
ECE 445

SENIOR DESIGN LABORATORY

DESIGN DOCUMENT

Display of Ordinary Differential
Equation

Team #5

KEJIA HU

(kejiahu2@illinois.edu)
ZHUOHAO LI

(zhuohao5@illinois.edu)
QIANHE YE

(qianhey2@illinois.edu)
QIRONG XIA

(qirongx2@illinois.edu)

Advisor: Prof. Pavel Loskot
TA: Yue Yu

2024-03-27

Contents

1 Introduction 1
1.1 Problem and Solution Overview . 1
1.2 Visual Aid . 1
1.3 High-Level Requirement List . 1

2 Design 2
2.1 Block Diagram . 2
2.2 Physical Design . 2
2.3 User Interface Subsystem . 3
2.4 Control Subsystem . 4
2.5 Mechanical Subsystem . 6
2.6 Coloring Subsystem . 7
2.7 Point Summary . 8
2.8 Tolerance Analysis . 8

2.8.1 Timely responses of the motor . 8
2.8.2 Synchronization between the sticks and the projection 11
2.8.3 Accuracy of the numerical solutions 11

3 Cost and Schedule 13
3.1 Cost Analysis . 13

3.1.1 Labor . 13
3.1.2 Parts . 14
3.1.3 Sum of costs into a grand total . 14

3.2 Schedule . 14

4 Discussion of Ethics and Safety 14

References 16

Appendix A Define and Solve 2D Time-Dependent PDE 17

Appendix B Matlab Animation of Heat Equation 18

Appendix C Prototype code of driving 2 x 2 sticks 19

ii

1 Introduction

1.1 Problem and Solution Overview

Understanding the behavior of complex systems in scientific and engineering fields often
requires analyzing interactions between multiple variables over time and space. While
three-dimensional (3D) visualization offers superior expressiveness and effectiveness in
representing data information [1]. Modern software capabilities include sophisticated 3D
visualization tools that not only enhance data comprehension but also facilitate interac-
tive exploration and analysis [2]. However, the current screen-based 3D visualization
tools are confined to the dimensions of the display device, hindering the viewer’s ability
to perceive objects accurately from various angles and distances. There’s a pressing need
for innovative visualization tools capable of representing complex systems in 3D in real-
time, providing a more intuitive understanding of their behavior. Such tools could find
applications in various disciplines, from mathematics to physics, biology, engineering,
and environmental science.

To address the challenges posed by traditional visualization methods, our solution pro-
poses the development of a portable and user-friendly 3D real-time visualization system
for accurately representing time-varying 2D differential equations. The system will dy-
namically visualize the changing behavior of the function over time, projecting color onto
the surface from the top to enhance interpretation. It comprises four subsystems: User In-
terface subsystem, Control subsystem, Mechanical subsystem, and Coloring subsystem.
The User Interface subsystem collects the user’s differential equation input and transmits
it to the Control system. The Control subsystem converts this information for mechani-
cal devices to understand and adjust the height of sticks, creating a smooth visualization
surface. Finally, the Coloring Subsystem projects images onto the canvas. This solution
not only improves data comprehension but also facilitates interactive exploration and
analysis, offering researchers a comprehensive tool for understanding complex systems’
behavior.

1.2 Visual Aid

Based on the solution we propose, a pictorial representation of our project is shown in
Fig.1.

1.3 High-Level Requirement List

• The device should provide a user-friendly interface that enables users to input dif-
ferential equations easily and view the status of computations and solutions on the
screen clearly.

• The 3D visualization system must update dynamically and respond to changes in
the differential equation solution, ensuring that users can observe the behavior of
the system.

1

Figure 1: A pictorial representation of the device

• The entire system should be robust and reliable, capable of maintaining stable oper-
ation over extended periods. It should withstand environmental factors and varia-
tions in input conditions without compromising the accuracy or functionality of the
visualization.

2 Design

2.1 Block Diagram

The block diagram of the device is shown in Fig. 2. There are four modules, representing
four different subsystems respectively. The User Interface module enables the user to
input differential equations and view the computation results. The Control module and
Mechanical module ensure the sticks move to different heights based on the solution of
the differential equation. The Coloring module will project color to the canvas.

