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1 Introduction

1.1 Problem and Solution Overview

Understanding and managing our moods are integral to both our mental well-being
and physical health. Mood swings, if not appropriately addressed, can lead to long-term
health issues, such as headaches, asthma, heart disease, and significantly impact our
daily lives, productivity, and social interactions. The necessity to diagnose and provide
care for individuals experiencing mental health issues, including stress, anxiety, and
depression, has never been more critical. These conditions not only affect individuals
on a personal level but also pose considerable challenges in workplaces, educational
institutions, and care centers, thereby necessitating innovative solutions. The rising
trend of mental health issues among citizens has encouraged researchers to develop
wearable devices monitoring mental health, such as self-harming activities[4].

To address this pressing need, our project introduces a pioneering wearable device,
a wrist worn smart device similar to Yang’s[5], designed to track and record human
mood dynamics. This device employs advanced sensor technology to monitor physio-
logical signals—such as heart rate, successive heartbeat intervals, skin temperature, and
skin conductance—that are closely linked to our emotional states. By leveraging these
physiological markers, our device offers an objective and precise method for mood recog-
nition, sidestepping the subjectivity and potential inaccuracies inherent in self-reported
data. Our device stands out by integrating cutting-edge machine learning algorithms
that analyze physiological data to identify mood patterns. This approach not only en-
hances the accuracy of mood detection but also provides real-time feedback to users,
enabling immediate and personalized mood management strategies. Furthermore, by
offering insights into an individual’s mood fluctuations, our solution empowers users
to better understand their emotional well-being, encouraging proactive mental health
care.

The potential applications of our technology extend far beyond personal use. By
providing accurate and objective mood assessments, our device can be a valuable tool
for hospitals, schools, and caring centers. It can aid in the early detection of mental
health issues, monitor the effectiveness of treatment plans, and support care strategies.
In educational settings, understanding students’ moods can help in creating a support-
ive learning environment, while in the workplace, it can contribute to a healthier, more
productive work culture. Our project represents a significant advancement in the inter-
section of technology and mental health care. By combining psychological knowledge
with wearable technology, we not only aim to enhance individual well-being but also to
support institutions in providing better care for those with mental health concerns or
those simply seeking to improve their mood management with the support of our mood
detection results. Through continuous refinement and real-world application, we are
committed to making a positive impact on both individual lives and society at large.



1.2 Visual Aid

This visual aid part includes a figure (Figure 1) demonstrating how our project
resolves the mood detection in details. The user will wear the device combined with
several sensors, the Arduino PCB design will record the signals and extract features we
need. Our pre-trained machine learning model will output the corresponding potential
mood based on these features, and display it on computer with the help of Graphical
User Interface (GUI). Ideally, by connecting the wearable device along with the user,
the system is able to reflect real-time mood.
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Figure 1: Visual Aid. The visual aid depicts the process where users wear integrated
sensors to extract features based on the users’ mood, and the machine learning model
will predict mood based on features and the screen will display feedback to users

1.3 High-level Requirements List

e Accuracy of Mood Prediction: The system must accurately identify and classify
an individual’s mood states based on the data collected from wearable sensors
within an acceptable error rate, ideally, the accuracy should be greater than 0.55
indicated by the state-of-the-art. This involves distinguishing between three to
five emotional states and providing reliable predictions that correlate strongly
with self-reported mood condition. This requirement highly depends on the accu-
racy of machine learning models, we will focus on data processing and algorithm



improvement to reach at least an accuracy of 0.55.

Real-Time Processing and Feedback: The Mood Recognition Framework should
be capable of processing data in real-time with our three sensors that can extract
four features including heart rate, successive heartbeat intervals, skin tempera-
ture, and skin conductance to provide timely feedback to users by displaying on
GUI system. To ensure timely feedback and reaction, the system should react to
the users’ input within 10 seconds and provide the result within 30 seconds on
the screen. This enables immediate insight into mood states, allowing for prompt
interventions or adjustments to activities and environments to improve mood.
This leverages on Arduino programming, thus we must make sure the sensors can
work together with Arduino and deliver data to the computer through wires and
our PCB design.

User Interface and Display: As a real-time mood detection wearable device, we
will make sure the sensors are integrated into a user-friendly device that can fit
in the wrist and fingers to produce real-time feedback on the screen. We plan
to implement GUI display method on the computer reflecting users’ mood with
three to five kinds of emojis corresponding to the emotional states. Our system
can collect data, feed it to the model, and display the result from the output of
the model. This promises the feasibility of our systematic design.



2  Design

2.1 Block Diagram

The block diagram is divided into five subsystems, which can work together to real-
ize the high-level requirements. The block diagram depicts a system designed to meet
the requirements for accurate mood prediction, real-time processing and feedback, user
interface and display, and user privacy and data security. The sensors collect physio-
logical data that the system preprocesses with three steps: signal smoothing, outlier
removal, and normalization to ensure quality and reliability, which is crucial for achiev-
ing the required accuracy of at least 0.3 in mood classification. The pre-processed
data is then subjected to feature extraction with Time-frequency analysis, Frequency
domain analysis, or nonlinear dynamic analysis and fed into trained machine learning
models within the Classification Subsystem to predict mood states with desired accu-
racy. Real-time processing is facilitated through direct connections with an Arduino,
which interfaces with the sensors for continuous data feed. User feedback is immediate
via the Display Subsystem, which shows the mood predictions on a GUI, providing
real-time insight and allowing for prompt user response. Additionally, by storing and
processing data locally, the system aligns with privacy and security standards, ensuring
user data is handled confidentially and securely.
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Figure 2: Block Diagram. It showcases a mood prediction system integrating sen-
sors for data collection, pre-processing for quality (signal smoothing, outlier removal,
normalization), and advanced analysis (Time-frequency, Frequency domain, nonlinear
dynamics) for accurate classification. Features real-time Arduino interfacing, immedi-
ate GUI feedback, and prioritizes user privacy with secure local data handling




2.2 Subsystem Descriptions
2.2.1 User Interface Subsystem

The User Interface Subsystem is designed to monitor various physiological signals
to infer the user’s mood more accurately. It includes various sensors including pulse
rate sensor, skin conductance sensor, and temperature sensor. These sensors and their
corresponding schematics are displayed below.

