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1 Introduction

1.1 Problem Statement

Many real-world systems involve flows over networks. Logistic systems, transportation
networks, and the Internet are all carefully designed to meet the capacity and cost re-
quirements. However, in algorithm courses, flow optimization problems can be hard to
imagine. Students often struggle to quantitatively predict how each twerk in the con-
straints will affect the optimal solution using only intuition.

Meanwhile, the existing tools for visualizing network flows are mainly software-based,
e.g., the node flux and link capacity values are configured through a computer GUI, and
the physical model simply displays the optimal flow. Having a hardware-oriented model
can provide a more intuitive sense of “twerking” the network by assigning a knob to
each parameter and a strip of LEDs to each link. Such a model also has the potential to
dynamically visualize more complex scenarios in realistic flow management, such as the
presence of routing hubs, congestion, and packet delay.

1.2 Solution Overview

Our team aims to build a modular, reconfigurable hardware emulator to visualize network
flows under capacity constraints on links. Each node can be configured as a source, a
sink, or a “transfer station” that holds zero flux. Solutions will be computed using an em-
bedded Arduino microcontroller. This toolset will provide an intuitive visual aid and fa-
cilitate the understanding of flow algorithms in a classroom setting, especially where the
network in discussion is inherently dynamic (e.g., routing packets in the Internet).

Figure 1: Pictorial representation of the physical model.
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Meanwhile, we are making several assumptions that simplify the problem:

• This is a small-scale network with a maximum of 6 nodes and up to 3 links per node.

• The nodes don’t have buffers and is able to respond instantaneously to changes in
capacity constraints.

• All links are bidirectional, and both directions have the same capacity.

1.3 High-Level Requirements

• The physical model should be modular, i.e., each node has a number of “slots” re-
served for installing new links. We aim to serve 6 partially connected nodes.

• The Arduino software should communicate with all nodes and pipes and update
the flows in real-time (within 500ms) in response to changes in setup.

• The algorithm should handle and report edge cases such as a network with zero or
multiple feasible flows.
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2 Design

In the physical network model, pipes represent links attributed with link capacity, and
the LEDs within show the real-time link flux of “data packets.” Each node is a PCB board
with a knob that specifies the node flux, configuring the node as source (positive), sink
(negative), or “transfer station” (zero). We use a scalable design where components are
easily replaceable to account for network expansion.

The embedded Arduino board implements the Ford-Fulkerson algorithm that efficiently
computes network flows while considering all constraints (node flux and link capacity).
A software GUI displays the solution alongside the physical model due to limited space
(number of LEDs and pins for interconnection) in each node and link.

Figure 2: Subsystem organization of top-level design entity.

2.1 Intermodular Protocol

The following diagram details the interface between the Arduino controller, the node
PCBs, and the link PCBs. Note that links are not directly connected to the Arduino board,
and thus the capacity values configured by the knobs must be passed indirectly through
the nodes. Moreover, we incorporate a MUX as an extra layer of abstraction to account
for the limited number of I/O pins on Arduino.

Figure 3: Intermodular communication interface signals.
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Each signal functions as follows.

• read: master-to-slave flag to read node flux or link capacity

• write: master-to-slave flag to set link flux

• resp: slave-to-master flag to acknowledge the completion of read/write

• sel[3]: Arduino-to-MUX “select” signal of the operation target among 6 nodes

• act[3]: MUX-to-Arduino “active” signal of the message source among 6 nodes

• cmd[2]: master-to-slave “command” signal to specify the nature of a read/write
operation (00, 01, 10 for accessing one of 3 links, 11 for accessing the node itself)

• wdata[8]: master-to-slave data bus (signed 8-bit int) for link flux

• rdata[8]: slave-to-master data bus (signed 8-bit int) for node flux or link capacity

The following signal flow reads the node flux of Node 0.

• Arduino to MUX: read, sel Node 0, cmd NODE

• MUX to Node 0: read, cmd NODE

• Node 0 to MUX: resp, rdata flux

• MUX to Arduino: resp, act Node 0, rdata flux

The following signal flow reads the link capacity between Nodes 0 and 1, given that Link
1-2 is connected to Port A of Node 0. Note that we initially don’t know what’s on the other
side, thus a Link PCB receives command from a port and responses to the other port.