Besides the block diagram illustrating the physical layout of our design, we also illustrate
the overall logic workflow in Fig. 4.

2.2 Physical Design

As shown in Figure 4, the mechanical part of our design consists of 16 motors and the
corresponding rods aligned on a 500*500mm board. More details are explained in the
Mechanical subsystem part.

2

Figure 2: A pictorial representation of the device

2.3 User Interface Subsystem

The User Interface (UI) Subsystem is an essential component that bridges the gap between
users and the visualization system, enhancing the interaction through a well-designed,
user-friendly graphical interface. This subsystem is meticulously engineered to handle
the input of Differential Equations, a critical task for users who need to convey complex
mathematical models to the system for computation and subsequent visualization. At
the core of this process lies the Graphical User Interface (GUI), which is thoughtfully
equipped with various interactive elements. These elements include but are not limited
to, text input fields designed for the precise entry of equations, buttons that facilitate
the submission or cancellation of inputs, sliders that offer control over variable param-
eters, and a virtual keyboard to ensure users without access to a physical keyboard can
still interact effectively. Upon the successful input of Differential Equations by a user,
the system leverages the computing power of a Raspberry Pi, a compact yet powerful
computing solution, to process and solve these equations.the Raspberry Pi transmits the
data, including the time-varying solutions of the Differential Equations variables, to the
Control Subsystem for visualiza- tion. Lastly, the Raspberry Pi will provide feedback on
the screen regarding the status of the computation, such as progress indicators or error
messages in case of invalid input or computation failures. See Table 1 for the requirement
and verification.

3

Figure 3: The logic workflow

2.4 Control Subsystem

The Control Subsystem is in charge of the stick height adjustments. It translates solutions
of Differential Equations received from the User Interface Subsystem into actionable con-
trol commands for the Mechanical Subsystem. This involves mapping the mathematical
solutions to physical actions, such as the movement of the sticks.

To ensure the successful completion of the control subsystem, we think of two methods
to control 16 motors with limited IO pins. The baseline method is to use two Raspberry
Pi (one is Raspberry Pi Pico W and the other is Raspberry Pi Pico) to communicate with
each other. The two development boards are connected to each other using UART chan-
nel 0, with the TX pin connecting to the RX pin on the other board. To ensure that the
control data is in order, we build an extra abstract layer upon the physical layer of data

4

Figure 4: The mechanical part of design

transmission, by introducing a workqueue for each motor. We currently set the Baud rate
to 9600Hz.

A more advanced way to achieve the same effects is to use a Raspberry Pi Pico as the
central microcontroller unit (MCU), and a PCB serves as the motor controller. The MCU
and the PCB are communicating using I2C protocol, by setting the I2C expander chip
MCP23017 on the PCB as the slaves, and the MCU as the host system. The MCU has
two I2C channels, each can take multiple slave chips, sending commands parallelly from
the MCU. However, only two motors can take the control signals simultaneously due to
the sequential essence of the I2C protocol. According to the datasheet of MCP23017, we
designed the byte flow when transmitting data from the MCU to the PCB in the physical
layer, which is shown in Fig.6. The DataIn and DataOut in the Fig.6 signals are sent as a
byte, controlling 4 motors’ movements for every data transmission to the MCP23017 chip.

The hardware architecture of the MCP23017 chip is shown in 5. There are 16 GPIO pins on
this chip in total, divided into two groups. The GPIO-A is set as output latches, which will
directly control four motors. The GPIO-B is set as input latches, which will be written by
the sensors, and read by the host MCU. In that way, the MCU can check the status of mo-
tors, ensuring that every motor is working as expected. An incomplete circuit schematic
is given in 7 for better illustration. For software development, we will use MicroPython
for prototyping, and use open-source C/C++ SDK [3] to control the actuators based on
received data and feedback from sensors. An example code of driving 2×2 sticks to rep-
resent the heat equation is given in Appendix C.

See Table 2 for the requirement and verification.

