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1 Introduction

1.1 Problem & Solution Overview
1.1.1 Problem Description

As an open and modern campus, Zhejiang University Haining International Campus has
state-of-the-art infrastructure and cozy single dormitories. However, this also leads to
a relatively high electricity consumption. In 2023, the Haining campus spent tens of
millions of RMB on electricity. High electricity consumption is also common in campus
around the world [1].

We found the following problems with the campus’ electricity consumption:

* Lack of Awareness and Sensitivity: There is a lack of awareness and sensitivity
among students and faculty regarding electricity consumption and energy conser-
vation practices.

* Insufficient Visualization Tools: The current visualization tools for power data are
not intuitive enough, hindering effective management and understanding.

* Inadequate Emergency Response Capabilities: Improved responsiveness and ex-
panded treatment options are needed to effectively manage emergencies such as
over-voltage and short circuits.

We need to promptly address these issues, as they not only hinder our sustainable en-
ergy goals but also present an opportunity to leverage the collective creativity of our
campus community. By promoting conscientious energy conservation and implement-
ing advanced visualization tools, we can pave the way towards a greener, more resilient
future.

1.1.2 Solution

Our proposed solution to address the situation is to develop an Advanced Modeling and
Display system for the campus power system. Specifically, we will utilize electricity con-
sumption data from the engineering department for accurate power flow calculations.
The resulting information, including current, voltage, power, and other relevant data,
will be visually represented using LED strips with varying brightness and colors on a
physical model.

Besides, machine learning-based algorithms such as electricity consumption forecasting
and anomaly detection can be used to monitor various grid behaviors. Advanced ap-
plications like grid loss calculation and distributed wind/photovoltaic (DW/PV) power
generation installation and connection are also among our considerations. In this way,
we aim to visualize power distribution and usage on campus more intuitively, fostering
awareness of electricity conservation among students and faculty while contributing to
establishing a low-carbon modern campus.
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Figure 1: Visual Aid

1.2 Visual Aid

The project’s workflow, outlined in Figure|l} is a comprehensive process designed to ef-
fectively utilize collected power data. Initially, the raw power data undergoes processing
using a power flow solver, which extracts relevant information vital for understanding
power distribution and load balancing across the campus. This processed data is then vi-
sually represented using a solid model, offering stakeholders an intuitive understanding
of the campus’s power dynamics.

Furthermore, the project employs machine learning for remote data analysis. These ad-
vanced algorithms analyze historical power consumption patterns, enabling accurate fore-
casting and informed decision-making regarding energy management. Additionally, the
project integrates power anomaly simulation techniques to simulate potential disruptions
in the power supply. These simulations help stakeholders evaluate contingency plans and
optimize response strategies.

1.3 High-level requirement list

* Quantitative criteria for the front-end display. The envisioned physical model
must possess the capability to visually represent power consumption data across
the entire campus accurately. It should offer detailed representations of individual
buildings or substations, allowing users to discern usage patterns easily. In the case
of state changes, the LEDs are expected to exhibit the desired state within a delay of
2 seconds.

* Quantitative criteria for the machine-learning model. The machine learning model,
should be able to accurately forecast electricity consumption trends. Specifically, we
expect an average MAPE of 10% or less.

* Quantitative criteria for the event-driven power accident simulation. For a simu-
lated power anomaly event, e.g., simulating a two-phase short circuit to ground in
North Building A, the anomaly detection module should react and trigger an alarm
within 5 seconds, and the macro-F1 score is expected to be no less than 0.95.
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Figure 2: Block Diagram

2 Design

2.1 Block Diagram

The system (see Figure [2) first collects and analyzes real-time and historical power data
from substations. The Data Analysis Subsystem processes this data to forecast usage,
identify anomalies, and generate metrics like voltage and current. The Control Subsystem
manages data display settings and simulates anomalies for testing. The Physical Model
and Monitor Subsystems visualize the processed data, with the former using LEDs to
show building usage and the latter displaying numerical data, forecasts, and anomaly
alerts. The Power Subsystem provides electricity to the visualization components.