As showed in Figure 3, the PulseSensor is a photoelectric reflective analog sensor for
pulse heart rate measurement. The sensor board has a diameter of 16mm, a thickness
of 1.6mm and a supply voltage of 3.3v or 5v. It can be worn on fingers, and the
collected analog signal can be transmitted to Arduino and other micro-controllers for
conversion into digital signals through wire connection. After simple calculation by
Arduino micro-controller, the heart rate value can be obtained.

We plan to use this pulse rate sensor to detect two kinds of data: the heart rate
and the successive heartbeat intervals. The successive heartbeat intervals (also called
RR intervals) could tell us the heart rate variability (HRV). HRV is the measure of the
inconsistent gaps between each heartbeat and is used as an index for different aspects
of psychology. With these two variables, we can know the current heartbeat of the user,
and the heartbeat variability.

Figure 3: Pulse Rate Sensor

The schematic of pulse rate sensor is showed in Figure 4. It utilizes the MCP6001
operational amplifier (op-amp), a single general-purpose op-amp, to amplify the signal
from the pulse sensor and remove noise from the signal. The APDS-9008 is an ambient
light photo sensor.
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Figure 4: Pulse Rate Sensor Schematic



The skin conductance sensor’s physical graph is showed in Figure 5. It has 1 mA
working current. Its weight is 4g and the module’s size is 34mm*25mm. It contains a
GSR module with two finger grips and a connecting cable. To be more detailed, GSR
stands for Galvanic Skin Response and is a measurement of electrical conductance in the
skin. Strong emotions stimulate your sympathetic nervous system, causing sweat glands
to secrete more sweat. GSR can detect such strong emotions by simply connecting two
electrodes to two fingers on one hand. The human body is electrically conductive, and
the principle is that when you lie, get excited, or get nervous your fingers sweat, and
after sweating the potential response changes, and it is the change in the electrical
response that is detected by our skin conductance sensor.

Figure 5: Skin Conductance Sensor

In principle, only two electrodes need to be placed on the second and third fingers
of one hand. The most common method for measuring GSR signals in psychomotor
response studies is based on the exosmosis method, in which the resistance of the skin to
a small current from an external source is measured. At this point, note that the most
common measurement of a GSR signal is not resistance, but conductance measured in
Siemens, that is, the reciprocal of resistance in ohms. Electrical conductance makes
signal interpretation easier because the more sweat gland activity, the higher the skin
conductance. The general schematic is listed below in Figure 6.
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Figure 6: Skin Conductance Sensor Schematic

To measure the skin temperature, we choose the GY906-DCC infrared temperature
sensor as shown in Figure 7. The sensor contains an MLX90614 series module, which
is a set of general-purpose infrared temperature measurement modules. The module
has the advantages of non-contact, small size, high precision and low cost. The DCC
represents the sensor measurement accuracy. DCC means medical accuracy up to 280



degrees and can infrared measure temperatures up to 10cm. Generally speaking, the
temperature measurement sensor measurement accuracy can be divided into contact
and non-contact. Contact temperature measurement can only measure the temper-
ature of the measured object and the temperature sensor after reaching the thermal
balance, so the response time is long, and it is easily affected by the ambient tem-
perature; Infrared temperature measurement is to determine the temperature of the
object according to the infrared radiation energy of the object to be measured, without
contact with the object to be measured. The infrared method to measure the temper-
ature has the characteristics of high-temperature resolution, fast response speed, wide
temperature measurement range, good stability, etc.

Figure 7: Infrared Temperature Sensor

The pins of this sensor is a little different from the above two sensors. In addition to
VCC and GND, it has a SCL pin, which is the clock signal of the SMBus interface, and
a SDA pin, which is the PWM or SMBus interface data signal, usually in mode from the
pin output object temperature via PWM. The schematic of the infrared temperature
sensor is displayed in Figure 8.
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Figure 8: Infrared Temperature Sensor Schematic

With these three sensors mentioned above, the heart rate, the successive heartbeat
intervals, the skin conductance, and the skin temperature data can be obtained. We
will utilize the Arduino Uno to manage data collection from these sensors. All of them
are connected to the Arduino Uno via its analog input pins using wire since the output
type of these three sensors are analog signals. The sensors and Arduino wiring diagram
is displayed below.
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Figure 9: Sensor Arduino Wiring

This user interface sensor subsystem has close connection with the extraction subsys-
tem. The Arduino Uno collects raw data from each sensor, performing initial processing
such as filtering and normalization. Given the Uno’s limited computational resources,
data can be sent to an external computer for processing. For dynamic content sent to
the computer, serial communication can be established between the Arduino and the
computer. The extraction subsystem on the computer will then extract the features of
those signals and data.