5

Requirement Verification

The GUI should be well-designed and
include components like text input
fields, buttons, and sliders for user in-
teraction. This interface should be intu-
itive and user-friendly to allow users to
easily input Differential Equations.

Conduct a thorough inspection of the
GUI to ensure that all the specified com-
ponents (text input fields, buttons, slid-
ers) are present and organize a series
of usability testing sessions with partic-
ipants who represent the end-users of
the system.

The subsystem should be designed for
reliability, including robust error han-
dling and validation of user inputs to
prevent crashes and ensure accurate
computation results.

Implement tests that intentionally in-
put erroneous data or create scenarios
where errors are likely to occur to see
how the system handles these situations

Table 1: R&V table for User Interface Subsystem

Figure 5: The hardware architecture of MCP23017 chip

2.5 Mechanical Subsystem

The Mechanical Subsystem consists of rods that can move up and down dynamically
in accordance with the displayed solution. Each rod is connected to a motor, which is
fixed in a base and aligned on a board, forming a 5*5 grid. The stepper motor and a
screw were used to transfer rotation motion into translation, and the base was created by
CAD modeling and 3D printing. The detailed design is shown below. A layer of rubber
foil is secured to the top of each rod, ensuring the visualization remains seamless. Inputs
from the control subsystem dictate the movements of this subsystem, which then executes
these commands. Additionally, it provides feedback to the control subsystem for adjust-
ments and fine-tuning. The system is designed to adhere precisely to the commands from
the control system, aiming for high accuracy and precision in movements. Moreover, it’s
built to be sturdy, effectively reducing minor vibrations and environmental noise. Fig 8
shows the mechanical design of one translating structure. See Table 3 for the requirement

6

Figure 6: The byte flow in the physical layer

and verification.

Requirement Verification

The stick and the connection of which
with the motor must be robust to sup-
port the canvas without noticeable wob-
bling during and after the motion.

Do optimization of the 3D model and
test the motor motion when connecting
all parts to the motor.

The motors should act accurately and
nearly identically according to the sig-
nal input from the control subsystem.

Connect the motors to the power supply
and measure if they move identically.
If not, attach sensors to give feed back
about position directly.

The canvas needs to be elastic and resis-
tant to tearing, while reflecting the posi-
tion of different sticks accurately.

Test different materials and choose the
most suitable one.

Table 3: R&V table for Mechanical Subsystem

2.6 Coloring Subsystem

The Coloring Subsystem is on the top of the device and it gets the solution of the Differen-
tial Equations from the Raspberry Pi. Given the height data, the subsystem employs logic
to assign colors based on the height of the sticks. For example, the highest sticks could
be assigned to the color red, while the lowest points are assigned to the color blue. As
the height of the sticks changes, the subsystem must dynamically adjust the projections
in real time to reflect these changes. This is achieved by having a tiny projector connected
to the Raspberry Pi, taking the time-varying solutions of the Differential Equations, and
coloring the surface with the time and height of the sticks changing. We plan to imple-
ment this feature at the end since it needs to synchronize accurately with the mechanical
part. The implementation of this subsystem will greatly enhance the 3D visualization and

7

Figure 7: The circuit schematic

enable observers to easily discern patterns within the solution, leading to more informed
insights. An example of what the Coloring Subsystem will be projecting for the case of
the heat equation is shown in Fig 9. See Table 4 for the requirement and verification.

2.7 Point Summary

The point allocation is shown in Table 5.

2.8 Tolerance Analysis

2.8.1 Timely responses of the motor

The responsiveness of the motors to the microcontroller influences the visual impact sig-
nificantly. To achieve precise vertical movement, we adopted stepper motor linear ac-
tuators for each dynamic stick. In Appendix B, we delve into a detailed simulation of
a heat wave function solver. With the sticks’ vertical range set at 10 cm, we can tailor
the time-varying function to an optimal visual spectrum by pinpointing its highest and
lowest values and calculating the median for each display horizon.

Our control over stick movement is constrained to directing them via the motor’s poles,
and we can use the duty cycle of the Pulse Width Modulation (PWM) signals to adjust
their speeds. We modeled stick motion as uniform linear motion, but as depicted in Fig-

8

Requirement Verification

The Raspberry Pi and PCB will be used
to control 16 stepper motors, each of
them given a stable 3.3V voltage, allow-
ing it to achieve a 500 RPM (Revolution
Per Minute) rotation rate.