2.2 Physical Design

A rough modeling of our international campus is shown in Figure 3| The main physical
objects include a sand table of each building on the International Campus, external LED
strips, and interactive displays. The sand table is a square with a side length of 1 meter
and the size of the display is 7 inches. Multiple external LED strips are placed next to
each building to represent the different electrical data of each building. The bracket for
the display is shown in the Figure 4, and the bracket is bolted to the edge of the sandbox
and the display. The bracket can be adjusted up and down for different heights and left
and right for different angles.



Figure 3: Sand Box of our Campus

Figure 4: Screen Bracket

2.3 Remote System
2.3.1 Data Collection Subsystem

The Data Collection Subsystem collects and stores power usage data from each substation
provided by the Engineering Department. This subsystem then transfers the collected
data to the Data Analysis Subsystem for further analysis and utilization.

Following extensive consultations with the Support and Assurance as well as Engineering
departments, we have successfully secured authorization to access real-time data housed
within the database. This invaluable resource offers a granular perspective, with data
points recorded at hourly intervals, detailing the power consumption in kilowatt-hours
(kWh) over the preceding hour.

Furthermore, cognizant of the recurrent challenges posed by unreliable data within the
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distribution network, proactive measures have been undertaken. In anticipation of such
scenarios, we have expanded our dataset by obtaining detailed electricity use records for
the entire year 2023. These extra statistics include the aggregate energy usage within the
school district, which is thoroughly documented on a monthly basis, giving us a compre-
hensive view of consumption trends and patterns over the course of the year.

To collect the real-time data, we have a Python script implemented to query the database
in the campus. Since the data we’re interested in is stored in a database and gets updated
hourly, we decided to collect them once a day. The Python script runs on the database
server, it will be activated at 2 a.m. each day and make queries to collect the power usage
data of each building. After listing the results in files of csv format, the script will send
these files to our server so that we can store the daily data and analyze it.

The Data Collection Subsystem relies on substantial power data from the Engineering De-
partment to ensure accurate modeling. Therefore, obtaining a minimum of 1 year’s worth
of historical data for each substation is essential. Furthermore, a backup mechanism must
be established to safeguard data integrity in the event of a system failure. Moreover, strict
adherence to data privacy and security regulations is necessary to prevent any potential
data breaches.

2.3.2 Data Analysis Subsystem

The Data Analysis Subsystem first processes the power consumption data obtained from
the Data Collection Subsystem. Since the Data Collection Subsystem collects the electric-
ity consumption of each substation on campus, the Data Analysis Subsystem first needs
to preprocess these data into the active electricity consumption of each building. Then,
the subsystem can feed the collected active power into the tidal current automatic calcu-
lation model to generate a series of desired data such as voltage and current. The data
model needs to process data from all buildings simultaneously and update the model
with tidal stream calculations (STEP1).

The real-time power usage data is fed into a ML model based on historical electricity con-
sumption data, enabling the forecasting of power usage for individual buildings (STEP2)
and the identification of anomalies (STEP3). The data generated by this subsystem is then
transmitted to the Physical Model and Monitor subsystems for visualization purposes.
For both the load forecasting model and the event detection model to satisfy high-level
requirements, an acceptable degree of accuracy is required, which will be discussed in
detail in subsequent sections. Also, it is imperative that the reprocessed data is trans-
mitted to other subsystems within a maximum latency of 1 second upon receiving new
data.



STEP1: Automatic power flow calculation program for distribution networks

Our project embarks on a comprehensive endeavor harnessing the power of OpenDSS, a
robust open-source distribution system simulation software renowned for its efficacy in
analyzing and modeling electrical power distribution networks. Leveraging OpenDSS’s
sophisticated cross-sectional power flow calculation and time series power flow calcula-
tion functions, we intend to delve into the intricate dynamics of our distribution network,
capturing granular power data for each building at every time node. This wealth of in-
formation encompasses crucial parameters such as active power, voltage, and current,
affording us unprecedented insights into the operational intricacies of our infrastructure.
OpenDSS allows detailed modeling and simulation of distribution systems, enabling en-
gineers and researchers to analyze all aspects of power flow, voltage regulation and fault
analysis.