2.2.2 Pre-processing Subsystem

The pre-processing subsystem serves as the initial filter for the data collected from
wearable sensors. Its main function is to clean the raw data by removing noise and
irrelevant information that could negatively impact the accuracy of mood recognition.
This involves techniques like signal smoothing, outlier removal, and normalization. The
preprocessed data is then a more reliable representation of the user’s physiological
states. The data pre-processing is finished on software level.

This subsystem interfaces directly with the feature extraction subsystem, provid-
ing it with high-quality input data. The quality of pre-processing directly affects the
efficiency and effectiveness of the subsequent feature extraction stage, making this a
critical part of the mood recognition process.

Pre-processing subsystem contains 3 successive parts. They are Signal Smoothing,
Outlier Removal and Normalization.

Signal Smoothing is the first step in the data preprocessing pipeline aimed at
reducing noise and fluctuations in the raw sensor data. It involves applying various
filtering techniques to achieve a smoother representation of the signal while preserving
important features. In signal smoothing, we use the moving average method that
averages neighboring data points. The moving average filter is a widely used technique
in signal processing for its simplicity and effectiveness in attenuating high-frequency
components while preserving the underlying signal trends.



The moving average filter operates by computing the mean of a sliding window of
consecutive data points along the signal. The size of the window, often referred to as
the "window length” or "kernel size,” determines the degree of smoothing. A larger
window results in greater smoothing but may blur out rapid changes in the signal.

The moving average of a signal x(t) at time ¢ with a window size N is computed as:

t

= Sl (1)

i=t—N+1

Where:

e z(t) is the moving average of the signal at time ¢,
e (i) is the value of the signal at time 1,

e N is the size of the moving window.

The above equation calculates the average of the signal values within the window
centered at time ¢. As the window slides along the signal, each data point is replaced
with the average of itself and its neighboring points, resulting in a smoothed signal.

Figure 10 shows the algorithm for moving average filter.

Algorithm 1 Moving Average Filter

1: function MOVINGAVERAGEFILTER(data, window_size)
2: smoothed_data <+ |]
3: for i from O to len(data) — window_size do
4: window_sum <— 0
5: for j from 7 to i + window_size — 1 do
6: window_sum < window_sum + data|j]
7 end for
8: smoothed_data.append(window _sum /window_size)
9: end for
10: return smoothed_data

11: end function

Figure 10: Moving Average Filter Algorithm. It is utilized in signal processing to
smooth out fluctuations in data by averaging neighboring data points within a specified
window size.

We use Signal-to-Noise Ratio (SNR) to quantify the ratio of signal power to noise
power present in a signal. A higher SNR indicates a stronger, more dominant signal
compared to the noise. The formula to calculate SNR is as follows:



Signal Power

SNR = (2)

Noise Power

Outlier removal is the second step in the data preprocessing pipeline aimed at

identifying and eliminating data points that deviate significantly from the majority of
the dataset. It employs statistical methods to detect and remove spurious outliers.

We apply modified z-score statistical method to detect outliers, and then we remove
outliers by replacing them with the average of two adjacent points. The formula of
modified z-score statistical method is as follows:

0.6745 - (X; — X)

M = MAD ()

Where:

e M; is the modified z-score for the ith data point,
e X, is the ith data point,
e X is the median of the dataset,

e MAD is the median absolute deviation of the dataset.

A data point is regarded as outlier if

|M;| > threshold = 3 (4)

Figure 11 shows the algorithm for modified Z-score method.

Algorithm 2 Modified Z-score Method for Outlier Removal

function MODIFIEDZSCORE(data, threshold)
median < mediano fdata
mad +— medianabsolutedeviationo fdata

for i from 0 to len(data) — 1 do

1:

2

3

4

5: modi fied_z_score < 0'6745'(da:£igl_medmn)
6

7

8

9

if modi fied_z_score > threshold then
Remove data[i] from data
end if
end for
10: return data
11: end function

Figure 11: Modified Z-score Method for Outlier Removal. It is used to identify and
eliminate outliers from a dataset by measuring deviations from the median in terms of
median absolute deviation (MAD).
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Normalization is the final step in the data preprocessing pipeline aimed at stan-
dardizing the range of features in the dataset. It scales the data to a predefined range
or distribution, typically between 0 and 1 or with a mean of 0 and a standard deviation
of 1.

Normalization ensures that the input features have consistent scales, facilitating the
training of machine learning models and improving their generalization performance.
It contributes to the overall design by making the input data comparable and reducing
the impact of scale differences on the classification results.

We use min-max normalization and Z-score normalization. The formula of min-max
normalization and Z-score Normalization are as follows, respectively:
X o X - Xmin
normalized — W (5)
max ~ min
X —p
o

X normalized —
Where:

e X is the original data point,

e 4 is the mean of the dataset,

o is the standard deviation of the dataset,

Xmin 18 the minimum value in the dataset,

Xmax 1s the maximum value in the dataset,

e X ormalized 18 the normalized data point.

Figure 12 and 13 shows the algorithm for min-max normalization and z-score nor-
malization, respectively.

Algorithm 3 Min-Max Normalization

function MINMAXNORMALIZATION (data)
min_value < minimumuvalueo fdata
max_value < maximumuvalueo fdata
for i from 0 to len(data) — 1 do

1:
2
3
4
5: datali] < data[i]—min_value
6
7
8:

max_value—min_value
end for

return data
end function

Figure 12: Min-Max Normalization. It scales the values of a dataset to a predefined
range, typically between 0 and 1, by subtracting the minimum value and dividing by
the range.
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Algorithm 4 Z-score Normalization

1: function ZSCORENORMALIZATION (data)
2 mean <— meanofdata

3 std_dev < standarddeviationo fdata
4 for ¢ from O to len(data) — 1 do

s datali) < “atefi=mean

6 end for

7 return data
8: end function

Figure 13: Z-score Normalization. It standardizes the values of a dataset by subtracting
the mean and dividing by the standard deviation.