Use an oscilloscope to measure the volt-
age output from the PCB and stepper
motor drivers

The Control Subsystem is responsible
for synchronizing the surface coloring
and the movement of the sticks. That
said, every time the microcontroller
sends the signals to the sticks, it should
also send the generated coloring image
to the projector simultaneously.

Send signals to move the sticks and ob-
serve if the coloring image is synchro-
nized with the stick movements. Then
capture images of the projected surface
using the camera simultaneously with
stick movements.

The Control Subsystem must ensure
that the height adjustment of each stick
remains within 0.3cm of the true value.

Use the sensor to get the position of
the sticks, then compare the measured
height with the reference value.

Table 2: R&V table for Control Subsystem

ure 10, the distance traveled varies between frames with the same time interval. Conse-
quently, we propose two major constraints for determining the device’s frame rate:

1. The maximal stick’s achievable moving velocity.

2. The maximal time interval that the microcontroller dispatches the motion com-
mands to the motor.

A reasonable breakdown of the working period of the motor consists of (1) the screw
performing rotation, and (2) waiting for the next moving signal sent from the microcon-
troller. However, one working period can consist of multiple periods of data transmission
between the MCU and the PCB, and the granularity of the motion control is determined
by the clock frequency of data transmission.

The RPM of the stepper motor shaft is directly related to the linear speed of the external
nut (and consequently the stick attached to it) in a proportional manner. The screw lead is
the distance the nut moves parallel to the screw axis when the screw makes one complete
revolution, with unit mm/rev. The formula to calculate the linear speed Vlinear (in unit
mm/min) based on the motor’s RPM and the screw’s lead L is:

Vlinear = RPM · L (1)

According to the actual measurement, the screw lead is 0.6mm/rev, and the linear speed
of the stick is:

Vlinear = 500RPM · 0.6mm/rev = 300mm/min ≈ 0.5cm/s

9

(a) Motor base (b) Rod
(c) Assembled translating
structure

Figure 8: Mechanical design of one translating structure

Requirement Verification

The Coloring Subsystem must accu-
rately project color onto the surface cor-
responding to the mathematical solu-
tions of the differential equations.

Compare the projected color with the
Matlab Simulation results.

The Coloring Subsystem must maintain
synchronization with the movement of
the sticks controlled by the Control Sub-
system.

Test the system while simultaneously
adjusting stick heights and projecting
colors. Verify that the projected colors
remain synchronized with the move-
ment of the sticks without noticeable lag
or inconsistency.

Table 4: R&V table for Coloring Subsystem

Therefore, given that the maximum travel distance per work cycle is set to 0.5 cm, the
minimum duration of a work cycle must be tmotor =

0.5cm
0.5cm/s

= 1s. Since the time taken by
the microcontroller to transmit signals to the motor is negligible relative to the movement
latency of the actuators given a reasonable clock frequency, a time interval of 1 second is
sufficient to guarantee the device’s full operational capability.

We conducted some experiments to investigate the influence of varying duty cycles on
the time it takes for a motorized stick to reach its highest position. By altering the PWM
signals applied to the motor, we aimed to discern how changes in signal intensity affect
the speed of the motor’s movement. Fig 11 shows the relationship between the duty cycle
and the time the motor takes to make a stick to reach the highest position. As we can see,
the larger the duty cycle, the less time it takes. However, as the duty cycle drops to 85%,
the motor fails to drive the sticks.

10

(a) Example of the projected color for the heat function
(b) The data flow of coloring
subsystem

Figure 9: The illustrations of coloring subsystem

2.8.2 Synchronization between the sticks and the projection

Achieving precise synchronization between the movement of the sticks within the Me-
chanical Subsystem and the color projection in the Coloring Subsystem is critical for ac-
curate 3D visualization. Any inconsistency or delay in this synchronization could result
in misleading visualizations of the differential equation solution. Therefore, we need to
ensure that the movement of the sticks and the projection of colors occur within an ac-
ceptable time. Assume that the mechanical movement of the sticks takes tm seconds to
complete, and the coloring subsystem requires tc seconds to project the colors onto the
surface. Through testing and adjusting the RPM of the sticks, we try to minimize the time
difference |tm − tc| to less than 0.5 seconds.

