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Abstract
In this project, we design a machine that can detect the existence of mosquitoes by
sound, and localize them using camera, then track and suck them by the moving of
the car and the rotation of fan, thus complete our actions to mosquitoes.

The detection subsystem is crucial, using an microphone to record sounds and detect
mosquito wingbeats from 300 to 600 Hz. It applies MFCC method and CNN to process
the audio.

The localization subsystem is equipped with a high-resolution camera and employs
the Roboflow Train 3.0 model for real-time mosquito detection and spatial localiza-
tion. This subsystem ensures precise identification of mosquitoes, even at a distance
of 1-2 meters, and with the time delay in 4 seconds.

The attack subsystem comprises a fan-based capture unit and a mechanical structure
for precise positioning. The fan operates on powerful suction and is activated upon
mosquito detection, ensuring efficient capture. The mechanical structure, featuring a
chassis with wheels and a lead screw for 360-degree rotation, is designed for stability
and maneuverability.

The power and control subsystem serves as the backbone, providing stable power
supply and voltage regulation. It includes a Raspberry Pi-based control unit for pro-
cessing sensory data and generating commands for the motor control system, which
in turn manages the precise movements of the machine via PWM signals. Also a PCB
board is applied to do the voltage switch from 12V to 5V to power the Raspberry Pi.

Overall, the project’s design adheres to ethical standards, ensuring privacy in moni-
toring and humane mosquito elimination, with a strong emphasis on safety protocols
throughout the development process.
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1 Introduction

1.1 Problem and Solution Overview

Mosquitoes are not just a source of irritation due to their itchy bites; they are also public
health threats, as documented by the World Health Organization (WHO), which identifies
them as vectors for diseases like malaria and dengue [1]. The challenge of controlling
these agile insects is compounded by the limitations of current methods, which can be
less effective and potentially harmful, as noted in studies on the environmental impact
of mosquito control. To address these issues, we’ve developed an innovative device that
actively captures mosquitoes. It operates by moving through the environment and swiftly
sucking up mosquitoes upon detection, offering a more targeted and safer alternative to
traditional repellents and swatters.

We intend to design our project by four subsystems: a detection subsystem, a localization
subsystem, an attack subsystem, and a power and control subsystem. The detection sub-
system serves as the trigger, using audio cues to activate the machine when mosquitoes
are present. The localization subsystem employs a camera to locate the mosquito and
provides real time location data to the attack subsystem, which then mobilizes to cap-
ture or eliminate the mosquitoes using a powerful suction device and CO2, heat, and
motion-based lures. The power and control subsystem is strategically divided to supply
continuous energy to the detection subsystem and activated power to the localization and
attack subsystems, optimizing energy usage, and ensuring sustained operations.

Our design can be implemented equipped with some subsystem requirements. Firstly, the
detection subsystem requires high sensitivity and accuracy, with a minimum detection ac-
curacy of 90% and a false positive rate below 10%. Secondly, the localization subsystem
demands a camera capable of identifying mosquitoes with at least 80% accuracy and pro-
viding real time data to the attack subsystem, which must possess precision mobility and
an effective attractant mechanism for mosquito capture. What’s more, the power and con-
trol subsystem is tasked with stable and efficient power delivery, featuring voltage reg-
ulation, surge protection, and a failsafe mechanism to ensure the seamless operation of
the machine. Collectively, these subsystems form a comprehensive solution for mosquito
detection, tracking, and elimination, emphasizing efficiency, accuracy, and safety.

1.2 Functionality

1.2.1 Detection Subsystem

The detection subsystem is the cornerstone of our mosquito eradication device, designed
to identify the presence of mosquitoes through their unique wingbeat frequency. This
subsystem operates using an acoustic sensor array that captures and processes sound
waves within the 300 to 600 Hz range, which is specific to mosquitoes. By leveraging the
Mel-Frequency Cepstral Coefficient (MFCC) and a machine learning model, the subsys-
tem can discern mosquito sounds with a high degree of sensitivity and accuracy, ensuring
that the device is only activated in the presence of the target species.
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The detection subsystem’s high sensitivity and accuracy are critical for the device’s effec-
tiveness. By accurately identifying mosquito presence, the device can operate efficiently,
conserving energy and resources until needed, directly contributing to the project’s goal
of effective mosquito management.

1.2.2 Localization Subsystem

The localization subsystem builds upon the detection phase by visually identifying the
mosquito’s location using a high-resolution USB camera connected to a Raspberry Pi.
The subsystem employs the Roboflow Train 3.0 model, a state-of-the-art algorithm for
real-time object detection, to pinpoint the mosquito’s position within the camera’s field
of view. This subsystem is capable of adjusting the attack subsystem’s height to align
with the mosquito’s altitude, facilitating a precise and targeted approach.

The localization subsystem’s precision is essential for the device’s ability to navigate to-
wards and capture mosquitoes. By accurately determining the mosquito’s location, the
device can effectively eliminate the target, contributing to the reduction of mosquito-
borne diseases and aligning with the project’s public health mission.

1.2.3 Attack Subsystem

The attack subsystem is tasked with the physical capture and elimination of mosquitoes.
It is equipped with a fan capture unit that generates an airflow to draw in mosquitoes and
a mechanical structure that allows for precise positioning. The subsystem’s mechanical
structure, including the chassis, wheels, and lead screw, enables 360-degree rotation and
accurate movement towards the mosquito’s location. The servo motors and control unit
work in tandem to ensure the device can maneuver effectively for capture. Relation to
Overall Purpose: The attack subsystem’s efficiency and precision are paramount to the
device’s eradication capabilities. By effectively capturing and eliminating mosquitoes, the
subsystem plays a direct role in reducing the mosquito population, thereby addressing
the project’s aim of improving public health and safety.

1.2.4 Power and Control Subsystem

The power and control subsystem is the central hub of the device, ensuring that all other
subsystems function harmoniously. It comprises a control unit based on the Raspberry
Pi, which processes sensory data and formulates commands for the motor control sys-
tem. The motor control system, in turn, generates PWM signals to manage the motors,
enabling the precise movement and positioning of the device. Additionally, the power
supply unit provides a stable and regulated power source, ensuring uninterrupted oper-
ation.

The power and control subsystem is indispensable for the device’s autonomous func-
tionality. It ensures that the device can process sensory data, make informed decisions,
and execute actions to eradicate mosquitoes effectively. This subsystem’s stability and

2



efficiency are foundational to the project’s success in creating a reliable and effective
mosquito control solution.

Figure 1: The overall visual graph of the design: One motor chip powers and controls all
other parts, the microphone works as a trigger to enable the camera and the attacker, then
the main part starts to localize and move to attack the mosquitoes.

1.3 Subsystem Overview

1. The microphone in the detection subsystem must be directly connected to the Rasp-
berry Pi, sensitive and efficient to mosquitoes’ noise, and can also record the sound in the
environment, which means it should trigger the machine only if there is noise caused by
mosquitoes in its working area, and it should distinguish the noise of mosquitoes from
other noises.

2. It is significant for the camera to determine direction of the mosquito once it catches
mosquito in its vision, so that the machine can adjust its moving according to the action
of mosquitoes.

3. We design the attack subsystem only for mosquitoes, it should contain some materials
that can attract them, as well as sucking mosquitoes accurately into itself to make the
work efficiently.

This mosquito eradication machine is designed to detect, locate, attack, and eliminate
mosquitoes autonomously. It comprises four main subsystems, each playing a crucial
role in the machine’s operation and interacting seamlessly with one another to achieve
the goal of mosquito eradication.
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1.3.1 Detection Subsystem

This subsystem, ensuring continuous surveillance, is equipped with an acoustic sensor
array that captures sound waves and processes them to determine if mosquito activity is
detected. The acoustic sensor is capable of distinguishing the unique wingbeat frequency
of mosquitoes, which is typically between 300 to 600 Hz for most species [2]. Upon de-
tecting a mosquito’s presence, this subsystem initiate the machine’s response cycle. This
ensures energy efficiency by only activating the more power intensive components when
necessary.