2.2.3 Feature Extraction Subsystem

The feature extraction subsystem’s function is to distill key indicators from the
preprocessed data that are relevant for mood recognition [2]. It translates raw sensor
data into a set of features that reflect the user’s physiological and behavioral patterns
associated with different moods. For instance, heart rate variability may indicate stress
levels, while temperature changes could relate to physical activity or emotional arousal.
This subsystem must extract features that are both informative and discriminative for
different mood states.

It interfaces with both the pre-processing subsystem, from which it receives the
cleaned data, and the mood classification model, to which it sends the extracted fea-
tures. The success of this block is measured by its ability to provide meaningful features
that improve the classification performance of the mood recognition model.

The feature extraction subsystem consists of 2 essential parts, which are Time-
Frequency Analysis and Frequency Domain Analysis. They share the same purpose of
extracting features.

1) Time-frequency analysis is a method used to analyze signals in both the time and
frequency domains simultaneously. It allows us to understand how the frequency
content of a signal changes over time, which can be particularly useful for ana-
lyzing non-stationary signals such as physiological data. We apply Short-Time
Fourier Transform (STFT). The formula of STFT is as follows:

X(m,w) = Z z(n) -wn —m) - e 7" (7)

n=—oo

Where:

— X(m,w) is the STEFT of the signal at time m and frequency w,
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— x(n) is the input signal,
— w(n —m) is the window function centered at time m,

— w is the angular frequency.

Figure 14 shows the algorithm for Short-Time Fourier Transform.

Algorithm 5 Short-Time Fourier Transform (STFT)

1: function STFT (data, window_size, overlap)

2 stft_data < ||

3 for i from O to len(data) — window _size step overlap do
4: windowed_data < datali : i + window_size]

5: st ft < FourierTransform(windowed_data)

6 st ft_data.append(st ft)

7 end for

8 return st ft_data

9: end function

Figure 14: Short-Time Fourier Transform (STFT), which transforms input signal data
into its frequency-domain representation by dividing it into short segments and applying
the Fourier Transform to each segment separately

2) Frequency domain analysis is a technique used to analyze signals in terms of their
frequency content. It provides insights into the distribution of signal power across
different frequency components. We apply Power Spectral Density (PSD), and
Frequency Band Analysis strategy. The formula of PSD is as follows:

T 2

/2 x(t)e I dt

r
2

. 1

(8)

Where:

— P..(f) is the PSD of the signal,
— x(t) is the input signal,

— f is the frequency variable.

The formula of Frequency Band Analysis is as follows:

Sfmax
Phuna = / Poo(f)df (9)

fmin
Where:

— Ppana is the power within a specific frequency band,
— P..(f) is the PSD of the signal,

13



— fmin is the lower bound of the frequency band,
— fmax is the upper bound of the frequency band.

Figure 15 shows the algorithm for Power Spectral Density.

Algorithm 6 Power Spectral Density (PSD) Estimation

: function PSDESTIMATION(st ft_data)
psd < ||
for i from 0 to len(stft_data) do
psd_point < Compute PSD (st ft_datali])
psd.append(psd_point)
end for
return psd
end function

L A T i LA

Figure 15: Power Spectral Density (PSD) algorithm, which provides insights into the
distribution of signal power across different frequency components by computing the
squared magnitude of the Fourier Transform of the signal.

2.2.4 Classification Subsystem

This subsystem is the heart of the mood recognition framework, where the actual
classification of the user’s mood occurs. It employs machine learning algorithms to
interpret the features extracted from the user’s data and classify them into mood states
such as happy, sad, stressed, or relaxed. This subsystem may utilize a variety of mod-
eling techniques, including supervised learning, to train models on labeled mood data.

The mood classification model interfaces with the feature extraction subsystem,
receiving features as input, and with the display subsystem, providing the mood pre-
dictions. Its performance is critical, as it directly determines the accuracy and reliability
of the mood recognition the framework provides.

The mood classification subsystem consists of 2 essential parts, which are Random
Forest algorithm and Extreme Gradient Boosting(XGBoost) algorithm. They share
the same purpose of extracting features and they complement with each other. We
finally balance the trade-off between these two algorithms to decide which one to use,
considering the classification results of valence, arousal, stress and disturbance.

1) Random Forest is an ensemble learning method that combines multiple decision
trees to improve classification accuracy. It’s robust to overfitting and works well
for high-dimensional feature spaces.

14



Class-A Clalss—B Class-B

Majority-Voting

¥
Final-Class

Figure 16: Random Forest Model[A powerful ensemble learning method that combines
multiple decision trees to enhance classification accuracy and mitigate overfitting. |

2) XGBoost is an efficient and scalable implementation of gradient boosting decision
trees. It builds a series of decision trees sequentially, where each tree corrects the
errors made by the previous ones, leading to improved overall performance.