The addition of OpenDSS enriches the project by providing an advanced tool for in-depth
analysis and optimization of the campus distribution infrastructure, ultimately contribut-
ing to the project’s overall goal of sustainable energy management and resilience.

In the project, we need to build the campus distribution grid. The modeling and simula-
tion results are shown in Figure[5and [f|

Figure 5: Distribution Grid Modeling



CIRCUIT ELEMENT POWER FLOW
(Power Flow into element from indicated Bus)

Power Delivery Elements

Bus Phase kW +j kvar kva PF
ELEMENT = "Vsource.SOURCE"
SOURCEBUS 1 -1453.8 +j -1717.2 2249.9 9.6461
SOURCEBUS 2 -1453.8 +j -1717.2 2249.9 9.6461
SOURCEBUS 3 -1453.8 +j -1717.2 2249.9 @.6461

TERMINAL TOTAL . -4361.3 +j -5151.6 6749.8 9.6461
SOURCEBUS ] 9.0 +j 0.0 9.0 1.0000
SOURCEBUS [} 9.9 +j 2.0 2.0 1.0000
SOURCEBUS Q 9.0 +j 0.0 0.0 1.0000

TERMINAL TOTAL . 9.0 +j Q.0 2.0 1.0000

ELEMENT = "Line.S14"

SOURCEBUS 1 1453.8 +j 1717.2 2249.9 2.6461
SOURCEBUS 2 1453.8 +j 1717.2 2249.9 9.6461
SOURCEBUS 3 1453.8 +j 1717.2 2249.9 @.6461

TERMINAL TOTAL . 4361.3 +j 5151.6 6749.8 9.6461
14 1 -1389.8 +j -1397.4 197@.9 9.70852
14 2 -1389.8 +j -1397.4 1979.9 @.7052
14 3 -1389.8 +j -1397.4 197@.9 @.76852

TERMINAL TOTAL . -4169.4 +j -4192.2 5912.6 @.7852

ELEMENT = "Line.14_L5"

14 1 91.8 +j 45.2 102.3 @.8971
14 2 91.8 +j 45.2 102.3 9.8971
14 3 91.8 +j 45.2 102.3 9.8971

TERMINAL TOTAL . 275.3 +j 135.6 306.9 2.8971
5 1 -91.6 +j -44.4 101.8 ©.9000
5 2 -91.6 +j -44.4 101.8 @.9000
5 3 -91.6 +j -44.4 101.8 ©.9600

TERMINAL TOTAL . -274.8 +j -133.1 305.3 ©.9000

Figure 6: Power Flow Calculation

Moreover, to enhance the real-time monitoring capabilities of our system, we are poised
to integrate OpenDSS seamlessly with our project framework. By tapping into the versa-
tile API interface provided by OpenDSS, we plan to orchestrate the seamless exchange of
data, enabling swift and efficient communication between our simulation environment
and external applications. To this end, our team is spearheading the development of
bespoke Python scripts designed to automate the construction of emulation functions,
ensuring a seamless fusion of simulation and real-world dynamics. Through this amal-
gamation of cutting-edge technology and innovative methodologies, we endeavor to not
only optimize the performance of our distribution network but also pave the way for
future advancements in the realm of power system simulation and monitoring.

Overall, STEP1 provides the foundation for data analysis and presentation. A flowchart
of this process is displayed in Figure[7]
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Figure 7: Flowchart of Power Flow Calculation




STEP2: Machine learning-based load forecasting

To promote energy savings on campus, it is crucial to develop accurate short-term load
forecasting models for the electrical system. Specifically, machine learning methods can
be employed to train models using historical and real-time electricity usage data from
each individual building on campus, which can then be utilized to predict load data for
future time periods. Specifically, we will predict the load for the coming day and week.
The length of data used for training will be selected and adjusted according to the actual
situation and error.

Based on thorough research and careful evaluation, we have selected the Long short-
term memory (LSTM) [2] algorithm as our base model. This decision is driven by three
key factors.