Figure 2: The frequency plot of some mosquitoes wingbeats noise.

For the microphone, we had bought a microphone for Raspberry Pi 4B, which is designed
for our Raspberry Pi to use. As for the algorithm to distinguish the noise of mosquitoes,
we plan to use the Mel-Frequency Cepstral Coefficient (MFCC) combined with machine
learning model to train. MFCC is a feature extraction method used in audio processing to
represent the short-term power spectrum of a sound, which can also be used to classify
sounds according to the difference in frequency.

1.3.2 Localization Subsystem

For this subsystem, we plan to use the USB camera connected to the Raspberry Pi. This
subsystem integrates advanced image processing algorithms to analyze the captured im-
ages. The camera’s high resolution ensures that even small targets like mosquitoes can be
clearly detected. These images are then processed to identify the mosquito’s location in
the space.

As for the algorithm, We will adopt the existing Roboflow Train 3.0 model for real-time
coordinate detection and recognition of mosquitoes [3]. Comparing to other computer
vision model architectures, the model has accuracy on par as well as faster training and
inference speed.
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Figure 3: Accuracy of Roboflow 3.0. Figure 4: Training time of Roboflow 3.0.

The integrated dataset comes from public datasets online, and we will fine-tune it with
data collected by ourselves. This subsystem’s feedback loop with the attack subsystem
allows for dynamic adjustment of the machine’s position and orientation, optimizing the
capture process.

Taking into account the actual environmental conditions, we will adjust the model’s con-
fidence threshold to ensure that while reducing the false positives of mosquito entities,
we simultaneously increase the accuracy of mosquito detection.

1.3.3 Attack Subsystem

1.3.3.1 Overview
The control system is the central nervous system of the mosquito eradication machine, or-
chestrating the interplay between the power subsystem and the operational components.
It comprises a control unit integrated within the Raspberry Pi, which processes input from
the microphone and camera, and a motor control system that executes the commands to
maneuver the machine. It is crucial for the machine’s primary function of mosquito erad-
ication. It ensures that once a mosquito is detected, the machine can effectively capture
and eliminate it, contributing directly to the reduction of mosquito-borne diseases.

1.3.3.2 Fan Capture Unit
Description: The fan subsystem is a central component of the attack system, designed
to capture mosquitoes. The fan operates to create a airflow that sucks in mosquitoes,
facilitating their capture by the machine.

Interfaces: The fan is connected to the servo motor and is controlled by the control unit
to activate when a mosquito is detected and ready to be captured.

Contribution to Overall Design: The fan’s role in capturing mosquitoes is essential for
the machine’s efficacy. It ensures that once a mosquito is within range, it is effectively
captured, preventing escape and enabling elimination.

1.3.3.3 Mechanical Structure and Positioning Unit
Description: The mechanical structure subsystem includes the chassis, wheels, and lead
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screw that support 360-degree rotation. This subsystem, in conjunction with servo mo-
tors, allows the machine to position itself accurately for optimal mosquito capture

Interfaces: The mechanical structure interfaces with the servo motors through the motor
control system, which receives commands from the control unit via GPIO.

Contribution to Overall Design: The mechanical structure provides the necessary mobil-
ity and precise positioning, ensuring that the machine can effectively capture mosquitoes
from any detected location within its environment.

1.3.3.4 Overall process

Upon startup, the machine system activates its microphone, which immediately begins to
function. Once the microphone detects the sound of a mosquito, the system automatically
triggers the camera and the servo motor that controls the rotation of the lead screw. The
purpose of the servo motor is to rotate the lead screw, with one end connected to the
camera and the other to the mobility wheels. Through the rotation of the lead screw,
the camera is capable of a 360-degree panoramic scan, ensuring that the direction of the
wheels aligns with the camera’s field of view.

When the camera captures an image of a mosquito, the servo motor connected to the
wheels lowers them to the ground. Subsequently, the motor or electric motor associated
with the fan and wheels activates, propelling the wheels towards the target direction that
the camera is focused on, with the fan responsible for capturing the mosquito.

To achieve precise tracking of the mosquito, the two servo motors that control the rotation
of the lead screw and the lifting and lowering of the wheels will receive PWM signals
from the Raspberry Pi based on the mosquito’s position coordinates in the camera’s view,
making corresponding adjustments to ensure that the mosquito remains centered in the
camera’s field of view at all times.

1.3.4 Power and Control Subsystem

1.3.4.1 Overview
The control system is the central nervous system of the mosquito eradication machine, or-
chestrating the interplay between the power subsystem and the operational components.
It comprises a control unit integrated within the Raspberry Pi, which processes input from
the microphone and camera, and a motor control system that executes the commands to
maneuver the machine.

1.3.4.2 Control Unit
Description: The control unit, based on the Raspberry Pi, is responsible for real-time data
processing from the microphone and camera. It runs advanced algorithms to distinguish
mosquito sounds and identify mosquito positions. Based on this processed data, the con-
trol unit formulates commands for the motor control system.
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Interfaces: USB interfaces for connecting the microphone and camera. Serial or I2C com-
munication links with the motor control system for command transmission.

Figure 5: USB circuit of Raspberry Pi.

Contribution to Overall Design: The control system is essential for the machine’s au-
tonomous functionality. It processes sensory data, makes informed decisions, and coordi-
nates the machine’s movements and operational mechanisms, ensuring effective mosquito
eradication.

1.3.4.3 Motor Control System
Description: The motor control system interprets commands from the control unit and
generates appropriate PWM signals to manage the motors. It is responsible for the precise
movement and positioning of the machine, including the rotation of the camera and the
movement of the capture mechanism.

Contribution to Overall Design: The motor control system interprets commands from
the control unit and generates appropriate PWM signals to manage the motors. It is re-
sponsible for the precise movement and positioning of the machine, including the rotation
of the camera and the movement of the capture mechanism.

Interfaces: GPIO pins on the Raspberry Pi are used to generate PWM signals for motor
control.
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Figure 6: GPIO Pins expansion of Raspberry Pi.

PWM signals to servos and motors. Motor driver modules, L298N, interface with the
Raspberry Pi and the motors.

Figure 7: L298N.

1.3.4.4 Power Supply Unit (PSU)
Description: The PSU is the energy source of the machine, consisting of a battery and an
adapter. The battery provides a stable 12V power supply, and the adapter converts this
to the appropriate voltage levels required by each component.

Contribution to Overall Design: The PSU ensures that all components receive a stable
and consistent power supply, which is crucial for reliable operation and performance of
the machine.

Interfaces: Direct connections to the control unit, motor control system, and other pow-
ered components.
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2 Design

2.1 Audio Detection Module

2.1.1 Design Ideas and Algorithm

The detection subsystem forms the first line of our mosquito attack device, leveraging
acoustic data to detect the presence of mosquitoes. Utilizing an microphone to record
sounds, the subsystem captures audio signals within a specific frequency range known
to be characteristic of mosquito wingbeats, which typically lie between 300Hz to 600
Hz.

The detection process starts with audio signal capture via the microphone. The algorithm
processes these audio inputs to extract relevant features that help differentiate mosquito
noises from other ambient sounds. The primary feature extraction method used here is
Mel-Frequency Cepstral Coefficients (MFCC). MFCCs are crucial in this context as they
efficiently represent the power spectrum of audio signals, capturing the essential charac-
teristics needed for mosquito identification. Its calculation formula is as follows:

MFCCs = 20 · log10
(
|FFT (Window · Signal)|2

)
The extracted MFCC features are then utilized to determine the presence of mosquitoes
through a classification process. While the specifics of the model used for classification are
detailed in a subsequent section, it’s important to note that the chosen model processes
these features to accurately identify mosquito-related audio.