15



Instance

. A A
. _ y N _ S
o ‘n\ Residual /qf" e Residual ﬂ/' .
O.W.0. s 0.W.0. tumnd. . W.@ .1
60300040 606030460 6030 éb 40
Tree-1 Tree-2 Tree-3
} - '
Result 1 Result 2 Result 3
» Sum |+

!
Final Result

Figure 17: XGBoost Model[A highly efficient implementation of gradient boosting de-
cision trees, sequentially building trees to correct errors and improve performance. |

2.2.5 Display Subsystem

The display subsystem is designed to display the detected mood and corresponding
suggestions to the user in an intuitive and engaging way, which is crucial for enhancing
the user experience. We plan to display the mood states in text ("Happy”, ”Sad”, etc.)
along with relevant icons or emojis, in accordance with the specific mood detected
by classification subsystem. To further strengthen the feedback, we can also display
tips or recommendations based on the detected mood. For example, some encouraging
sentences can be placed on the screen after detecting that the user is sad. We can also
advise some activities to users, such as hanging out or playing video games, to relax and
please users themselves. Overall, this subsystem enhances user interaction by offering
real-time feedback to improve or maintain people’s emotional well-being.

We plan to implement Graphical User Interface (GUI) in Python to achieve this
subsystem. The computer will firstly output the results of detected mood after utilizing
Random Forest algorithm in classification subsystem. Then the displaying subsystem
will receive the processing results and give corresponding feedback. Designing a GUI
that incorporates mood detection and provides appropriate suggestions requires careful
consideration of user interaction, visual presentation, and integration with the mood
detection subsystem. Here are components of our GUI:

16



1) Display Components: Design areas where the detected mood and suggested ac-
tivities or content will be displayed.

2) Visual Elements: Use visual cues such as colors, icons and images to make the
GUI visually appealing. We will utilize emojis to represent 3 to 5 kinds of moods.

3) Integration with Mood Detection Subsystem: Implement functionality (messaging
protocols such as WebSocket, or direct function calls) to communicate with the
mood detection subsystem to retrieve the user’s current mood.

2.3 Subsystem Requirements and Verifications
2.3.1 User Interface Subsystem

The User Interface subsystem consists of a PCB design with three sensors and
Arduino. Its responsibility is to obtain physiological data from our users and transmit
them to the computer for further processing. The requirements and verifications of the
user interface sensor system are listed in Table 1.

Table 1: R&V table of User Interface

Requirements Verifications

The user interface sensor subsys- | All types of data could be seen simultane-
tem is capable of obtaining at least | ously on the computer’s screen instead of
four types of physiological data si- | using the sensor to test one by one.
multaneously. It should process
the primary data and transmit the
data to an external computer for
further processing using wire.

The sensor must detect pulse rate | 1.Utilize the professional medical heart rate
changes within 10 seconds and | instrument to test the pulse rate and regard
maintain accuracy within +2 bpm. | it as a standard.

2.Measure the detected pulse rate with our
sensor and compare it to the standard
tested before.

3.Compare the standard data with the de-
tected pulse rate and ensure our results are
within the accuracy range of +2 bpm.

The accuracy of the skin conduc- | 1.Prepare a circuit with known resistances
tance sensor’s output is within the | that simulate skin conductance levels (e.g.,
range of +5%. 50k ohm to 10m ohm).

2.Connect the GSR sensor to the calibra-
tion circuit and measure the conductance
at each resistance level.

3.The output of the sensor would be
recorded and the percentage error would be
calculated.

17



1.Prepare an infrared thermometer.

2.0ur sensor and the reference thermome-
ter are put in the same environment. Both
of them measure the skin temperature.
3.After comparison, if the readings from the
infrared sensor consistently match the refer-
ence thermometer within +0.2°C, the accu-
racy of the SKT sensor could be proved.

The infrared temperature sensor
must stabilize to within +0.2°C of
the target temperature in less than
10 seconds.

2.3.2 Pre-processing Subsystem

The data pre-processing subsystem consists of 3 successive parts. They are Signal
Smoothing, Outlier Removal and Normalization.

1) Signal Smoothing is a technique used to remove high-frequency noise from a signal
while preserving its underlying trends or features. See Table 2 for its Requirements

and Verifications.

Table 2:

R&V table of Signal Smoothing

Requirements

Verifications

Smoothed signals should
exhibit a significant re-
duction in noise compared
to the original signal, with
a minimum increase in

SNR of 10 dB.

1.Apply a random noisy signal from K-EmoPhone
dataset to the smoothing algorithm.

2.Using the software SciPy form Python language,
measure the signal-to-noise ratio (SNR) of the orig-
inal and smoothed signals by power spectral density
method.

3.See if the smoothed signal exhibits a minimum in-
crease in SNR of 10 dB compared to the original
signal.

4.Repeat the above steps and ensure that the tested
dataset covers at least 1/3 of the standard dataset,
verifying the smoothed signals exhibit consistent
noise reduction and preservation of signal features.

The mean squared error
(MSE) between the orig-
inal and smoothed sig-
nals should be below the
threshold of

0.1 x noise variance

,indicating minimal dis-
tortion.

1.Calculate the mean squared error (MSE) between
the original and smoothed signals using Math Solver,
a powerful software calculator.

2.See if the MSE between the original and smoothed
signals is below the threshold of 0.1*noise variance,
indicating acceptable distortion.

3.Repeat the above steps for all signals tested with
SNR, verifying the smoothing algorithm does not in-
troduce significant distortion.

18




2) Outlier removal is a crucial step in data preprocessing aimed at identifying and
eliminating data points that deviate significantly from the rest of the dataset.See

Table 3 for its Requirements and Verifications.

Table 3: R&V table of Outlier Removal

Requirements Verifications
The outlier removal pro- | 1.Apply the outlier detection algorithm to a test
cess should effectively | dataset containing known outliers. Compare the

identify data points that
deviate significantly from
the rest of the dataset.

identified outliers with the ground truth.