• Arduino to MUX: read, sel Node 0, cmd LINKA

• MUX to Node 0: read, cmd LINKA

• Node 0 to Link 0-1: read

• Link 0-1 to Node 1: resp, rdata cap

• Node 1 to MUX: resp, rdata cap

• MUX to Arduino: resp, act Node 1, rdata cap

The following signal flow writes the link flux between Nodes 0 and 1. Note that never
“write” a node flux, since this is a hard requirement failing which should produce an
error message on the GUI.

• Arduino to MUX: write, sel Node 0, cmd LINKA, wdata flux

• MUX to Node 0: write, cmd LINKA, wdata flux

• Node 0 to Link 0-1: write, wdata flux

• Link 0-1 to Node 1: resp

• Node 1 to MUX: resp

• MUX to Arduino: resp, act Node 1
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Demonstrative example. We illustrate the interaction of these protocols in a practical
scenario where the following network is implemented.

Figure 4: Subsystem organization of top-level design entity.

Arduino-MUX MUX-Node Node-Link

read, sel 000, cmd 11

(N0) read, cmd 11

(N0) resp, rdata 100

resp, act 000, rdata 100

read, sel 000, cmd 00

(N0) read, cmd 00

(N0-N1) read

(N0-N1) resp, rdata 60

(N1) resp, rdata 60

resp, act 01, rdata 60

. . .

read, sel 011, cmd 01

(N3) read, cmd 01

(N3-N1) read

(N3-N1) resp, rdata 30

(N1) resp, rdata 30

resp, act 01, rdata 30

Table 1: Signal flow example for polling network configurations in Figure 4.
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Arduino-MUX MUX-Node Node-Link

write, sel 000,
cmd 00, wdata 60

(N0) write, cmd 00, wdata 60

(N0-N1) write, wdata 60

(N0-N1) resp

(N1) resp

resp, act 01

. . .

write, sel 001,
cmd 01, wdata 30

(N1) write, cmd 01, wdata 30

(N1-N2) write, wdata 30

(N1-N2) resp

(N2) resp

resp, act 10

. . .

Table 2: Signal flow example for writing network configurations in Figure 4.

2.2 “Node” PCBs

We now investigate the circuit components and finite-state machine design in the mod-
ules, except for the ready-made Arduino controller which is primarily concerned with the
software subsystem. Circuit diagrams are also provided wherever necessary.

Each node is a customized PCB board that includes

• one 8-bit register that stores the node flux flux, i.e., the amount of simulated flow
(for sources) originating from or (for sinks) terminating at the node,

• one knob that adjusts flux,

• four digits of 7-segment display that indicates flux (-128 to 127),

• one group of node-to-MUX interface mux_* (as specified in Section 2.1),

• three groups of node-to-link interfaces linka_*, linkb_*, linkc_*, and

• one microcontroller that implements a FSM and drives the display and signals.
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Figure 5: FSM state transition diagram for the Node PCB.

The conditions of unlabelled transitions to/from IDLE are specified as follows.

• IDLE→ RLINKA: mux_read AND mux_cmd == LINKA (00)

• IDLE→ RLINKB: mux_read AND mux_cmd == LINKB (01)

• IDLE→ RLINKC: mux_read AND mux_cmd == LINKC (10)

• IDLE→ RNODE : mux_read AND mux_cmd == NODE (11)

• IDLE→ WLINKA: mux_write AND mux_cmd == LINKA (00)

• IDLE→ WLINKB: mux_write AND mux_cmd == LINKB (01)

• IDLE→ WLINKC: mux_write AND mux_cmd == LINKC (10)

• RLINKA→ IDLE, WLINKA→ IDLE: linka_resp
• RLINKB→ IDLE, WLINKB→ IDLE: linkb_resp
• RLINKC→ IDLE, WLINKC→ IDLE: linkc_resp
• RNODE → IDLE: Unconditional

State Encoding Signals
RLINKA 000 linka_read
RLINKB 001 linkb_read
RLINKC 010 linkc_read
RNODE 011 mux_resp, mux_rdata = flux
WLINKA 100 linka_write, linka_wdata = mux_wdata
WLINKB 101 linkb_write, linkb_wdata = mux_wdata
WLINKC 110 linkc_write, linkc_wdata = mux_wdata
IDLE 111 None

Table 3: FSM state actions for the Node PCB.
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2.3 “Link” PCBs

We considered treating the links as mere LED strips and leave all capacity configurations
to the node PCBs, but this appears counterintuitive and would require a complex commu-
nication protocol to set up the network topology. Therefore, each link is also a customized
PCB board that includes

• two 8-bit registers that stores the link capacity cap and the actual link flux flux,
• one knob that adjusts cap,
• three digits of 7-segment display that indicates cap (0 to 127),
• a string of ten LEDs that shows flux (10% capacity used per LED),
• two groups of link-to-node interfaces node0_*, node1_*, and
• one microcontroller that implements a FSM and drives the display and signals.