The provided code demonstrates the practical application of these methods. Libraries
such as librosa are used for audio processing, specifically for loading audio files and
extracting MFCC features. The extracted features are crucial inputs for the machine learn-
ing model responsible for the final classification of sounds.

1 import l i b r o s a
2 import numpy as np
3

4 def l o a d a n d e x t r a c t f e a t u r e s ( audio path , sample rate =16000) :
5 audio data , = l i b r o s a . load ( audio path , s r=sample rate )
6 mfccs = l i b r o s a . f e a t u r e . mfcc ( y=audio data , s r=sample rate , n mfcc =40)
7 f e a t u r e v e c t o r = np . mean( mfccs , a x i s =1)
8 re turn f e a t u r e v e c t o r

Listing 1: Python code for extracting MFCC features from audio data.

In this snippet, audio files are loaded and processed to extract MFCC features, which
are then averaged across time to create a consistent feature set for each audio clip. This
process ensures that the subsystem can efficiently handle real-time audio data, making
timely and accurate detections possible.

9



2.1.2 Neural Network Description

The detection subsystem utilizes a Convolutional Neural Network (CNN) to classify au-
dio features extracted as Mel-Frequency Cepstral Coefficients (MFCCs), distinguishing
mosquito sounds from other ambient noises.

The CNN architecture comprises:

• Input Layer: Processes input MFCCs, a time-series representation of audio.

• Convolutional Layers: Multiple layers with ReLU activation functions extract pat-
terns from the audio data.

• Pooling Layers: Max pooling layers follow convolutional layers to reduce dimen-
sionality and prevent overfitting.

• Fully Connected Layers: One or more layers that finalize the classification process.

• Output Layer: A softmax activation function provides the probabilities for each
class, enabling a clear classification decision.

Figure 8: The structure of the CNN.

The CNN is trained using a dataset of labeled mosquito and non-mosquito sounds, ad-
justing weights and biases through backpropagation to minimize cross-entropy loss. Op-
timization is performed using algorithms like Adam. The mathematical expression of the
calculation of the CNN can be expressed as:

y = σ (W2 · ReLU (W1 · x+ b1) + b2)

Where:

• x is the input vector (MFCCs).

• W1,W2 are the weights of the first and second layers.

• b1, b2 are biases for the first and second layers.
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• ReLU is the Rectified Linear Unit activation function.

• σ is the softmax function applied at the output layer.

A simplified PyTorch implementation of the CNN is shown below:
1 import torch
2 import torch . nn as nn
3 import torch . optim as optim
4

5 c l a s s CNN( nn . Module ) :
6 def i n i t ( s e l f ) :
7 super (CNN, s e l f ) . i n i t ( )
8 s e l f . conv1 = nn . Conv2d ( 1 , 32 , k e r n e l s i z e =(3 , 3 ) , s t r i d e =(1 , 1 ) ,

padding =(1 , 1 ) )
9 s e l f . conv2 = nn . Conv2d ( 3 2 , 64 , k e r n e l s i z e =(3 , 3 ) , s t r i d e =(1 , 1 ) ,

padding =(1 , 1 ) )
10 s e l f . pool = nn . MaxPool2d ( k e r n e l s i z e =(2 , 2 ) , s t r i d e =(2 , 2 ) )
11 s e l f . f c 1 = nn . Linear (204800 , 128)
12 s e l f . f c 2 = nn . Linear ( 1 2 8 , 2 )
13 s e l f . r e l u = nn . ReLU ( )
14

15 def forward ( s e l f , x ) :
16 x = s e l f . pool ( s e l f . r e l u ( s e l f . conv1 ( x ) ) )
17 x = s e l f . pool ( s e l f . r e l u ( s e l f . conv2 ( x ) ) )
18 x = x . view ( x . s i z e ( 0 ) , −1)
19 x = s e l f . r e l u ( s e l f . f c 1 ( x ) )
20 x = s e l f . f c 2 ( x )
21 re turn x

Listing 2: Simplified CNN architecture implemented in PyTorch.

The trained network is evaluated using accuracy, precision, recall, and F1-score on a sep-
arate validation set, ensuring it meets the project’s requirements for sensitivity and speci-
ficity.

2.2 Computer Vision Module

2.2.1 Design Ideas

The vision subsystem is a pivotal element of our mosquito attack device, employing the
Roboflow 3.0 model for enhanced object detection capabilities. This model facilitates
the identification and tracking of mosquitoes using visual data captured through a cam-
era.

The process initiates with the camera capturing video frames, which are then fed into
the Roboflow 3.0 model. The model utilizes advanced algorithms to process the video
inputs and extract features that are instrumental in distinguishing mosquitoes from their
surroundings. The Roboflow 3.0 model is particularly adept at handling complex visual
patterns and providing high accuracy rates, thanks to its improved training infrastruc-
ture1.
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The Roboflow 3.0 model is trained on a dataset of annotated images, where it learns
to recognize and localize mosquitoes within the frames. The training process involves
fine-tuning the model parameters to achieve optimal performance, with a focus on max-
imizing the mean Average Precision (mAP) at a specific Intersection over Union (IoU)
threshold.

2.2.2 Data Augmentation

The input of the model during training will be the images of 640× 640 pixels, which will
be further augmented based on several strategies to improve training performance shown
as below.

1. Static Crop: This step crops each image to the specified section. After analyzing the
dataset, most of the mosquitoes stays in the middle of the image. To avoid the loss of too
many objects after cropping, the horizontal and vertical range of cropping is set to 15% to
85%.

Figure 9: Original. Figure 10: Cropped.

2. 90° Rotate: This step add 90-degree rotations to help the model be insensitive to camera
orientation. As stated, the environment of the dataset is set to be constant, while the
real situation could be different since our design requires the whole structure to rotate
and move to capture the mosquito. Hence, the step could improve the robustness of the
model.
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Figure 11: Preprocessed. Figure 12: Clockwise. Figure 13: Counter-
clockwise.

3. Brightness: This step add variability to image brightness to help the model be more
resilient to lighting and camera setting changes, since the time as well as environment
may affect the brightness of the captured image. Both brighten and darken images are
considered and brightness is set to −15% to 15%.

Figure 14: 0%. Figure 15: -15%. Figure 16: 15%.

After data augmentation, the amount of the dataset is doubled to 2258 in total, and is
further split to the fraction: 85%, 10%, 5%, as the train-valid-test set. The training graphs
of essential metrics are shown below. Comparing to other State-of-art object detection
model, our model has performance on par after data augmentation based on mAP (mean
Average Precision ) score, which is given by

mAP =
1

n

n∑
k=1

APk

.
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Figure 17: mAP and mAP@50:95 score

Figure 18: Box Loss. Figure 19: Object Loss.

2.2.3 Inference Acceleration

Design issue:

One of the greatest challenging we are facing in Localization subsystem is the time taken
for processing each frame was higher than desired, leading to delays in mosquito detec-
tion. This was quantified by the latency equation.

L =
1

N

N∑
i=1

(tresponse,i − trequest,i)

where L is the average latency, N is the number of requests, and tresponse,i and trequest,i are
the response and request times for the i-th inference. Due to the performance constraint
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of Raspberry Pi 4B, object detection models with large number of parameters such as
YOLOv8, which we desired to use at the beginning, are abandoned.