2.See if identified outliers match the known outliers
in the test dataset with an accuracy degree higher
than 85%.

The outlier removal pro-
cess should effectively re-
move data points that
deviate significantly from
the rest of the dataset.

1.Remove the identified outliers from the test
dataset. Calculate the statistical properties (e.g.,
mean, standard deviation) of the dataset before and
after outlier removal.

2.After outlier removal, see if the statistical proper-
ties of the dataset align more closely with the un-
derlying distribution of the data. Specifically, see if
the mean and standard deviation are closer to the
values calculated from a clean dataset.

3) Normalization is used to rescale the features of a dataset to a standard range,
typically between 0 and 1 or with a mean of 0 and a standard deviation of 1. See

Table 4 for its Requirements and Verifications.
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Table 4: R&V table of Normalization

Requirements

Verifications

All features in the dataset
should be  uniformly
scaled to prevent domi-
nance by features with
larger scales.

1.Apply the normalization algorithm to the dataset
and examine the range of normalized values for each
feature

2.Check if all normalized feature values fall within
the specified range (e.g., 0 to 1 for min-max normal-
ization, mean of 0 and standard deviation of 1 for
z-score normalization).

3.Calculate the minimum and maximum values of
each normalized feature. If all normalized values fall
within the specified range, the requirement for uni-
form scaling is met.

The normalization process
should not introduce bias
or distortions in the data.

1.Calculate the mean and standard deviation of the
normalized dataset.

2.Check if the mean of the normalized dataset is close
to 0, and the standard deviation is close to 1 for
z-score normalization. For min-max normalization,
check if the mean is within a small tolerance of the
midpoint of the range, and the standard deviation is
approximately equal to half the range.

3.If the mean is close to 0 and the standard devia-
tion is close to 1 (or within specified tolerances), the
requirement for bias and distortion is met.

2.3.3 Feature Extraction Subsystem
The feature extraction subsystem consists of 3 essential parts. They are Time-
Frequency Analysis, Frequency Domain Analysis, and Nonlinear Dynamics Analysis.

Since the above 3 strategies share the same purpose of extracting features and they
complement with each other, their methods for requirements and verifications could be
identical, as shown in the Table 5.
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Table 5:

R&V table of feature extraction

Requirements

Verifications

Accuracy: The feature
analysis should accurately
identify the dominant fre-
quency components of the
signal with an error mar-
gin of less than 15%

1.Generate synthetic signals with known domi-
nant frequency components, from the K-EmoPhone
dataset.

2.Apply the feature analysis method to the synthetic
signals and extract the dominant frequency compo-
nents.

3.Compare and calculate the percentage error be-
tween the identified dominant frequencies and the
known frequencies, and see if the error margin is less

than 15% .

Resolution:  The fea-
ture analysis should have
a frequency resolution of
at least 10 Hz to dis-
tinguish between closely
spaced frequency compo-
nents.

1.Generate synthetic signals with closely spaced fre-
quency components, from the K-EmoPhone dataset.
2.Apply the feature analysis method to the synthetic
signals and examine the frequency spectrum. Mea-
sure the distance between adjacent frequency peaks
to determine the frequency resolution.

3.Verify that the feature analysis method can resolve
adjacent frequency components with a separation of
at least 10 Hz.

2.3.4 Mood Classification Model Subsystem
The mood classification model subsystem consists of 2 essential supervised learning
algorithms. They are Random Forest and Extreme Gradient Boosting (XGBoost).

Since the above 2 algorithms share the same purpose of classifying mood and they
complement with each other, their requirements and verifications methods could be
identical, as shown in the Table 6.
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Table 6: R&V table of Mood Classification

Requirements

Verifications

The mood classification
model should achieve a
classification accuracy of
at least 55% when pre-
dicting mood states based
on the given psychological

1.Using supervised learning algorithm like Random
Forest and XGBoost, train the classification model
based on the labelled data K-EmoPhone dataset.

2.Use the trained model to predict mood states for
the samples in the testing dataset. Compare the pre-
dicted mood states with the ground truth labels to

data. assess classification accuracy.

3.Calculate the classification accuracy as the per-
centage of correctly predicted mood states out of the
total number of samples in the testing dataset. See

if it is higher than the desired 55% threshold.

2.3.5 Display Subsystem

We will utilize Graphical User Interface (GUI) in Python to display the detected
mood and corresponding suggestions to users. Designing a display via a GUI involves
various considerations to ensure usability, functionality, and aesthetic appeal. Providing
appropriate suggestions to users based on the detected mood involves understanding the
user’s emotional state and offering content, activities, or interventions that are likely
to resonate positively with them. The requirements and verifications of the display
subsystem are listed in Table 7.

Table 7: R&V table of Display Subsystem

Requirements

Verification

The interface must inte-
grate with Mood Classifi-
cation Model. After the
model generates the de-
tected mood based on our
input, the interface should
give real-time feedback.

1.0nce the mood output is stored in a txt file, the
GUI can open and read it, and then update the
relevant GUI components to reflect the detected
mood. This could involve changing colors or icons
displaying four mood classifications with correspond-
ing emojis.

The interface should pro-
vide appropriate sugges-
tions to users based on the
detected mood to make
positive impacts on users.