1. LSTM is a type of recurrent neural network (RNN) that is specifically designed to han-
dle time-series data. With the ability to capture time-dependent and seasonal variations
in power system load data, LSTM models are highly effective in modelling and predict-
ing load trends. Compared with non-DL models, LSTM has the remarkable ability to
autonomously acquire feature representations from input data, eliminating the need for
manual feature definition and selection. This is especially beneficial for our load forecast-
ing tasks, as load data can be affected by numerous complex factors and nonlinear rela-
tionships, making the extraction of features manually quite a challenging process.

2. LSTM models have the ability to handle noisy and outlier-ridden input data, show-
casing their capability to work with imperfect input data. Techniques like dropout and
regularisation can be used in LSTM models to reduce overfitting and improve generaliza-
tion.

3. LSTM provides a simpler way to implement and adapt compared to the intricate mod-
els that have been prevalent in the field of time series analysis in recent times. Our re-
quirement involves making continuous predictions on incoming real-time data, which
requires the design of online prediction schemes. The simplicity of implementing LSTM
and its reasonable training time make it a suitable choice for this purpose.



hi

Layer Componentwise Copy Concatenate

Legend: P

Figure 8: Flowchart of the LSTM algorithm, from Wikipedia [3]]

As shown in Figure |8, LSTM uses a memory unit to store information from past time
steps and decides whether to discard or retain specific information based on the current
input. The memory unit consists of three gates: input, forget, and output. The input
gate controls the amount of fresh information that enters the memory unit, whereas the
forget gate controls how much old information is maintained. Furthermore, the output
gate controls the use of information throughout the prediction process.

As per the design’s functionality, the LSTM model is required to generate power con-
sumption forecasts for the future using real-time data inputs. We propose several viable
alternatives and intend to determine the approach we employ according to the specific
circumstances.

¢ Direct prediction based on past load data.

¢ Single-step rolling forecast. The model predicts multiple times and uses the previ-
ous predictions as input for each subsequent prediction.

* Multi-model single-step prediction. A separate model is trained for each point to
be predicted.

¢ Multi-model rolling forecasts. A combination of rolling forecasts and multi-model
forecasts.

STEP3: Power system data-driven event detection

Anomaly detection (or event detection), on the other hand, plays a critical role in address-
ing the overall problem. With the detection of faults (or events) in power system, man-
agers can promptly respond to issues, preventing potential losses and mitigating further
complications.

Power system events can be categorized into major physical events and power quality
phenomena. Major events, such as line trips, short circuits, generation-load imbalances,
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Comparison of Event Screening Methods (RPAD between UT-Ausitn - McDonald)
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Figure 9: An example of classification results for individual features and overall classifi-
cation, from [6]

equipment failures, and islanding, are directly linked to power grid components and can
significantly impact the bulk power system, leading to power quality issues, large distur-
bances, and potential cascading failures. Power quality phenomena, on the other hand,
relate to deviations in voltage, current, frequency, active/reactive power caused by minor
issues like weather, contamination, equipment problems, or maintenance. Major events
can also trigger severe power quality issues. These phenomena are formally defined and
analyzed in IEEE power quality standards [4], [5].

It makes little sense to discuss all of the above anomalies for campus electricity usage
data. Therefore, we focus on two cases, short circuit and overvoltage, and design these
two events in the anomaly simulation module.

Statistical based methods can be used for anomaly detection in power usage. Specifically,
the collected data is preprocessed by STEP1 to obtain time series of current and voltage
for individual buildings. Statistical analysis of these time series allows anomalies to be
observed. Research in related fields suggests that certain temporal or frequency domain
elements can be utilised to explain the presence of events. Using these characteristics, we
may develop a model that can automatically ascertain the occurrence or absence of an
events.

¢ Fast Fourier Transform. It has been found that the magnitude of frequencies asso-
ciated with the events in the data tends to be very high. We can choose a threshold
(e.g., 3 std) above which segments are considered events.