Corrective Actions Taken:

The first measurement is to adopt model with fewer parameters, which we have men-
tioned above as Roboflow Train 3.0, which has faster speed in training and inference.

Another way is to use inference server service using Python package inference and set
up our own Self-Hosted Inference Server. The basic principle diagram of inference server
is illustrated as below.

Figure 20: The diagram of using inference over HTTP.

Our linux server works on a Ubuntu 22.04 server with 64bit and a dual-core CPU of
2 threads and is set up in Shanghai, so that there will not be too much latency due to
internet connection. The overall latency can be quantified as:

Lserver =
1

N

N∑
i=1

(tresponse server,i − trequest server,i + Internet latency)

Figure 21: CPU information.

Since the direct distance from ZJUI to Shanghai is within 100 km, the internet latency can
be calculated as

Linternet =
s

v
=

100km
300, 000km/second

≈ 0.4ms

.

Although, according to the real situation the latency may not be ideal, it’s still acceptable
comparing to deploy the model locally on Raspberry Pi.
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Design Details:

On the server, we install Docker firstly, set up and install and Inference server using:
1 pip i n s t a l l in ference − c l i && i n f e r e n c e server s t a r t

On the edge device, i.e., Raspberry Pi, we first connect the server and the device using
SSH on port 9001 which inference server automatically open:

1 ssh −N − f −L l o c a l h o s t : 9 0 0 1 : 0 . 0 . 0 . 0 : 9 0 0 1 root@Public IP

and run the following Python code on Raspberry Pi:
1 from i n f e r e n c e s d k import InferenceHTTPClient
2

3 # i n i t i a l i z e the c l i e n t
4 CLIENT = InferenceHTTPClient (
5 a p i u r l =” http :// l o c a l h o s t : 9001 ” ,
6 api key=” api key given by Roboflow”
7 )
8

9 srcimg = CLIENT . i n f e r ( frame , model id=”model id given by Roboflow” )

Listing 3: Python code to run the model on edge devices.

where we can get the result coordinates as well as the width and height of the bounding
box in srcimg[’predictions’].

2.3 Movement and Rotation Module

The Movement and Rotation Module is a critical component of our mosquito detec-
tion and elimination system. This module’s primary objective is to facilitate precise ma-
neuvering and positioning of the machine, enabling it to effectively track and approach
mosquitoes for capture.

The core of this module’s operation lies in its integration with the Roboflow object de-
tection algorithm and custom-designed bounding box detection. These technologies are
utilized to determine the position of mosquitoes within the captured images, a process
crucial for directing the system’s movements accurately.

To control the machine’s movement, PWM (Pulse Width Modulation) signals are sent
to the motors based on the positional data provided by the detection algorithms. This
setup allows for dynamic adjustment of motor speeds, ensuring optimal movement pat-
terns for approaching the target. The module controls three omnidirectional wheels, en-
abling advanced maneuvers such as forward movement, turning, and on-the-spot rota-
tion. These capabilities are essential for the system’s operational efficiency, especially in
environments with complex obstacle layouts.

2.3.1 Configuration Space Calculation

The primary goal is to keep the mosquito centered within the camera’s view, facilitating
effective tracking and eventual capture.

16



Design Procedure:

In the mosquito tracking system, the configuration space is defined by the camera’s field
of view, which measures 640 × 480 pixels. The motor adjustments are determined based
on the detected position of the mosquito within this field:

Figure 22: Visual Detection Boundary of Camera View.

• Mosquito Detection: Using a USB camera connected to a Raspberry Pi, the sys-
tem captures real-time video footage. The video frames are processed using the
Roboflow model, a robust object detection algorithm, to identify and locate mosquitoes
with high accuracy.

• Position Extraction: From the detection, the bounding box coordinates (x, y, w, h)
are derived, where (x, y) represents the center of the bounding box and (w, h) is
the width and height. These coordinates help in determining the mosquito’s precise
location in the frame.

• Adjustment of Motor Speed: Based on the mosquito’s position x relative to the
center of the image. the system calculates necessary adjustments in motor speeds.
The objective is to align the mosquito’s position with the center of the camera’s field,
optimizing tracking and positioning.

Design Details:

The operational logic is as follows:

Mosquito Position Analysis

• Center Extraction: The center (x, y) of the bounding box is used to determine the
mosquito’s current position.
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1 x , y , w, h = i n t ( p r e d i c t i o n [ ’ x ’ ] ) , i n t ( p r e d i c t i o n [ ’ y ’ ] ) ,
2 i n t ( p r e d i c t i o n [ ’ width ’ ] ) , i n t ( p r e d i c t i o n [ ’ height ’ ] )
3 cv2 . r e c t a n g l e ( frame , ( x , y ) , ( x + w, y + h ) , ( 0 , 255 , 0 ) , 2 )
4 cv2 . putText ( frame , f ” { ’ mosquitoes ’} { p r e d i c t i o n [ ’ conf idence ’ ] : . 2 f }” ,
5 ( x , y − 10) , cv2 . FONT HERSHEY SIMPLEX, 0 . 5 , ( 0 , 255 , 0 ) , 1 )

Listing 4: Bounding Box Coordinates.

• Relative Position Calculation: Calculates how far x is from the image’s midpoint
to determine necessary motor adjustments.

Motor Speed Adjustment

• Adjustment Factor Calculation:

Speed Adjustment = Specific Speed −
( |xposition − xmid|

xmid
× Specific Speed

)
Where xmid is the midpoint of the image width, and xposition is the horizontal position
of the mosquito. This notation clearly defines the adjustment needed based on the
mosquito’s position relative to the center of the camera’s field of view.

• Motor Control:

– If xposition < mid point, decrease left motor speed and increase right motor
speed to turn left.

– If xposition > mid point, increase left motor speed and decrease right motor
speed to turn right.

1 i f x p o s i t i o n < mid point :
2 speed pct a = s p e c i f i c s p e e d − ( ( ( mid point − x p o s i t i o n ) * 2 /
3 image width ) * s p e c i f i c s p e e d )
4 speed pct b = s p e c i f i c s p e e d
5 e l i f x p o s i t i o n > mid point :
6 speed pct a = s p e c i f i c s p e e d
7 speed pct b = s p e c i f i c s p e e d − ( ( ( x p o s i t i o n − mid point ) * 2 /
8 image width ) * s p e c i f i c s p e e d )
9 e l s e :

10 speed pct a = s p e c i f i c s p e e d
11 speed pct b = s p e c i f i c s p e e d

Listing 5: Code for speed control.

• Speed Application: Adjustments to the PWM signals are dynamically applied to
control motor speeds.

Real-Time Feedback Loop

• Continuous Monitoring and Adjustment: The device continuously adjusts based
on real-time video and mosquito movement, enhancing tracking accuracy.

This balance between speed and precision ensures effective tracking and response to
mosquito movements within the visual field.
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2.3.2 Finite State Machine Design

The different states of the machine dealing with different situations can be expressed as a
Finite State Machine.

Initialize

MonitoringTracking

Shut down

Proceed

No mosquitoes < 10s
Mosquitoes in View

No mosquitoes > 5s

Stop No mosquitoes > 10s

Mosquitoes in View/
No mosquitoes < 5s

1. Initialization State:

• Functionality: Sets up GPIO for motor control, initializes PWM signals, and
configures the camera and detection model.

• Transitions: Proceeds to the ”Monitoring” state after setup.

2. Monitoring State:

• Functionality: The machine will continuously circle around to captures frames
and look for mosquitoes.

• Transitions:

– Moves to ”Tracking” if a mosquito is detected.

– Moves to ”Shutdown” if there is no mosquitoes detected for 10s or on er-
rors.

3. Tracking State:

• Functionality: One wheel stops, one of the other two wheels reverses the di-
rection of rotation, and the car begins to go straight and adjusts the speed of
motors based on the mosquito’s position to center it in the camera’s view.