1.Consult professional psychology references for pro-
fessional advice related to each detected mood.
2.0ffer a variety of suggestions to cater to different
preferences and interests. Include options for relax-
ation, entertainment, socializing, and self-care to ac-
commodate diverse user needs.
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The interface has aes-
thetic design elements in-
cluding color schemes, ty-
pography, icons, and vi-
sual hierarchy to enhance
usability and appeal.

1.Design the layout of GUI, considering the place-
ment and arrangement of components to ensure clar-
ity and usability. Use principles of visual hierarchy
and proximity to organize components logically.
2.Choose appropriate colors, emojis, and other vi-
sual elements to enhance the aesthetic appeal and
usability of the GUI. Consider using different colors
or visual cues to represent different mood categories.
3.Define how users will interact with the GUI compo-
nents to input or select the mood information. En-
sure intuitive interaction patterns and provide ap-
propriate feedback to users.

2.4 Tolerance Analysis

2.4.1 Pre-processing Subsystem

Outlier Removal presents the greatest risk within this block, as it may lead to the
inadvertent removal of valuable data or the retention of noisy data if not properly
calibrated. A statistical analysis can assess the likelihood of true outliers versus false
outliers based on the historical variability of the data.
imperative to employ robust statistical methods, such as the median absolute deviation
(MAD), which is less sensitive to extreme values compared to the standard deviation.
As mentioned previously, we set the MAD threshold empirically to 3 to identify outliers.

A thorough experiment regarding outlier identification has been conducted on the

participant P01’s data, and Figure 18 shows a satisfying result.
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Figure 18: Modified Z-Score to verify the Outlier Removal result

Mathematically, the effectiveness of outlier removal can be evaluated by quantifying
the change in the standard deviation of the dataset before and after the removal of
outliers. Let’s denote the standard deviation before outlier removal as ooiginal and after
outlier removal as emoved- Lhe percentage change in the standard deviation (Aco) can
be calculated using the formula:

Ao — Ooriginal — Oremoved % 100% (10)

Ooriginal

The effectiveness of the outlier removal process can then be assessed based on the
magnitude of Aco. For example, if Ao is below a threshold of 10%, it indicates that
the removal of outliers has effectively reduced the variability in the dataset without
significantly altering its overall distribution.

To ensure success, the number of data points discarded during outlier removal should
not exceed a certain threshold of 15% relative to the total dataset size. This threshold
helps maintain the integrity of the dataset while still eliminating outliers. Additionally,
conducting sensitivity analysis by varying the threshold can provide insights into the
robustness of the outlier removal process and help optimize its parameters for different
datasets.

We should also consider de-noising and extracting data accurately from the signal
during the processing process, we will mathematically verify our data relying on what
we mentioned at the R&V part, leveraging on advanced signal processing methods and
our designed process including signal smoothing, outlier removal, and normalization to
minimize the inaccuracy. At least 95% of the tested data should be within 5% of the
average of all data in the dataset used for training.
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2.4.2 Feature Extraction Subsystem

We can quantify the feature extraction tolerance using the root mean square error
(RMSE) between the extracted features and the ground truth or expected values.

Root Mean Square Error (RMSE): The root mean square error measures the
square root of the average of the squares of the errors between the extracted features
(f;) and the ground truth or expected values (f;). Mathematically, it is given by:

n

RMSE= |~ 3"/~ £ (1)

i=1

RMSE provide a quantitative measure of the deviation between the extracted fea-
tures and the ground truth or expected values. A lower value of RMSE indicates better
performance of the feature extraction method in terms of accuracy and reliability.

To ensure the success of feature extraction, the RMSE should be kept below a
threshold of 15%.

2.4.3 Sensor Accuracy and Variability

As for the sensor accuracy, each sensor has a known accuracy interval (e.g., £2bpm
for heart rate, £5% for skin conductance). The data obtained by the sensors are also
determined by various factors. For example, the variation in pulse detection accuracy
can be due to motion artifacts, skin tone, and ambient light, and the variation in skin
conductivity readings can be due to factors such as skin moisture, temperature, and
sensor placement. In this case, we’ll be focusing on all the physiological information
that a person has at rest. We will use signal-to-noise ratio (SNR) to quantify the heart
rate sensor’s ability to distinguish pulse signals from noise under different conditions.
We will assess the acceptable range of SNR where the heart rate can be accurately
detected. This tolerance analysis emphasizes the importance of robust sensor selection.

Considering the noise and other influencing factors on the sensors, we would decrease
the influence of the environment as much as possible, for example, keeping the skin clear,
keeping the users still, and decreasing weather influences by conducting the experiment
indoors. With these methods, we wish to minimize the influences by other factors to
the sensors.

2.4.4 Display Subsystem

For the GUI designed to provide suggestions to users based on their detected mood,
a tolerance analysis involves evaluating various aspects of the interface to ensure that
it remains usable, functional, and visually appealing despite potential variations or
deviations. Using GUI is also crucial for our design for the purpose of displaying
emojis, suggestions, and other potential feedback to the users. A proper integration
between the model and display system is needed, which we decided to use Python to
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build the connection. To ensure timely feedback and reaction, the system should react
to the users’ input within 10 s and provide the result within 30 s on the screen.

Firstly, the crucial thing is that the suggestions provided to users may be misleading
or irrelevant due to the accuracy of mood classification model. Moreover, we need to
ensure that the layout remains visually appealing and functional despite changes in
screen size, resolution, or content length. It is significant to determine acceptable
tolerances for spacing, alignment, and content organization to maintain readability and
usability:.

26



3 Cost and Schedule

3.1 Cost
3.1.1 Labor

Refer to the sample and past senior design projects, we estimate our salary to be
$40/hour, 10 hours/week for each group member. The estimated salary is listed in
Labor Cost Table 8.