2.8.3 Accuracy of the numerical solutions

Many of the Differential Equations do not have an explicit solution. Hence, we need to
use a numerical method to get an approximate solution. To ensure the solution solved by
a numerical method is similar to the true solution, we need to perform a tolerance analy-
sis on the difference between the two.

Let’s denote:

• u(xi, yj, tk) as the true solution of the Differential Equation at each grid point.

• unum(xi, yj, tk) as the solution obtained numerically in Python at each grid point.

We can measure the difference between the true solution and the numerical solution us-

11

Module Name High Level Requirement Point

User Interface Module User can input a differential equation and our device
can solve it

10

Control Module The sticks can move to different heights, representing
the differential equation solution

20

Mechanical Module The canvas should be elastic enough to represent a
smooth surface

10

Coloring Module Correct colors are projected to the canvas 10

Total 50

Table 5: Point Summary Table

(a) The trajectories of 25 sticks (b) The trajectory of a single stick

Figure 10: The trajectories of sticks

ing a suitable metric such as the L2-norm. The error at each grid point (xi, yj, tk) can
be calculated using the absolute difference between the true solution and the numerical
solution:

ei,j,k = |u(xi, yj, tk)− unum(xi, yj, tk)| (2)

Then, the L2 norm of the error over the entire grid can be approximated by summing the
squared errors at each grid point and taking the square root:

∥e∥2 ≈
√∑

i,j,k

e2i,j,k (3)

where the sum is taken over all grid points (xi, yj, tk).

12

Figure 11: Relationship between the duty cycle and time duration

When we implement the Differential Equation solving algorithm, we need to calculate the
error difference based on some Differential Equations that we know the true solutions. We
need to ensure the ∥e∥2 ≤ Ttol, where Ttol = 10−2.

3 Cost and Schedule

3.1 Cost Analysis

Components Vendor Quantity Cost (RMB)/unit Total Cost (RMB)

DC Motor YongChuangXin Actuator 17 22 374

Raspberry Pi Pico Raspberry Pi 1 29 29

Raspberry Pi Pico W Raspberry Pi 1 59 59

I2C Expander Chip Microchip 4 9.5 38

PCB Custom 1 30 30

Tiny projector Hantangke 1 200 200

Canvas Shengshi Textile and Leather 1 6.5 6.5

Total 736.5

Table 6: Cost for components

3.1.1 Labor

According to public statistics of the average salary for a graduate from Illinois ECE [4],
the average salary per hour is roughly $45/hour, which is 315 RMB/hour. Assuming that
we are given 8 weeks to finish the project, every member works for at least 20 hours per

13

week, the total number of hours for each member is given by

20hours/week × 8weeks = 160hours

Multiplying the total number of hours worked by the hourly rate gives the total labor cost
for a person, which is

315RMB/hour × 160hours = 50400RMB

Therefore, the total labor cost for this project will be

50400RMB/person× 4persons = 201600RMB

3.1.2 Parts

The cost for each component for our project is given in 6.

3.1.3 Sum of costs into a grand total

The total cost given by summing the parts cost and labor costs

201600RMB + 736.5RMB = 202, 336.5RMB

3.2 Schedule

The weekly schedule is shown in Table.7.

4 Discussion of Ethics and Safety

Prioritizing safety in the creation and application of any product is paramount. To ensure
”the safety, health, and welfare of the public” as outlined in IEEE’s ethical guidelines[5],
we should strictly adhere to relevant regulations throughout the research and develop-
ment phases, as well as inform users about the proper usage and to communicate the
potential risks with misuse.

Furthermore, to be forthright and grounded in reality when making claims or estimates
based on the data at hand[5], we should make it clear that the visualized differential
equation solution is an approximation. Despite aiming to mirror real-life situations as
closely as possible, these solutions cannot replace actual real-world solutions.