• Transitions:

– Remains in this state while the mosquito is in view.

– Returns to ”Monitoring” if the mosquito leaves the view for more than 5s.
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– Moves to ”Shutdown” on stop conditions.

4. Shutdown State:

• Functionality: Cleans up resources, stops motors, and prepares the system for
shutdown.

• Transitions: Terminal state with no further transitions.

2.3.3 PWM Design

Overview:

In the Movement and Rotation Module, Pulse Width Modulation (PWM) is utilized to
control the speed and direction of motors based on the detected position of mosquitoes.
By varying the duty cycle of the PWM signals sent to each motor, the system dynamically
controls the device’s movement, achieving precise positioning for optimal tracking.

Design Procedure:

The duty cycle in PWM is controlled by adjusting the duration of the high signal within
each pulse relative to the total pulse duration. A higher duty cycle increases the motor
speed, enabling quicker turns and faster reaction to mosquito movements.

Design Details:

Calculation of PWM Duty Cycle

The duty cycle for each motor is adjusted based on the deviation of the mosquito from
the center of the camera’s view. The formula used is:

Duty Cycle(%) =

(
Specific Speed − Adjustment Factor × Specific Speed

Maximum Speed

)
× 100

where:

• Specific Speed is the speed required based on the mosquito’s movement.

• Adjustment Factor is calculated from the positional deviation:

Adjustment Factor =
|xmid − xposition|

1
2
× Image Width

Sending PWM to Motors

Once the duty cycle is determined, it is applied to the motors using:

GPIO.PWM(pin, frequency).ChangeDutyCycle(duty_cycle)

This command controls the motor speed by adjusting the PWM duty cycle. The precise
control of PWM signals to the motors ensures effective tracking of mosquitoes. This ca-
pability allows the device to align perfectly with the mosquito’s position, optimizing the
tracking and actions taken by the system.
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2.4 Control and Integrated Module

2.4.1 Deployment of the audio detection to Raspberry Pi

The deployment of the neural network model to a Raspberry Pi involves transferring the
pre-trained model and setting up real-time audio processing. The following steps and
corresponding code illustrate how this is achieved:

The pre-trained model is transferred to the Raspberry Pi using PyTorch’s functionality.
The weights are saved in a .pth or .pt file and loaded on the Raspberry Pi as fol-
lows:

1 model path = ’ m o s q u i t o s o u n d c l a s s i f i e r . pth ’
2 model . l o a d s t a t e d i c t ( torch . load ( model path , map location=torch . device ( ’ cpu ’ ) )

)
3 model . eval ( ) # Set the model to evaluat ion mode

Listing 6: Loading the model on Raspberry Pi.

• torch.load: Loads the model, ensuring compatibility with the CPU environment
of the Raspberry Pi.

• model.eval(): Sets the model to evaluation mode, which is necessary for infer-
ence as it disables training-specific layers like dropout.

Audio data is processed in real time, and the extracted features are used for classification.
The function below handles the real-time prediction:

1 def predic t audio ( audio path ) :
2 f e a t u r e v e c t o r = l o a d a n d e x t r a c t f e a t u r e s ( audio path )
3 f e a t u r e t e n s o r = torch . from numpy ( f e a t u r e v e c t o r ) . f l o a t ( ) . unsqueeze ( 0 )
4 with torch . no grad ( ) :
5 outputs = model ( f e a t u r e t e n s o r )
6 , predic ted = torch . max( outputs . data , 1 )
7 re turn predic ted

Listing 7: Python function for real-time audio prediction.

• load and extract features: Extracts MFCC features from the audio file.

• torch.no grad(): A context manager that disables gradient computation to speed
up predictions and reduce memory usage.

• torch.max(outputs.data, 1): Determines the predicted class by identifying
the class with the highest probability.

The following equation models the real-time feature extraction and prediction pipeline,
which is crucial for deployment on the Raspberry Pi.

ŷ = fCNN(fMFCC(audio signal))

Where:

• fMFCC is the function extracting MFCC features from the audio signal.
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• fCNN is the CNN model function for prediction.

• audio signal is the input audio data.

• ŷ is the predicted output.

These steps encapsulate the process of deploying a neural network model on a Rasp-
berry Pi, emphasizing efficient model loading and real-time processing for mosquito de-
tection.

2.4.2 Deployment object detection model to Raspberry Pi

Lightweight and Cloud-based Computing

The use of Roboflow enhances this deployment by simplifying the model integration
and management process, making sophisticated machine learning accessible on resource-
constrained devices.

One of the ingenious aspects of this deployment is the utilization of a cloud inference
server, which allows for real-time processing without the latency and bandwidth costs
associated with local computing. This is particularly beneficial for applications that re-
quire immediate response times.

1 r f = roboflow . Roboflow ( api key= ’yAN6VfQfUQChP8X8xIaH ’ )
2 p r o j e c t = r f . workspace ( ) . p r o j e c t ( ” dstardust ” )
3 l o c a l i n f e r e n c e s e r v e r a d d r e s s = ” http :// l o c a l h o s t :9001/ ”
4 version number = 2
5

6 loca l model = p r o j e c t . vers ion (
7 version number=version number ,
8 l o c a l = l o c a l i n f e r e n c e s e r v e r a d d r e s s
9 ) . model

Listing 8: The deployment on the server of the Roboflow model

Adaptive Frame Processing

The system dynamically calculates and displays the frames per second (FPS), which not
only provides a real-time performance metric but also allows for adaptive adjustments.
For instance, the processing detail or frequency could be scaled based on the current FPS,
thus maintaining a balance between speed and accuracy, is essential for varied real-world
scenarios.

1 counter = 0
2 s t a r t t i m e = time . time ( )
3 capture = cv2 . VideoCapture ( 0 )
4 re t , frame = capture . read ( )
5 fps = capture . get ( cv2 . CAP PROP FPS )
6 while r e t :
7 counter += 1
8 i f ( time . time ( ) − s t a r t t i m e ) != 0 :
9 cv2 . putText ( frame , ”FPS {0}” . format ( f l o a t ( ’ %.1 f ’ % ( counter / ( time .

time ( ) − s t a r t t i m e ) ) ) ) , ( 3 0 , 50) ,
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10 cv2 . FONT HERSHEY SIMPLEX, 1 , ( 0 , 0 , 255) ,
11 2)
12 re t , frame = capture . read ( )
13 p r i n t ( ”FPS : ” , counter / ( time . time ( ) − s t a r t t i m e ) )
14 counter = 0
15 s t a r t t i m e = time . time ( )

Listing 9: Video Capture and Frame Processing

Customizable Detection Parameters

srcimg = local_model.predict(image_path=frame, overlap=50,
confidence=60)

The deployment design includes customizable parameters for the detection process, such
as overlap‘ and ‘confidence‘ levels. This flexibility allows users to fine-tune the model
based on the specific requirements of their deployment environment, which could vary
significantly in terms of object size, lighting conditions, and required detection sensitiv-
ity.

Real-time Interactivity and Feedback Loop

The system is designed to provide immediate visual feedback through an annotated video
stream, which is essential for user interaction and for tasks requiring instant decision-
making.

