supply to prevent
failures

Prepare final
demo and design
testing cases

Prepare final
demo and design
testing cases
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5 Conclusion

5.1 Accomplishments

Driven by a commitment to innovation and efficiency, our team has achieved remarkable
progress in constructing a campus power management system.

One significant achievement involved the accurate display of power data. Utilizing the
advanced OpenDSS power flow solver in conjunction with the DSSDirect API interface,
our system now precisely calculates and analyzes power distribution and load balancing
throughout the campus. This critical data is vividly represented on a physical model
using LED strips. These strips vary in brightness and color to visually depict different
power metrics, enhancing both understanding and engagement.

In terms of predictive capabilities, our team has successfully implemented machine learn-
ing algorithms to monitor and forecast various behaviors of the campus grid. We have
meticulously analyzed historical power usage patterns, enabling the development of highly
accurate forecasting models. Furthermore, our system now includes power anomaly sim-
ulations that anticipate potential error events in power system. These simulations are in-
valuable, allowing stakeholders to assess and refine contingency plans, thereby elevating
our response strategies.

Lastly, the development of the Data Interaction Monitor represents a notable enhance-
ment in our ability to interact with electricity data. This intuitive tool offers straightfor-
ward access to power data across all campus buildings, enabling users to easily observe
trends and make comparisons. While primarily a data access point, the monitor also sup-
ports the dynamic control of LED strips. This feature subtly enhances the visualization
of power level changes, providing a clearer, albeit simplified, depiction of energy usage
across the campus.

5.2 Uncertainties

Our project confronts certain uncertainties in the realm of prediction accuracy and anomaly
detection. One significant challenge involves the diminishing accuracy of our forecasting
models during rolling predictions. Additionally, our current anomaly detection system
cannot monitor anomalies in real-time. These issues could be notably improved by in-
creasing the frequency of data acquisition. By capturing data more frequently, we can
enhance the responsiveness and precision of our models, allowing for more accurate pre-
dictions and timely detection of anomalies.

Moreover, the integration of our system with the smart campus infrastructure presents
a potential advancement in how energy data is utilized. Currently, our system retrieves
data indirectly through a database. However, if our project gains further recognition,
there is an opportunity to connect directly with electricity meters across the campus. This
direct connection would enable a more comprehensive display, monitoring, and manage-
ment of energy usage, aligning seamlessly with the objectives of a smart campus. Such

21



integration would not only streamline operations but also enhance the effectiveness of
our energy management strategies, making them more adaptive and efficient.

5.3 Ethics and Safety

Privacy. The data displayed by our system should not reflect any individual’s electric-
ity usage, as we highly value the data privacy of each individual. Thus, our system takes
each building as our measuring object, to exclude any sensitive personal data while main-
taining the purpose of displaying meaningful power usage data of the campus.

Social Benefits. According to IEEE Code of Ethics, we are obligated to prioritize the
safety, health, and well-being of the public [6]. Furthermore, we should make diligent
efforts to adhere to ethical design principles and promote sustainable development prac-
tices. Our system is designed to achieve two main goals. Firstly, it monitors the power
usage of the campus to provide a safe and efficient electricity system. Secondly, it also
plays a role in educating people about the value of electricity we use every day. With the
model we built, we can vividly display how electricity power runs inside our campus,
which urges us to use it appropriately.

Data Safety. The power usage of each building can be highly sensitive data, especially
for those involving experiments. To realize our goal of power usage model display and
power usage data analysis, we will preprocess the data before displaying it with our
model, thus making sure that no one can reverse engineer the model to get the sensitive
data. Meanwhile, the data we collected will be carefully stored to avoid any information
leaks. In our project, we adhere to high standards of integrity, responsible behavior, and
ethical conduct, ensuring the use of legal data sources and preventing harm to others
according to [6].

Electricity Usage Safety. As our system uses a large number of LEDs to display the power
consumption of the campus, it’s important to monitor the functionality of the circuits and
avoid potential safety issues such as fire hazards. The LEDs we use should be capable
of not only long-term functioning but also smooth voltage adjustment. We will also add
monitoring components for our system, in case of any unpredicted accidents.

5.4 Future Work

The potential of our project hinges on its ability to integrate and interoperate with other
intelligent systems, particularly within smart campus infrastructures. We envision mul-
tiple applications where our system enhances and synergizes with existing technolo-
gies.

1. Integration with Smart Campus Management Systems

One scenario envisages the system’s ability to interface with HVAC in dormitories and
classrooms. By utilizing real-time electricity consumption data, our system could poten-
tially automate adjustments in environmental controls. This proposed capability would
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go beyond mere monitoring, actively optimizing energy efficiency and comfort based on
current usage patterns.

2. Advanced Data Analytics and Predictive Capabilities

Another application utilizes collected electrical data along with factors like weather to
develop more precise predictive models for managing campus energy. These models
assist in forecasting energy needs and analyzing usage patterns, which supports strategic
planning. Moreover, the system proactively informs administrators of any anomalies
based on existing functionalities, enabling timely maintenance and enhancing operational
reliability.

3. A Resource for Education and Research

Additionally, the system is proposed as a valuable educational tool. By providing stu-
dents with access to real-time energy data, it could significantly enhance learning oppor-
tunities in energy management and sustainability.
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A Requirement and Verification Table

Table 9: Overall Requirements & Verifications List

Requirements Verifications Results

Remote
System

For power data, historical data
must be accessible for at least

1 year.

The front-end display system
needs to have the ability to
display data from the past 1

year.

Yes

The forecasting model must
achieve a maximum MAPE of

10%

The historical data can be
used as a test basis.

Yes

The event detection model
must achieve an F1 score of

0.95 or higher.

Each abnormal simulation and
its neighboring normal

conditions are counted from
which the F1 score can be

calculated.

Yes

The remote system must
maintain an update response
time of ≤ 1s and an operation
update response time of ≤ 100

ms

The control subsystem
calculates these times, and the

front-end display system
shows them on the display.

Yes

Front-end
Display
System

The LED voltage must be 3.3V,
the display voltage should be

12V. Tolerance should be
within 5%.

Measure the output voltages
with an oscilloscope to ensure

that they remain stable.

Yes

Color changes to the LED and
display on the monitor must

maintain a response time of ≤
500ms

The front-end display system
can calculate and show these

times on the display.

Yes

The physical model needs to
include all the 26 significant

buildings on campus that are
electrified

Physical model will be
displayed.

Yes
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