* Matrix-Pencil ([7]). The matrix-pencil approach applies a sum of damped sinusoids
to uniformly sampled PMU data. The damped sinusoids’ parameters for fitting the
PMU data are amplitude, phase angle, frequency, and damping. It is expected that
if an event is present in the data, the maximum amplitude will be much bigger than
that of a data frame with no events.
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* Yule-Walker Spectral. The pyulear function can be used to calculate the power
spectral density using the autoregressive Yule-Walker method. Magnitudes above a
set threshold are flagged as possible events.

* Min-Max. We can also identify potential events by analyzing the averages and
standard deviations of the differences between the maximum and minimum val-
ues within a data window. If these differences exceed a predetermined threshold,
they are marked as possible events.

The 3-Sigma method can be utilized for anomaly detection in power data, such as current
and voltage measurements. This method is based on the principle that normal variations
in the data should fall within three standard deviations from the mean. Any data points
that deviate significantly beyond this range can be considered potential anomalies. As
shwon in Figrue [} if two or more techniques identify a potential event in the same data
window, the data window is tagged as containing an event.

2.3.3 Control Subsystem

The Control Subsystem enables the adjustment of data display settings on the display in
the Monitor Subsystem, allowing for the selection of different time and spatial ranges.
It also incorporates an Anomaly Simulator, capable of generating abnormal power con-
sumption data to facilitate system testing and simulation of anomalies.

In order to ensure convenience, the Control Subsystem incorporates a user-friendly inter-
face that enables manual control of the front-end display system. This control interface
facilitates the selection of different time and spatial ranges to showcase various power
situations. This includes historical, real-time power consumption data, power data pre-
dictions, and anomaly simulations. By transmitting control signals to the Monitor Sub-
system and the Physical Model Subsystem, the Control Subsystem swiftly switches the
power data display, with a response time of less than 100 milliseconds. Additionally,
effective communication with other subsystems is established through standardized pro-
tocols.

2.4 Front-end Display System
24.1 Power Subsystem

The Power Subsystem powers the Physical Model and the Monitor subsystems, providing
the proper voltage to both through a transformer.

The Power Subsystem is responsible for supplying power to the LED strips of the Physi-
cal Model Subsystem and the monitor subsystem through transformers in order to obtain
different required voltages. First of all, for the light strips of the Physical Model Subsys-
tem, the LED strips must be supplied with a continuous current of at least 500mA and a
stabilized voltage of about 3.3V to ensure the stability of the LED strips. An overcurrent
protection device is also required to prevent damage to the LED strips. For the moni-
tor subsystem, a stabilized voltage of around 12V must be provided for the monitor and
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alarm. Therefore, we use the circuit as shown in the Figure [10 to convert the DC voltage
provided by the input power supply into an adjustable low voltage output by controlling
the on and off state of the switching switching tubes of the PWM wave with variable input
duty cycle, so as to meet the power supply requirements of different circuits. In addition,
the power provision subsystem needs to be equipped with a backup power supply in case
the main power supply fails. It also needs to provide status signals to indicate the health
of the power supply so that it can be serviced and handled in a timely manner.
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Figure 10: The Circuit of power subsystem

2.4.2 Physical Model Subsystem

The Physical Model Subsystem visualizes the real-time electrical usage of each building
on campus. It receives display commands from the Control Subsystem and uses LED
strips of various colors to display electrical data such as voltage and power.

The Physical Model Subsystem needs to receive display commands from the Control Sub-
system within 500 milliseconds to ensure the timeliness of the visualized power data pre-
sented. The subsystem should also be equipped with at least three different colored LED
strips to display voltage, power and other parameters, as shown in Figure 3l The use of
LED strips to display power data allows for a more intuitive display of power data for
individual buildings and zones by color, we will use green, yellow and red to represent
low, medium and high power data. However, the LED strips do not directly show the
exact power data values, so we need to combine this with the precise data shown in the
Control Subsystem displays to get a more complete picture of the data.