1 f o r p r e d i c t i o n in srcimg . j son ( ) [ ’ p r e d i c t i o n s ’ ] :
2 x , y , w, h = i n t ( p r e d i c t i o n [ ’ x ’ ] ) , i n t ( p r e d i c t i o n [ ’ y ’ ] ) , i n t ( p r e d i c t i o n [ ’

width ’ ] ) , i n t ( p r e d i c t i o n [ ’ height ’ ] )
3 cv2 . r e c t a n g l e ( frame , ( x , y ) , ( x + w, y + h ) , ( 0 , 255 , 0 ) , 2 )
4 cv2 . putText ( frame , f ” { ’ mosquitoes ’} { p r e d i c t i o n [ ’ conf idence ’ ] : . 2 f }” ,
5 ( x , y − 10) , cv2 . FONT HERSHEY SIMPLEX, 0 . 5 , ( 0 , 255 , 0 ) , 1 )
6 cv2 . imshow ( ” video ” , frame )

Listing 10: Model Prediction and Annotation

The ‘predict‘ method of the local model is called with each frame, demonstrating how
real-time detection is implemented. The system annotates detected objects in the video
stream and displays these annotations in real time, highlighting the application’s interac-
tivity and immediacy.

2.4.3 Connection and Control of Motors

The L298N motor driver is commonly used for controlling motors in robotics due to its
ability to drive two motors simultaneously and support motor directions with a high
current output. In this design, a Raspberry Pi is used to control the motors through the
L298N, enabling precise manipulation of motor speeds and directions based on real-time
data processing from a camera.

Circuit Configuration
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The GPIO (General Purpose Input/Output) pins of the Raspberry Pi are utilized to in-
terface with the L298N motor driver. The motor driver’s input pins (INT1 to INT8) are
connected to specified GPIO pins on the Raspberry Pi, which allows for controlling up to
four motors (two motors with bidirectional control).

1 GPIO . setmode (GPIO .BOARD)
2 INT1 , INT2 , INT3 , INT4 , INT5 , INT6 , INT7 , INT8 = 11 , 12 , 13 , 15 ,
3 29 , 31 , 32 , 35
4 ENA, ENB, ENC = 16 , 18 , 33

Listing 11: Codes for Pin Connections

(a) Schematic diagram of circuit connection (b) L298N and Raspberry PI connection diagram

Figure 23: Two kinds of circuit diagrams of L298N

L298N Motor Driver and GPIO Pins

• High Current Capability: The L298N motor driver can handle up to 2A per
channel, which is sufficient for a wide range of DC motors used in robotics. This
makes it an excellent choice for projects that require driving motors with significant
power demands.

• Dual-Channel Support: The L298N can control two motors independently with
one single IC. This feature is particularly useful for driving both wheels of a robotic
vehicle, allowing for individual control of each wheel which is necessary for ma-
neuvers such as turning and pivoting.

• Built-in Protective Features: The L298N includes internal clamp diodes
that protect the driver from inductive voltage spikes, which are common when driv-
ing motors. This built-in protection helps to prolong the life of both the motor and
the driver.

• Versatility and Ease of Use: It is compatible with a wide range of micro-
controllers and supports standard logic levels for inputs, making it widely compat-
ible and easy to integrate into various projects.
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• Customization: Using GPIO pins, we can customize the behavior of your robotics
system extensively. Each pin’s behavior can be individually defined, allowing com-
plex control logic that can be adapted to a wide range of scenarios and tasks.

Figure 24: L298N and its pins.

Variable and Constant Speed Control

PWM signals

• Speed adjustment: PWM allows for precise control over the speed of motors. By
adjusting the duty cycle of the PWM signal (the proportion of time the signal is high
versus the total time of the signal), you can vary the average voltage being applied
to the motor. This control is essential for tasks that require different speeds.

• Efficiency: Using PWM for motor control is energy efficient. Instead of applying
constant voltage, PWM sends short bursts of energy. This can reduce the energy loss
in the form of heat, especially in scenarios where the motor does not need to run at
full power continuously.

• Simplicity and Cost-effectiveness: Implementing PWM with digital con-
trollers like the Raspberry Pi is straightforward and does not require complex cir-
cuitry or expensive components, which can be crucial for keeping project costs and
complexity manageable.

Jumper Caps

• Direct Connection: If the application such as the fan does not require variable
speed control for the motors, I simplify the setup by using jumper caps. Placing a
jumper cap on the ENA and ENB pins will supply them with a constant high signal,
effectively running the motors at full speed whenever they are powered.

• Simplicity: This method is simpler as it does not require programming the Rasp-
berry Pi to handle PWM signals.
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• Reliability: Fewer connections and simpler code reduce the potential for errors
and troubleshooting.

• Power Efficiency: Running motors at full speed without modulation can be
suitable for applications where the load and speed requirements are constant and
predictable.

2.5 Mechanical Structure

2.5.1 Design description and drawings

The mechanical structure has been greatly improved since the design document. We
need it to be concise and easy to manufacture while implementing functions such as self-
rotation, straight movement, and turning. As shown in Figure 25, we use acrylic layers
and copper pillars to build the body of the machine and three omni wheels to control
its movement, based on the principle of force balance. For self-rotation, all three wheels
rotate at the same speed and in the same direction. For straight movement, one wheel’s
speed is set to zero, while the other two wheels rotate at the same speed but in opposite
directions.

Figure 25: CAD model.

The current design significantly reduces mechanical and electrical complexity. Once the
mosquito is detected to exist, the machine will rotate by itself to provide the camera with
a 360-degree view; once the mosquito is localized, the machine will move towards it by
issuing different commands to the three wheels.
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Figures 26 to 28 depict CAD drawings of the mechanical system. The system has few
components. The top and bottom layers of the cart are made by laser-cutting acrylic
boards. All electrical components will be taped to the acrylic boards. Three omni wheels
have been purchased, and Figure 4 provides its drawing.

Figure 26: Drawing for the bottom layer.

Figure 27: Drawing for the top layer.
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Figure 28: Drawing for the omni wheel.

2.5.2 Simulation results

In summary, simulation results indicate that our mechanical design is theoretically safe.
The stress distribution provides suggestions on where to place weight during physical
testing.

The material for the top and bottom layers is 3 mm acrylic. For the bottom layer, we
assume a downward force of 5 N at each hole and a moment of 1 N*mm. The maximum
stress observed is 0.094 MPa, which is below the yield stress of acrylic (40 MPa). It is
notable that the maximum stress occurs at three edges; therefore, if weight is to be added
to the board, it is advisable to place it in the dark blue area.

Figure 29: Simulation results for the bottom layer.

Regarding the top layer, we assume a downward force of 2.5 N and a moment of 1 N*mm.
While the overall stress is higher than that of the bottom layer, it still does not exceed the
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yield stress. Interestingly, the different geometry provides insights into where weight
should be placed. Unlike the triangular bottom layer, the circular top layer exhibits a
distinct stress distribution.

Figure 30: Simulation results for the top layer.

I also conducted a simulation analysis for the shaft, as shown in Figure 13. The material
used is stainless steel, with a yield stress of 250 MPa. This analysis is for the scenario
involving a quick turn, resulting in a torque of 5 N*mm being exerted on it. The maximum
stress observed is 0.234 MPa, indicating that it is well within the safe range.
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Figure 31: Simulation results for shaft.

2.5.3 Design alternatives

As seen in Figure 32, we manufactured and built the first physical model. During testing,
we found that electrical components were crowded at the bottom layer, which was very
messy. Another issue was that the bottom layer was large compared to those three wheels.
Though the acrylic board can withstand the weight, it was deformed, resulting in the
three wheels not holding a vertical angle with the ground. There were also issues with
the way the motor was fixed because screws and nuts would loosen during moving.
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Figure 32: Physical model during the first test.

To address these issues, we improved the design. We made the machine in three layers
while reducing the size of the bottom layer. The drawings for the three acrylic layers are
shown in Figures 33 to 35. We added a support and ball bearing underneath the bottom
layer to overcome the deformation, as seen in Figure 36. The connection between the
motor and acrylic board is made using 502 glue. The overall appearance of the machine
is shown in Figure 36.