The essence of design lies in simplifying life and enhancing work efficiency. It’s crucial for
society to aim for respect, inclusivity, fairness, and balance, guaranteeing that everyone
can access the necessary tools and resources for a rewarding life, free from discrimination
related to race, religion, gender, disability, age, national origin, sexual orientation, gender
identity, or expression[5]. Fundamentally, we are dedicated to providing individuals with
an enhanced ability to interact with and learn from differential equations.

14

Week Task Member

3/25/2024

Design a PCB that can (1) take signals from RasPi Pico, (2) send out signals to the motors. Qirong Xia

Work with Qirong to design the PCB and verify the correctness of the PCB Kejia Hu

Translate the user inputted time-varying function to control signals sending to the motors Zhuohao Li

3D print and optimize the design of motor base Qianhe Ye

4/1/2024

Build a prototype of the PCB and test it with breadboard Qirong Xia

Refine the control signal translation process based on initial testing results Kejia Hu

Adjust the range of solvable equations based on the limitations of the physical structure Zhuohao Li

Search for usable type of sensors Qianhe Ye

4/8/2024

Get the PCB and make it soldered, incorporating all the components to allow end-to-end control Qirong Xia

Begin debugging any hardware issues or communication issues between the Raspberry Pi and motors Kejia Hu

Design the sampling intervals and sampling locations for the solutions Zhuohao Li

Implement sensor to the control system Qianhe Ye

4/15/2024

Debug the hardware control subsystem if previous week’s work is not done perfectly. Qirong Xia

Optimize the performance of the control subsystem to ensure smooth and accurate movement of the sticks Kejia Hu

Optimize the signals sent to the motor to make its operation more stable Zhuohao Li

Optimize 3D model to place sensor Qianhe Ye

4/22/2024

Help find the right projector & connect the projector to the MCU Qirong Xia

Write code to make the projector project wanted colors Kejia Hu

Ensure that structures covered by canvas can still work. Zhuohao Li

Search canvas material Qianhe Ye

4/29/2024

Debug the overall system to make sure it can work from end-to-end Qirong Xia

Address any synchronization issues between the control subsystem and other subsystems Kejia Hu

Help debug the system Zhuohao Li

Fix the mechanical system to the board Qianhe Ye

5/6/2024

Prepare for mock demonstration. Qirong Xia

Conduct final debugging and testing of the entire system to ensure it is ready for the mock demonstration Kejia Hu

Prepare for mock demonstration. Zhuohao Li

Prepare for mock demonstration Qianhe Ye

5/13/2024

Rehearse the final presentation and demonstration with the team Qirong Xia

Rehearse the final presentation and demonstration with the team Kejia Hu

Rehearse the final presentation and demonstration with the team Zhuohao Li

Rehearse the final presentation and demonstration with the team Qianhe Ye

Table 7: Weekly Schedule for team members

15

References

[1] J. Wood, S. Kirschenbauer, J. Döllner, A. Lopes, and L. Bodum, “Using 3d in visual-
ization,” in Exploring geovisualization, Elsevier, 2005, pp. 293–312.

[2] A. R. Teyseyre and M. R. Campo, “An overview of 3d software visualization,” IEEE
transactions on visualization and computer graphics, vol. 15, no. 1, pp. 87–105, 2008.

[3] raspberrypi. “Pico-sdk.” (2023), [Online]. Available: https://github.com/raspberrypi/
pico-sdk (visited on 03/26/2024).

[4] U. E. Department. “Salary averages.” (2024), [Online]. Available: Salary%20Averages
(visited on 03/27/2024).

[5] IEEE. “Ieee code of ethics.” (2020), [Online]. Available: https : / / www. ieee . org /
about/corporate/governance/p7-8.html (visited on 03/05/2024).

[6] Matlab. “Simple heat equation solver.” 2024-03-03. (2023), [Online]. Available: https:
//www.mathworks.com/matlabcentral/fileexchange/59916-simple-heat-equation-
solver.

[7] Younes-Toumi. “Heat equation.” (2024), [Online]. Available: https://github.com/
Younes - Toumi / YoutubeChannel / tree / main / Simulation % 20with % 20Python /
Heat%20Equation.