Figure 6: FSM state transition diagram for the Link PCB.

The conditions of unlabelled transitions to/from IDLE are specified as follows.

• IDLE→ RNODE0: node0_read
• IDLE→ RNODE1: node1_read
• IDLE→ WNODE0: node0_write
• IDLE→ WNODE1: node1_write
• RNODE0, RNODE1, WNODE0, WNODE1→ IDLE: Unconditional

State Encoding Signals
RNODE0 000 node1_resp, node1_rdata = cap

RNODE1 001 node0_resp, node0_rdata = cap

WNODE0 100 node1_resp

WNODE1 101 node0_resp

IDLE 111 None

Table 4: FSM state actions for the Link PCB.
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Pay special attention that as mentioned before, a Link PCB receives command from a port
and raises the response signal on the other port such that both the link capacity and the
destination node ID are passed back to the Arduino controller.

2.4 “MUX” PCB

The MUX PCB (1) helps simplify the interface to Arduino and (2) supplies power, clock,
and reset signals to all nodes and links. It includes

• six groups of MUX-to-node interfaces node0_*, node1_*, . . . , node5_*,

• one group of MUX-to-Arduino interface arduino_*, and

• one microcontroller that drives the signals.

Unlike the node and link PCBs, the MUX does not have input (knob) or output (display)
components. In fact, even an FSM is unnecessary for performing the “forwarding” func-
tion. Specifically, the microcontroller implements an encoder/decoder that

• decodes arduino_read to node*_read according to arduino_sel,

• decodes arduino_write to node*_write according to arduino_sel,

• decodes arduino_cmd to node*_cmd according to arduino_sel,

• decodes arduino_wdata to node*_wdata according to arduino_sel,

• encodes node*_resp to arduino_act with priority given to lower node IDs, and

• multiplexes node*_rdata to arduino_rdata according to arduino_act.

2.5 Arduino Controller

The emulator has a central Arduino controller that talks to each node (but not the links) to
display the capacities and actual flow amounts. The microcontroller is expected to

• read the node configurations and link capacities from the knobs,

• computes the maximal flow using an optimized Ford-Fulkerson algorithm, and

• updates the flow display on each node and link in real-time.

Still, the limited number of ports on Arduino inherently limits the scale of network – this
set of protocol can support up to 6 nodes and 3 links per node.

2.6 Graphical User Interface

The graphical user interface (GUI) receives the flow solution from Arduino and visualizes
the network flow data. Note that all parameter configurations are done on the physical knobs,
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not in the GUI. The design and development of the GUI are guided by user-centric prin-
ciples to ensure intuitiveness, ease of use, and functionality. The GUI should implement
the following key functions:

• Real-time flow visualization. The GUI should display the real-time flow of data
packets within the network, preferably assisted by animated changes in the network
diagram, correlating with the actual flow of data through the nodes and links.

• Algorithm control and monitoring. The user should be able to initiate, pause, or
stop the flow computation algorithm and monitor its progress. The GUI should
provide a console or log view to observe the real-time output from the algorithm,
including any alerts or error messages.

• Error handling and feedback. Prompt and clear feedback should be given for any
invalid actions or errors in configuration, e.g., when there are no or multiple feasible
solutions, or when the conservation principle is violated. This includes the visual-
ization of flow states that are not permissible due to the current network setup.

• Responsiveness and scalability. The GUI should be responsive to different screen
sizes and resolutions, ensuring usability across various devices.

The GUI will be developed in a modular fashion, allowing for future enhancements and
features to be added with minimal disruption to the existing system. By focusing on these
core functions, the GUI will facilitate an effective and educational experience.

2.7 Outer Packaging

The entire toolbox will reside on a vertical surface for convenient display on whiteboards.
We aim to make the outer packaging structure and overall appearance of the toolbox both
aesthetically pleasing and functional. The following considerations guide the design of
our product’s exterior:

• Acrylic casing. The node and link PCBs will be encased in high-quality acrylic
panels, allowing for the visibility of the internal components and LED indicators.

• LED indicators. The flow of data through the network will be represented by LED
lights housed in clear, durable tubes that not only protect the electronics but also
distribute light evenly, making the flow visually discernible from all angles.