Figure 33: Drawing for the bottom layer.
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Figure 34: Drawing for the middle layer.

Figure 35: Drawing for the top layer.
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Figure 36: Bottom layer with support and ball bearing added.

Figure 37: Appearance of the design alternative.
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3 Cost and Schedule

3.1 Cost Analysis

3.1.1 Cost of labor

We take the average salary of UIUC graduates as our hourly wage, which is $20 per hour.
Assume our team works three hours a day and five days a week, and there are 13 weeks
to work. So, the total labor is $20× 3× 5× 13× 2.5× 4 = $39000.

3.1.2 Cost of parts

Part # Description Manufacturer Quantity Cost

1 Raspberry Pi 4B plus
camera

Raspberry Pi Foundation 1 589 RMB

2 Arduino Development
Board ATMEGA16U2

ArduinoLLC 1 80 RMB

3 Microphone for Rasp-
berry Pi 4B

ArduinoLLC 1 9 RMB

4 Small fan Telesky 1 7 RMB

5 Single chip small car Beikemu 1 30 RMB

6 Bogie Boxi 1 90 RMB

7 L298N STMicroelectronics 1 6 RMB

8 Delipow 18650 lithium
battery pack

Delipow 1 46 RMB

9 1080P Camera Linboshi 1 196 RMB

10 printed PCB & compo-
nents

JLC Technology Group 1 57 RMB

11 ball bearing Tao Factory 1 3 RMB

Total 1113 RMB

Table 1: Cost Table.
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3.1.3 Sum of Costs

The grand total costs is approximately $40000.

3.2 Schedule
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Week Xiangmei Chen Peiqi Cai Yang Dai Lumeng Xu

3/25 Finish CAD model version
1. Finish purchases. Laser
cut major parts.

Set up the running en-
vironment of Yolov8 on
raspberry pi, and deploy
the Yolov8 model.

Improve the YOLOv8 al-
gorithm and start work on
PCB design.

Research and iden-
tify a suitable dataset
for mosquito wingbeat
sounds, download and
organize the dataset for
further processing.

4/1 Assemble things together
and test stability.

Ensure that the micro-
phone is properly con-
nected to the Raspberry Pi
and set up the audio pro-
cessing software to cap-
ture sound data.

Research on the codes
and algorithms to perform
data augmentation on the
visual and audio datasets.

Begin coding the neural
network architecture for
sound classification and
implement preliminary
training using a portion of
the dataset.

4/8 Test motor to see if the
cart can move, revolute,
and move up and down.
Refine CAD if needed.
Add features by 3D print-
ing. Work on individual
progress report.

Develop or adapt existing
software to process the
audio input from the
microphone and detect
mosquito sounds.

Collect and organize
actual image and audio
datasets and perform data
augmentation on them.

Continue training the neu-
ral network with the full
dataset. Validate the neu-
ral network’s performance
using a separate validation
dataset.

4/15 Cooperate with detection
subsystem and localiza-
tion subsystem.

Create a program that can
generate PWM signals to
control the speed and di-
rection of the motors con-
nected to the servos.

Label the new datasets
with a more complex
background and train the
model on them.

Connect the microphone
to the Raspberry Pi. Set
up the audio processing
software to capture sound
data accurately and test
microphone functionality
and ensure high-quality
audio input.

4/22 Test the entire system.
Add features by 3D print-
ing or laser cutting if
needed.

Build a PWM generation
program on Raspberry Pi,
responsible for sending
PWM signals to the servos
based on the mosquito’s
position in the camera’s
field of view.

Research on the codes and
algorithms to locate the
target based on the images
feedback from Raspberry
Pi.

Conduct tests with new,
unseen sounds to verify
the neural network’s ac-
curacy and begin integrat-
ing the neural network
into the real-world envi-
ronment for initial testing.

4/29 Make sure that the entire
system is robust.

Calibrate the system for
mosquito tracking, ensure
that the camera and mo-
tors work in harmony.

Build the interfaces for the
Roboflow 3.0 to control the
rotation information con-
tained in PWM, based on
the target position.

Collaborate with the team
on the design of the at-
tacking subsystem and be-
gin manufacturing or pro-
totyping components for
the subsystem.

5/6 Work on final report draft. Develop or implement
an algorithm that uses
the mosquito’s position
data to control the motors,
keeping the mosquito
centered in the camera’s
view.

Test the performance of
the localization subsystem
in normal cases.

Finalize the design of the
attacking subsystem, inte-
grate the neural network
into the system for real-
time mosquito detection
and response.

5/13 Work on demo and revi-
sion of individual report.

Test the system compo-
nents individually.

Collaborate with other
teammates with the test-
ing on the components.

Test each component of
the system individually to
ensure proper functional-
ity and identify and ad-
dress any issues that arise
during testing.

5/20 Prepare presentation and
final report.

Ensure that the Raspberry
Pi and all connected com-
ponents are properly pow-
ered, and optimize power
usage for efficient opera-
tion, especially if the sys-
tem is battery-operated.

Ensure the performance of
the device and make re-
finement on logic bugs.

Ensure the code can be run
correctly and the connec-
tion of all parts are correct,
check for overall integra-
tion.

Table 2: Schedule of the project.
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4 Requirements and Verification

4.1 Audio Detection Module

4.1.1 Model Training Accuracy

Requirements: The machine learning model must correctly identify mosquito sounds
with an accuracy of at least 85%.

Verification: Prepare some test datasets consisting of non-mosquito sounds. Executing
the model and recording outcomes to calculate accuracy (A):

A =
Correct

Total
;

where Correct is the number of labels where the outcome equals to the predicted, and
Total is the number of all outcome labels. We need to ensure A ≥ 85%.

Results: We chose three datasets containing different pronunciations of English words
”cat”, ”dog” and ”bird” and imported them into our model to test, and all the three accu-
racy are 90% or so, which is above our requirement.

Figure 38: Testing Accuracy Result of Audio Detection Module.

4.1.2 Audio Processing and Detection Latency

Requirements: The total time from mosquito sound detection by the microphone to the
identification of the sound by the software should not exceed 25 seconds. This ensures
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timely activation of the subsequent subsystems for effective mosquito targeting and erad-
ication.

Verification:

1. Record the timestamp t0 when mosquito sound is detected by the microphone.

2. Record the timestamp t1 when the audio capture finishes.

3. Record the timestamp t2 when mosquito detection is confirmed.

4. Calculate Ttotal = t2 − t0 for each trial and ensure Ttotal ≤ 10 seconds.

We need:
1

n

n∑
i=1

Ttotal,i ≤ 10 seconds

where n is the number of trials.

Results: We tested the code with different audio files, containing mosquito sounds and
non-mosquito sounds, for 15 times, and the average timestamp duration is 22.4s.

4.2 Computer Vision Module

4.2.1 Model Metrics

Requirements: The Roboflow 3.0 model must correctly identify at least 90% of mosquitoes
in the validation dataset with a precision of 85% or higher and a recall of 85% or higher.

Verifications: Process the captured images with the Roboflow 3.0 model. Document the
number of mosquitoes identified, false positives, and false negatives. Calculate the pre-
cision and recall with different confidence based on the documented data and the for-
mula

Precision =
TP

TP + FP
, and Recall =

TP

TP + FN

Also, use other metrics such as Mean Average Precision (mAP) to determine the perfor-
mance and the value of confidence, where

mAP =
1

n

n∑
k=1

APk

Results: The training results shows sufficient performance of the model, where precision
and recall reach 88.2% and 87.4% for the best checkpoint. The map also reaches 90.5% in
this version.
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Figure 39: Training Metrics Result of Roboflow 3.0 Object Detection model.