16

https://github.com/raspberrypi/pico-sdk
https://github.com/raspberrypi/pico-sdk
Salary%20Averages
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.mathworks.com/matlabcentral/fileexchange/59916-simple-heat-equation-solver
https://www.mathworks.com/matlabcentral/fileexchange/59916-simple-heat-equation-solver
https://www.mathworks.com/matlabcentral/fileexchange/59916-simple-heat-equation-solver
https://github.com/Younes-Toumi/YoutubeChannel/tree/main/Simulation%20with%20Python/Heat%20Equation
https://github.com/Younes-Toumi/YoutubeChannel/tree/main/Simulation%20with%20Python/Heat%20Equation
https://github.com/Younes-Toumi/YoutubeChannel/tree/main/Simulation%20with%20Python/Heat%20Equation

Appendix A Define and Solve 2D Time-Dependent PDE

Below is a pseudocode of how to obtain a partial differential equation (PDE) from the
user and solve it using numerical methods.

Algorithm 1 Solving 2D Time-Dependent PDE z(x, y, t)

1: Input: User-provided PDE
2: Prompt User Input:
3: pde input← Get input from the user in the format ’a ∂2z

∂x2 + b∂
2z

∂y2
+ c∂z

∂t
= f(x, y, t)’

4: Parse Input:
5: Parse pde input to extract coefficients a, b, c and the function f(x, y, t)
6: Spatial and Temporal Domain:
7: Define spatial and temporal domain by generating arrays x values, y values, t values

using desired parameters
8: Initialize Solution Array:
9: Initialize array z values of size (num points x,num points y,num points t) with ze-

ros
10: Boundary and Initial Conditions:
11: Set initial conditions for z(x, y, t) at t = 0 using input initial condition function
12: Time-stepping Loop:
13: for n in [0,num points t− 1] do
14: for i in [1,num points x− 1] do
15: for j in [1,num points y− 1] do
16: Implement Numerical Scheme:
17: z values[i, j, n+ 1]← Update rule for z(x, y, t) at (xi, yj, tn+1)
18: end for
19: end for
20: end for
21: Output: Solution of the PDE z(x, y, t)

17

Appendix B Matlab Animation of Heat Equation

2D time-dependent PDE appears a lot and has wide applications. One common PDE that
exhibits time variation in two spatial dimensions is the heat equation. The heat equa-
tion describes how a quantity (such as temperature) changes over time in a given region,
based on its spatial distribution and the rate at which it diffuses.

The heat equation in three dimensions (including time) is given by:

∂u

∂t
= α

(
∂2u

∂x2
+

∂2u

∂y2

)
Where:

• u(x, y, t) is the temperature (or another quantity) at position (x, y) and time t.

• α is the thermal diffusivity coefficient, a constant that characterizes the material’s
ability to conduct heat.

• ∂u
∂t

denotes the partial derivative with respect to time.

• ∂2u
∂x2 and ∂2u

∂y2
are the second partial derivatives with respect to x and yrespectively.

These terms describe how the temperature changes along each spatial dimension.

This equation describes how the temperature u(x, y, t) evolves over time due to the dif-
fusion of heat in three dimensions. The spatial derivatives account for the change in
temperature along the x and y directions, while the time derivative describes how the
temperature changes over time.

The animation depicting the solution of the heat equation in MATLAB [6], is illustrated
in Fig 12.

(a) frame at t = 1 (b) frame at t = 12 (c) frame at t = 35

Figure 12: Animation of Heat Equation

18

Appendix C Prototype code of driving 2 x 2 sticks

We leverage the idea from [7] to solve the differential equation numerically. And the
following code shows how to drive 2 x 2 sticks to represent the heat equation.