Meanwhile, the campus building model needs to be as realistic as possible to facilitate
real-time troubleshooting and processing. So we created a more detailed electronic model
of the campus, as shown in Figure [11{and Figure The Physics International Campus
sandbox will be a square with 1 meter sides and a height of less than 30 centimeters.
This ensures the fineness of the individual buildings and leaves enough space for the
placement of the LED strips and their wiring. In addition, the Physical Model Subsystem
needed to include fail-safe mechanisms to deal with issues such as LED strip failures in a
timely manner.
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Figure 12: Local Physical Model
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2.4.3 Monitor Subsystem

To display the power usage data and make detailed analysis of it, we are going to imple-
ment a Monitor Subsystem with GUI support. The subsystem draws the hourly power
usage plot of each building to help with analyzing, and it displays critical information
about the building including the Electricity Consumption over the last 7 days, the System
Status.

The Monitor Subsystem responds to commands from the Control Subsystem by display-
ing numerical real-time or historical power data of individual buildings. It can also pro-
vide estimated future values for the power data of each building. Additionally, in the
event of anomaly simulation, the Monitor Subsystem can display the specific building
experiencing an anomaly event, triggering an alarm accordingly.

The Monitor subsystem is required to receive display commands from the Control Sub-
system within 500 milliseconds while displaying real-time power data at a refresh rate
of at least once per second to ensure real-time power data. In anomaly simulation, the
subsystem needs to trigger an alarm within 5 second after detecting a power failure and
record the time of the failure, so as to facilitate timely handling of power failures and
post-inspection. At the same time, the Monitor subsystem needs to provide a user inter-
face for manual control and monitoring, which can be used by the observer to obtain the
required or more accurate power data.

Power ZJUHaining

| Data Monitor

{2  Error Simulation

Total Buildings Electricity Consumption (7days) System Status .
B 4 P e 4 Select One Building

25 XX KW-h I
=

A xx% Up from past week

Building Details

Figure 13: Monitoring System Interface Design
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2.5 Requirements and Verifications table

Table 1: Overall Requirements & Verifications List

Requirements

Verifications

For power data, historical data
must be accessible for at least 1

The front-end display system needs
to have the ability to display data

maintain a response time of <
500ms

year. from the past 1 year.
The forecasting model must The historical data can be used as a
Remote | achieve a maximum MAPE of 10% test basis.
System The event detection model must Each abnormal simulation and its
achieve an F1 score of 0.95 or neighboring normal conditions are
higher. counted from which the F1 score
can be calculated.
The remote system must maintain The control subsystem calculates
an update response time of < 1s these times, and the front-end
and an operation update response | display system shows them on the
time of < 100 ms display.
The LED voltage must be 3.3V, the | Measure the output voltages with
display voltage should be 12V. an oscilloscope to ensure that they
Tolerance should be within 5%. remain stable.
Front-end
Display Color changes to the LED and The front-end display system can
System display on the monitor must calculate and show these times on

the display.

The physical model needs to

include all the 26 significant

buildings on campus that are
electrified

Physical model will be displayed.
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2.6 Tolerance Analysis
Timing Synchronization

Since power data needs to be collected and processed before display, the real-time nature
of power data displayed on the front-end may be difficult to ensure. Ideally, the Data Col-
lection Subsystem collects real-time power data at a frequency of once per second with a
time tolerance of +100 milliseconds. This includes network latency, substation reporting
time variations, and system clock synchronization. The Data Analysis Subsystem pro-
cesses real-time data with a tolerance of +50 milliseconds. This includes pre-processing,
model building, and providing data to other subsystems. Any delay outside of this range
may affect the real-time responsiveness of the system. Also, the Control Subsystem must
control the display and switching of real-time and historical data. It coordinates with the
other subsystems with a time tolerance of +20 milliseconds. This is critical for seamless
switching and real-time monitoring. Exceeding this tolerance may result in inconsistent
or delayed displays. In the face of possible delays, we can build mathematical models of
data synchronization and processing times and use statistical analysis to determine the
impact of time variations on overall system performance. Alternatively, network time
protocols can be implemented to achieve accurate clock synchronization.

Power Supply Reliability

The power supply needs to provide continuous power to the LED strips of the Physical
Model Subsystem and the monitor subsystem. Any failure or interruption of the power
supply may result in the loss of the visual display and alarm functions. At the same
time, the voltage and current supplied to multiple LED strips after passing through the
transformer may be unstable, which may lead to damage or malfunction of the strips.
Therefore, we need to have a backup power supply in case the main power supply fails.
When a mains failure is detected, the backup power supply should be activated within
1 second, which ensures a seamless transition and avoids interruption of the LED strip
operation.