By adjusting the Confidence Threshold given by Roboflow, the confidence we would
like to use will be between 0.2-0.3, where both precision and recall have great perfor-
mance.

Figure 40: Precision and recall of the model given confidence threshold of 0.2.

Figure 41: Precision and recall of the model given confidence threshold of 0.3.

4.2.2 FPS and Inference Latency

Requirements: The inference speed should be fast enough so that the control unit is able
to receive 3-4 frames per second.

Verifications: Build the SSH tunnel connection between Raspberry Pi and inference server
and transfer the image to the server to infer. Calculate the frames per second (FPS)
by:

FPS =
1

end time− start time

where end time − start time is the time interval for each time the control unit reads a
frame. Calculate the average FPS by averaging the processing time across 15-20 frames
and verify if the average FPS meets the real-time processing constraint.

FPSavg ≥
1

Tmax
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where FPSavg is the average frame rate and Tmax is the maximum constrained inference
time that is sustainable for attack subsystem.

Results: After transferring the image to the inference server, received the inferred result
and calculate the inference time, we get the FPS result for the 18 samples as follows.

Figure 42: FPS of the image captured for 18 samples.

where we get the average FPS FPSavg =
∑

FPSi ≈ 5.11 frames per second, which is
above our requirements.

4.3 Movement and Rotation Module

4.3.1 Camera Activation Time Delay

Requirements: The camera system must activate within 10 seconds of the audio trig-
ger.

Verification: The camera system must activate and begin scanning within 10 seconds of
the audio detection trigger,

Tact ≤ Tmax = 10 s

with Tact being the activation time and Tmax the maximum allowable time.

Results: After testing our model for ten times, we measured the time duration between
the detection of mosquitoes by audio detection part and the moment when the camera
view appeared on the screen of computer, and calculated the average time duration by
the formula

Tavg =
1

n

n∑
i=1

Tact = 4.2s
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where n is 10, and the result shows that our camera time delay meets the requirement.

4.3.2 Servo Motor Response

Requirements: Servo motors must respond within 0.5 seconds of a control signal.

Verification: Servo motors must respond to control signals within 0.5 seconds, ensuring
immediate adjustment of camera positioning,

Tres ≤ Tres,max = 0.5s

where Tres is the servo motor response time .

Results: After testing our model for ten times, we measured the time duration between
the signal received moment at the Raspberry Pi from the state at the camera and the mo-
ment when the motor started to act accordingly, and calculated the average time duration
by the formula

Tavg =
1

n

n∑
i=1

Tres = 0.48s

where n is 10, and the result shows that our motor response time meets the require-
ment.

4.3.3 Car Rotation Sensitivity

Requirements: The car must complete a 360-degree rotation with all the equipment on it
at different velocities.

Verification: The car must be capable of a full 360-degree rotation to scan the entire envi-
ronment of different levels of determined velocities,

ω =
∆θ

∆t
=

360◦

∆t

with ω being the rotational speed, ∆θ the angle of rotation, and ∆t the time taken. And
we have different ω.

Results:

4.4 Control and Integrated Module

4.4.1 Battery for Stable Power Supply and Switch

Requirements: The battery must provide a stable 12V power supply to the control unit
and other components of the machine. And the PCB must convert the 12V DC from the
battery into 5V for the power supply of Raspberry Pi.

Verification: Open the switch of battery and make the machine to operate normally with-
out other electricity sources for nearly 2 minutes to see whether the machine can work
without bugs.

Results: The machine can work well for more than 2 minutes.
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4.4.2 Motor Control for Movement and Capture

Requirements:The motor control system, managed by the Raspberry Pi, must send sig-
nals to the GPIO-connected motors to enable precise movement and positioning, includ-
ing the motion of wheels and activation of the fan for mosquito capture.

Verification: To verify the precision of the motor control system, the response time (Tr)
was measured to be 0.2 seconds, calculated using the formula
Tr = Time from signal sent to motor start moving. The precision (P) of the motor’s posi-
tioning was calculated as P = Expected Position−Actual Position

Expected Position and resulted in 98.5%. The average
precision (Pavg) over multiple tests was 98.2%, calculated using Pavg = Sum of all Precision values

Number of tests .
These results confirm that the motor control system meets the requirement for precise
movement and positioning.

Results:
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5 Conclusion

5.1 Accomplishments

Our machine successfully detects, localizes, and captures mosquitoes within a 2-meter
range. It utilizes a microphone and camera, guided by machine learning models, to de-
tect and track mosquitoes. The machine features a mechanical structure with 360-degree
rotation capability and a fan unit for effective mosquito capture. These capabilities are
made possible by a power and control subsystem with a useful PCB that provides sta-
ble power and coordinates operations through a Raspberry Pi control unit. Overall, our
design almost meets our requirements and can effectively deal with mosquitoes.

5.2 Uncertainties

5.2.1 Uncertainty in Localization Subsystem

1. Camera Resolution and Field of View (FoV): The high-resolution USB camera’s per-
formance may be affected by lighting conditions and lens cleanliness. For instance, if
there are reflections in the camera’s FoV or dust on the lens, it could reduce localization
accuracy.

Assuming optimal conditions, pixel density might be 300 PPI (Pixel Per Inch). Under ad-
verse conditions (e.g., lens dirt or poor lighting), effective pixel density could drop to 150
PPI, potentially doubling the error margin in localization. The mathematical expression
of the effective pixel density is:

Peffective = Poptimal −∆P

Where Poptimal is the optimal pixel density and ∆P is the decrease in pixel density due to
adverse conditions.

5.3 Future Work / Alternatives

For future improvements, we can examine the subsystems one by one.

For the detection subsystem, future work should focus on real-time detection. Sounds
made by mosquitoes are actually very small compared to environmental noise. Addi-
tionally, the frequency of the sound varies with temperature and humidity, making it a
very complex issue.

For the localization and attack subsystems, future work should aim at reducing time lag
and improving resolution so that our machine can accurately differentiate mosquitoes
from other objects. When it comes to sucking in mosquitoes using a fan, we must find an
easier way to clean the container after mosquitoes are captured.

As for the power and control subsystem, it can be enhanced by using a lighter-weight
battery.
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5.4 Ethical Considerations

A qualified project must adhere to the ethics codes outlined in IEEE Policies and ACM
[4], [5]. As stipulated in the team contract, the four of us will collaborate to ensure mu-
tual respect and fairness, committing to upholding these codes collectively and making
requisite risk mitigation plans accordingly.

Our project aims to effectively manage mosquitoes, contributing to the creation of a
healthier public environment. The presence of mosquitoes has been associated with the
spread of diseases and unfortunate fatalities worldwide. Therefore, our goal is to mitigate
these challenges for the well-being of communities globally.

Our project can be divided into three main components: mosquito detection, using a cam-
era for mosquito localization, and mosquito elimination. Regarding the detection phase,
we believe there are no ethical concerns. However, the use of a camera for positioning
raises privacy issues, as it may inadvertently capture irrelevant people and items. When
it comes to mosquito elimination, we acknowledge the ethical consideration of taking a
life. We respect all forms of life, and our approach ensures mosquitoes are eliminated in
a humane and conventional manner. Importantly, none of our team members endorse or
derive pleasure from any cruelty towards mosquitoes.

To address these concerns, we propose some requisite risk mitigation plans. We provide
advance notifications in the experimental area to inform individuals about the monitor-
ing process and ensure privacy. Instead of using real mosquitoes, we use audio files
downloaded online to test our detection subsystem, and pictures of mosquitoes to test
our localization subsystem. Additionally, we employ alternative materials such as nap-
kin fragments to assess the performance of our attack subsystem. By avoiding the use of
real mosquitoes, we aim to eliminate concerns about cruelty and potential harm to people
during testing.
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