Table 8: Labor Cost. The table shows the member name in the senior design project
(Member), the hourly salary of member (Hourly Salary), the working hours in the
project per person (Working Hours) and the total salary per person (Total).

Member Hourly Salary | Working Hours Total
Junjie Ren $40 10 x 14 = 140h | $40 x 140 = $5600
Peidong Yang $40 10 x 14 = 140h | $40 x 140 = $5600
Xinzhuo Li $40 10 x 14 = 140h | $40 x 140 = $5600
Kejun Wu $40 10 x 14 = 140h | $40 x 140 = $5600
Sum $22400
3.1.2 Parts

Our parts and manufacturing prototype costs are estimated to be $39.4 in total.
See Parts Cost Table 9 in detail.

Table 9: Parts Cost. The table shows the parts description (Description), the manu-
facturer of the parts (Manufacturer), the quantities needed in our project (Quantity),
the unit cost of the parts (Cost/Unit) and the total cost of the the parts (Total Cost).

Description Manufacturer | Quantity | Cost/Unit | Total Cost
Pulse Sensor Sichiray 1 $5.5 $5.5
(MDL0025)

Grove Galvanic Sichiray 1 $6.3 $6.3
Skin  Response

(GSR)

Infra Red Ther- Melexis 1 $4 $4
mometer

(GY-906-DCC)

Arduino uno Sichiray 1 $23.6 $23.6
Sum $39.4
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3.1.3 Total Cost

The total cost of our senior design project is:

3.2 Schedule

The weekly schedule table is given in table 10.

$22400 + $39.4 = $22439.4

Table 10: Weekly schedule table. The table shows different weeks (Date) and individual
schedule for each group member (Junjie Ren, Peidong Yang, Xinzhuo Li and Kejun Wu)
in different weeks.

Date Junjie Ren Peidong Yang | Xinzhuo Li Kejun Wu
3.25-3.31 | Research the la- | Test the function | Research appro- | Test the working
beled data of sensors priate  machine | of Arduino
learning methods
4.1-4.7 Pre-processing Measure some Write machine Measure some
the labeled data | physiological learning code physiological
data by using the data by using the
hardware parts hardware parts
4.8-4.14 | Write and debug | Import the mea- | Write and debug | Import the mea-
machine learning | sured data into | machine learning | sured data into
code computer code computer
4.15-4.21 | Evaluate the use GUI in Improve our Integrate other
accuracy of our | python to trained model possible sensors
trained model display possible | to make it more | to Arduino
outcomes accurate
4.22-4.28 | Improve and Integrate all Improve and Merge measured
debug machine hardware parts debug machine data with
learning model as a wearable learning model machine learning
device model
4.29-5.5 | Test and improve | Test and improve | Test and improve | Test and improve
the mood classifi- | the display sub- | the mood classifi- | the user interface
cation model system cation model subsystem
5.6-5.12 | Mock Demo Mock Demo Mock Demo Mock Demo
5.13-5.19 | Final Demo and | Final Demo and | Final Demo and | Final Demo and
Final Report Final Report Final Report Final Report
5.20-5.26 | Final Report and | Final Report and | Final Report and | Final Report and

Team Evaluation

Team Evaluation

Team Evaluation

Team Evaluation
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4 Ethics and Safety

4.1 Ethics

Our initiative addresses the widespread influence of workplace stress, anxiety, and
depression, acknowledging them as pivotal challenges that undermine individual well-
being and overall productivity. Driven by the imperative for proactive interventions,
we aspire to introduce a wearable device integrated with sophisticated sensors and an
innovative mood recognition framework. Our objective is to foster a healthier work
environment, marking a substantial advancement at the crossroads of technology and
mental health within contemporary workplaces. This endeavor aligns seamlessly with
the ACM code’s commitment to contribute to society and human well-being, recognizing
the universal stakeholder role of all individuals in the realm of computing [1].

The collection and use of personal and potentially sensitive data to train our model
could infringe on an individual’s privacy if not handled correctly, especially in com-
pliance with the ACM Code regarding to respect privacy and confidentiality [1]. We
promise to collect only the data necessary for mood recognition to reduce the risk of
privacy breaches, and we will ensure that users are fully informed about what data is
collected, how it will be used, and obtain their consent. Moreover, we will implement
strict access controls so that only authorized personnel can access sensitive data.

4.2 Safety

Ensuring safety is a top priority in our project. We have successfully finished the
UIUC online safety training. Adhering to safety guidelines, it is compulsory to have a
minimum of two team members present in the lab during experiments.

For electrical usage, we will use the USB portal of computer as the power supply
of Arduino, and the computer is powered by 220 volts of electricity. Our group fully
understands and adheres to the guidelines for safe electricity usage. We will routinely
check the computer and Arduino to ensure they operate in a proper environment.
Moreover, we have wearable devices to measure the heart rate, body temperature and
skin conductance, and those sensors will be connected with Arduino. Then Arduino will
be connected to the computer to import data. There is a risk of getting an electric shock
when we measure the physiological data of participants. We will strictly follow the safe
current limits for electromedical apparatus [3] to ensure the safety of participants. We’ll
make sure the wires are intact and connected well to prevent the occurrence of electrical
leakage.

If the system inaccurately assesses a user’s mood, it could lead to inappropriate
recommendations or actions of user. Ensuring high accuracy of the mood prediction
algorithms and providing users with context about the limitations of the system can
minimize this risk.
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