Errors in the Forecasting Model of Power Usage

In accordance with the common setup of the state-of-the-art (SOTA) model in the do-
main under consideration [8], we choose to employ Mean Squared Error (MSE) as a met-
ric for quantifying the dissimilarity between the predicted values and the corresponding
ground truth data. Mean Squared Error is a common loss function for regression tasks,
which measures the squared difference between the model’s predicted output and the
true values. In time series forecasting, the LSTM’s output is a sequence of continuous
predicted values, while the true values are the actual observations of the time series. By
calculating the squared differences between the predicted sequence and the actual obser-
vations at each time step, and taking the average, we obtain the Mean Squared Error loss
function.
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Specifically, for each time step in the time series, the LSTM’s output is compared to the
true value, and the difference between the predicted value and the actual observation is
computed. These differences are then squared, summed, and divided by the number of
time steps to obtain the Mean Squared Error loss. The goal of the LSTM is to optimize this
loss function, minimizing the average squared difference between the predicted sequence
and the actual observations.

The final metric used to measure model performance is MAPE (Mean Absolute Percent-
age Error).

x 100

1
MAPE = MZ

i=1

where X' represents the predicted value, x’ represents the true value, and M is the number
of samples.

Errors in the Event Detection

In our design, the task of event detection in power systems can be represented as a binary
classification problem. In such cases, Precision and Recall serve as commonly used met-
rics to assess the performance of classification models, specifically in binary classification
scenarios.

Precision measures the proportion of correctly predicted positive samples out of all the
samples predicted as positive. It is calculated as follows:

TP

P . . _ v
recision TP + FP

where TP represents True Positives and FP represents False Positives. A higher precision
indicates a higher accuracy in predicting positive samples.

Recall measures the proportion of correctly predicted positive samples out of all the actual
positive samples. It is calculated as follows:

TP

Recall = TP—l——FI\I

where TP represents True Positives and FN represents False Negatives. A higher recall
indicates a better ability to capture true positive samples.

In anomaly detection tasks, the macro-F1 score is commonly used as the primary evalu-
ation metri. This is because anomaly detection problems typically involve highly imbal-
anced classes, with the normal class vastly outnumbering the anomaly class. Macro-F1

18



effectively captures the performance on the anomaly class, which is of greater interest,
by computing the F1 score for each class independently and then taking the average.
Precision and recall alone may not provide a comprehensive assessment, while micro-
F1 can be skewed by the dominant normal class. Macro-F1 strikes a balance, ensuring
that the model’s performance on the rare but crucial anomaly class is adequately repre-
sented.

1
Fl = -
macro 5 (

2 x precision, x recall, 2 x precision x recalln)

precision , + recall, precision  + recall,

3 Cost and Schedule
3.1 Cost Analysis

Table 2: Cost Analysis

Category Item Price

Microprocessor RaspberryPi 4B 600RMB

Campus Building Model 800RMB

Physical Display 400RMB

Model Display Bracket 300RMB

LED*80 160RMB

Power Supply 36V DC Power Supply 300RMB

GPU RTX 3080 Ti(Rental servers) 650RMB
Labor 4 people * 100hours * 100RMB/hour | 40000RMB
Total 43210RMB
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3.2 Schedule

Table 3: Schedule - 1

Date | Erkai Yu Yilang Feng Tiantong Qiao Jiahe Li

3/11 | Write Python | Construct a digi- | Confirm data | Researching
scripts to make | tal model for the | types with Sup- | Power Forecast-
database queries | physical model | port and Assur- | ing and Anomaly
and send power | and made data | ance to prepare | Detection Algo-
consumption usage  require- | for access to the | rithms
data to local | ments to verify | database
server compliance.