1 import time
2 from machine import Pin
3

4 # Define constants
5 a = 110
6 length = 20 # mm
7 total_time = 0.5 # seconds
8 nodes = 20
9

10 # Initialization
11 dx = length / nodes
12 dy = length / nodes
13 dt = min(dx**2 / (4 * a), dy**2 / (4 * a))
14

15 # Initialize the plate temperatures
16 u = [[20 for _ in range(nodes)] for _ in range(nodes)]
17

18 # Boundary Conditions
19 for i in range(nodes):
20 u[0][i] = 10 * i / nodes
21 u[-1][i] = 10 * i / nodes
22 u[i][0] = 10 * i / nodes
23 u[i][-1] = 10 * i / nodes
24

25 # Simulating
26 counter = 0
27

28 while counter < total_time:
29 w = [row[:] for row in u]
30

31 for i in range(1, nodes - 1):
32 for j in range(1, nodes - 1):
33 dd_ux = (w[i - 1][j] - 2 * w[i][j] + w[i + 1][j]) / dx**2
34 dd_uy = (w[i][j - 1] - 2 * w[i][j] + w[i][j + 1]) / dy**2
35

36 u[i][j] = dt * a * (dd_ux + dd_uy) + w[i][j]
37

38 counter += dt
39

40 avg_temp = sum(sum(row) for row in u) / (nodes * nodes)
41 print("Temperature at [5,5], [5,15], [15,5], [15,15] is ", u[5][5],

u[5][15], u[15][5], u[15][15])
42 print("t: {:.3f} [s], Average temperature: {:.2f} Celsius".format(

19

counter, avg_temp))
43

44 # Updating the plot
45 # time.sleep(0.5) # Pause for better visualization
46

47 stick1 = int(u[5][5])
48 stick2 = int(u[5][15])
49 stick3 = int(u[15][5])
50 stick4 = int(u[15][15])
51 print(stick1)
52 print(stick2)
53 print(stick3)
54 print(stick4)
55

56 pin1_1 = Pin(0, Pin.OUT)
57 pin1_2 = Pin(1, Pin.OUT)
58

59 pin2_1 = Pin(2, Pin.OUT)
60 pin2_2 = Pin(3, Pin.OUT)
61

62 pin3_1 = Pin(4, Pin.OUT)
63 pin3_2 = Pin(5, Pin.OUT)
64

65 pin4_1 = Pin(6, Pin.OUT)
66 pin4_2 = Pin(7, Pin.OUT)
67

68 while stick1 > 0 or stick2 > 0 or stick3 > 0 or stick4 > 0:
69 if stick1 > 0:
70 pin1_1.value(0)
71 pin1_2.value(1)
72 stick1 -= 1
73 else:
74 pin1_1.value(0)
75 pin1_2.value(0)
76

77 if stick2 > 0:
78 pin2_1.value(0)
79 pin2_2.value(1)
80 stick2 -= 1
81 else:
82 pin2_1.value(0)
83 pin2_2.value(0)
84

85 if stick3 > 0:
86 pin3_1.value(0)
87 pin3_2.value(1)
88 stick3 -= 1

20

89 else:
90 pin3_1.value(0)
91 pin3_2.value(0)
92

93 if stick4 > 0:
94 pin4_1.value(0)
95 pin4_2.value(1)
96 stick4 -= 1
97 else:
98 pin4_1.value(0)
99 pin4_2.value(0)

100

101 time.sleep(1)
102

103 # stop the motor
104 pin1_1.value(0)
105 pin1_2.value(0)
106 pin2_1.value(0)
107 pin2_2.value(0)
108 pin3_1.value(0)
109 pin3_2.value(0)
110 pin4_1.value(0)
111 pin4_2.value(0)

21

	Introduction
	Problem and Solution Overview
	Visual Aid
	High-Level Requirement List

	Design
	Block Diagram
	Physical Design
	User Interface Subsystem
	Control Subsystem
	Mechanical Subsystem
	Coloring Subsystem
	Point Summary
	Tolerance Analysis
	Timely responses of the motor
	Synchronization between the sticks and the projection
	Accuracy of the numerical solutions

	Cost and Schedule
	Cost Analysis
	Labor
	Parts
	Sum of costs into a grand total

	Schedule

	Discussion of Ethics and Safety
	References
	Appendix Define and Solve 2D Time-Dependent PDE
	Appendix Matlab Animation of Heat Equation
	Appendix Prototype code of driving 2 x 2 sticks