• Modularity and expandability. The modular design will allow for the network to
be expanded or reconfigured. This includes detachable nodes and links, which can
be securely attached or removed without the need for specialized tools. Note that the
interface has a large number of signals, which may require a revision for over 6 nodes.

• Environmentally conscious. The design process will incorporate environmentally
friendly materials and practices, including recyclable plastics and efficient LED light-
ing, to minimize the ecological footprint of our product.
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3 Reliability, Ethics, and Safety

3.1 Tolerance Analysis

• (Node and Link PCBs) Tolerance of Resistors and Capacitors

– Impact: They affect the timing and signal shaping within the node’s circuitry,
possibly leading to misinterpretation of signals or timing mismatches.

– Analysis: Consider how the RC time constants change due to variations in
resistor and capacitor values, and how they could affect the signal levels and
timing, especially for signals interfacing with the MUX and links.

– Simulation: We may use RC response curves to illustrate how different RC time
constants affect the rise and fall times of the signal waveforms.

• (Node and Link PCBs) Accuracy of Knob Potentiometers

– Impact: It affects the precision with which node flux can be set, potentially
leading to inaccurate flow visualization.

– Analysis: Determine the range of actual values for a supposed set value and
how this affects the node’s status as a source, sink, or transfer station.

– Simulation: We may display a range of actual flux values corresponding to a
set position on the knob to highlight the variability due to tolerance.

• (Link PCBs) Variability of LED Display

– Impact: Variability in LED brightness and color could lead to inconsistent flow
visualization across different links.

– Analysis: Consider the variation in LED brightness and color due to current
and voltage tolerances and its impact on visual accuracy.

– Simulation: We may use a comparison chart to show the expected brightness
range of LEDs under different current and voltage conditions due to tolerances.

• (Intermodular Protocol) Voltage Levels and Noise Margins

– Impact: Fluctuations in voltage levels can affect the logic levels interpreted by
the microcontrollers and introduce errors in the protocol.

– Analysis: Examine how variations in voltage levels (due to power supply tol-
erances or signal integrity issues) might impact the detection of high and low
states in the communication protocol.

– Simulation: We may show the acceptable voltage levels for logic 0 and logic 1
for the microcontrollers and how variations might lead to incorrect logic level
interpretation.
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3.2 Ethical Concerns

To avoid ethical breaches in the development and deployment of our toolbox, we commit
to adhering closely to the principles outlined in both the IEEE Code of Ethics [1] and the
ACM Code of Ethics [2]. Key considerations include but are not limited to

• Respecting intellectual honesty (ACM, Clause 1.5), acknowledging contributions ac-
curately, adopt secure coding practices, and avoiding plagiarism in development.

• Committing to inclusivity and accessibility (ACM, Clause 1.4). For example, both
the model and the GUI should be designed to be usable by a broad spectrum of
individuals and accommodate users with diverse technical backgrounds.

• Supporting sustainable development (ACM, Clause 3.4; IEEE, Clause 1). This includes
choosing recyclable and sustainable materials for hardware components and de-
signing the embedded electrical system for energy efficiency.

• Mitigating the risk of overreliance by positioning our tool as a supplementary, instead
of replacement, of traditional educational resources, in compliance with the IEEE’s
commitment to continuous learning (IEEE, Clause 6).

By fostering an environment of transparency, responsibility, and respect for user rights,
we aim to not only comply with professional ethical standards but also contribute posi-
tively to the educational and technological communities.

3.3 Safety Concerns

This project involves the use of diodes, microcontrollers, and light bulbs to simulate the
network information transmission flow. Recognizing the associated electrical, fire, me-
chanical, chemical, and operational hazards both in the development and deployment
stages, we will abide by the IEEE National Electrical Safety Code [3] through

• Implementing comprehensive safety measures including protection against electric
shocks (e.g., insulated tools) and fire precautions (e.g., circuit breakers, fuses) to
prevent overheating and short circuits.

• Securely mounting all PCB board components to ensure mechanical robustness.

• Using protective gears during assembly involving batteries and soldering opera-
tions, and safely disposing hazardous chemical waste.

• Ensuring the safety of users (ACM, Clause 2.9; IEEE, Clause 1) by rigorously testing
the system to prevent any operational hazards. For instance, the number of small
parts in the physical model should be minimized to prevent choking hazards.

• Training in safe handling practices and emergency procedures.
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