3/18 | Learn how to | Modeled the cam- | Confirming the | Selecting alterna-
control the LEDs | pus based on the | connection of | tives for the al-
with single-chip | physical campus | each substation in | gorithm; design-
microcomputers | landscape the distribution | ing the UI for the

network and | Monitor Subsys-
starting modeling | tem

3/25 | Implement 3D printing and | Modeling the | Conducting  se-
scripts for Rasp- | sandboxing from | campus  distri- | lected algorithms
berry Pi board to | already built 3D | bution network | on historical data
control LEDs models and elec- | down to the sub- | and testing for

tronic models station level acceptable errors

4/1 | Test and debug | 3D printing and | Completing mod- | Selection  based
the script for | sandboxing from | eling of the school | on data char-
Raspberry Pi | already built 3D | district’'s  distri- | acteristics and
to control LED, | models and elec- | bution network | adapting existing
install Raspberry | tronic models and completing | algorithms
Pi with LED testing of the

offline version of
the model
4/8 | Test the connec- | 3D printing and | Preparing python | Completing the

tion between
Raspberry Pi and
the data server,
implement local
script to receive
and store data on
Raspberry Pi

sandboxing from
already built 3D
models and elec-
tronic models

version of online
modeling using
OpenDSS API
interface

code for the final
time-series model
and designing
interfaces  with
other subsystems
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Table 4: Schedule - 2

Date | Erkai Yu Yilang Feng Tiantong Qiao Jiahe Li
4/15 | Design database | Finish the sand- | Completing Interfacing with
on Raspberry Pi | box and put LED | python version of | real-time  data,
to store the power | strips around the | online modeling | testing code on
data building and con- | using OpenDSS | real-time  data,
nect the wiring APl interface checking for
errors
4/22 | Integrate real- | Connect the | Completing the | Interfacing Model,
time data power | wiring between | online  version .
flow calculation | the cgigisplay and | of the real-time Data and Monitor
on Raspberry Pi, | the sandbox so | data power flow
feed it with data | that the display | calculation test
stored locally can control the
display state of
the sandbox
4/29 | Design user inter- | Connecting  the | completing
action interface | sandbox to the | power flow cal-
with screen on | siren so that the | culations for
Raspberry Pi siren can give a | successful inter-
timely alert in | facing with led
case of power | displays
data failure
5/6 | Integrate monitor | Check all circuit | Prepare final | Prepare final

subsystem on
Raspberry Pi,
help with in-

stalling the final
model

connections, add
LEDs and a cir-
cuit fault alarm
system, and add
a backup power
supply to prevent
failures

demo and design
testing cases

demo and design
testing cases
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4 Ethics and Safety

Privacy. The data displayed by our system should not reflect any individual’s electric-
ity usage, as we highly value the data privacy of each individual. Thus, our system takes
each building as our measuring object, to exclude any sensitive personal data while main-
taining the purpose of displaying meaningful power usage data of the campus.

Social Benefits. According to IEEE Code of Ethics, we are obligated to prioritize the
safety, health, and well-being of the public [9]. Furthermore, we should make diligent
efforts to adhere to ethical design principles and promote sustainable development prac-
tices. Our system is designed to achieve two main goals. Firstly, it monitors the power
usage of the campus to provide a safe and efficient electricity system. Secondly, it also
plays a role in educating people about the value of electricity we use every day. With the
model we built, we can vividly display how electricity power runs inside our campus,
which urges us to use it appropriately.

Data Safety. The power usage of each building can be highly sensitive data, especially
for those involving experiments. To realize our goal of power usage model display and
power usage data analysis, we will preprocess the data before displaying it with our
model, thus making sure that no one can reverse engineer the model to get the sensitive
data. Meanwhile, the data we collected will be carefully stored to avoid any information
leaks. In our project, we adhere to high standards of integrity, responsible behavior, and
ethical conduct, ensuring the use of legal data sources and preventing harm to others
according to [9].

Electricity Usage Safety. As our system uses a large number of LEDs to display the power
consumption of the campus, it’s important to monitor the functionality of the circuits and
avoid potential safety issues such as fire hazards. The LEDs we use should be capable
of not only long-term functioning but also smooth voltage adjustment. We will also add
monitoring components for our system, in case of any unpredicted accidents.
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