
ECE 445

SENIOR DESIGN LABORATORY

DESIGN DOCUMENT

Campus Tour Guide by AI-Powered
Autonomous System

Team #21

XUANBO JIN

(xuanboj2@illinois.edu)
HAO REN

(haor2@illinois.edu)
YUNTONG GU

(yuntong7@illinois.edu)
WEIANG WANG

(weiangw2@illinois.edu)

TA: Xinlong Huang

March, 18, 2024

Contents

1 Introduction 1
1.1 Problem and Solution Overview . 1
1.2 Visual Aid . 1
1.3 High-level requirements list . 1

2 Design 3
2.1 Block Diagram . 3
2.2 Motion Control System (UAV) . 3

2.2.1 Overview of the UAV . 3
2.2.2 Flight Control Structure and Interface Functions 4

2.3 Sub-system overview . 5
2.4 AI-powered response generation system . 5

2.4.1 System Architecture and Design . 6
2.4.2 Input and Output of the Subsystem 6
2.4.3 Data Collection and Tagging . 7
2.4.4 Protection Sub-Unit . 7
2.4.5 Version Iteration . 8
2.4.6 AI-powered Response Generation Subsystem Interface 8

2.5 User Interface . 9
2.5.1 Subsystem Architecture and Design 9
2.5.2 Input and Output of the Subsystem 10
2.5.3 Frontend Development . 11
2.5.4 Remote Server Setup . 11
2.5.5 Connection with AI Subsystem . 11

2.6 Planning & Control Subsystem . 12
2.6.1 Notation and Explanation . 12
2.6.2 Subsystem Architecture and Design 13
2.6.3 Input and Output of the Subsystem 13
2.6.4 Data Collection and Tagging . 14
2.6.5 Algorithms for Subsystem . 14
2.6.6 Integration with QGroundControl Platform 15

2.7 Sensor System . 17
2.7.1 Temperature Sensor . 17
2.7.2 Humidity Sensor . 17
2.7.3 Gyroscope Sensor . 18
2.7.4 LED Display . 18

2.8 Tolerance Analysis . 20
2.8.1 Route Planning Stability . 20
2.8.2 Communication System Delay . 20
2.8.3 GPS Locating Error . 21

3 Cost and schedule 23
3.1 Cost Analysis . 23

ii

3.1.1 Labor . 23
3.1.2 Parts . 23
3.1.3 Grand Total . 24

3.2 Schedule & Milestone . 24
3.2.1 Milestone 1: Basic Hardware Configuration and Functionality 24
3.2.2 Milestone 2: Software Integration and Functional Testing 25
3.2.3 Milestone 3: Basic Autonomy and Obstacle Awareness 25
3.2.4 Milestone 4: Advanced Autonomy with Obstacle Navigation 26
3.2.5 Milestone 5 [Optional]: Interactive Communication and Control . . . 26

3.3 Weekly schedule . 27

4 Ethics and Safty 30
4.1 Ethical Considerations . 30
4.2 Safety Considerations . 30

Appendix A 31

Appendix B Requirement & Verification Table 32

iii

1 Introduction

1.1 Problem and Solution Overview

Anyone entering a place for the first time, like an university, can be quite challenging.
Knowing where you are, how to get to your destination, how to optimize your routes,
knowing factors that will influence your routes can be complicated. Having a real-time
interactive system that guides people through this process is needed. It has been possible
yet not able to scale because it’s not open-sourced, and its hardware isn’t standardized,
and is expensive. The interaction isn’t versatile enough to adapt well under the ever-
changing applications. A cheap and versatile solution is needed.

Our solution utilizes autonomous UAV to guide our clients, sensing them and the en-
vironment, such as obstacles and drone’s location with a sensor module, controlled by
a control unit which orchestrate a series of tasks. Our solution is cheap, open-sourced,
and versatile to meet the need of a generalized and sustainable long-term solution for our
campus and many other applications.

1.2 Visual Aid

Figure 1: Visual Aid

1.3 High-level requirements list

• There should be a UAV that can fly autonomously from a preset starting point to a
preset destination, and has enough endurance to achieve our requirements

• There should be a complete user UI interface for interacting with the user and dis-
playing the information the user needs in real time

1

Figure 2: Campus Map

• There should be a server that enables interaction between the user and the drone
and the AI module and controls the operation of the AI module and the drone

2

2 Design

2.1 Block Diagram

Figure 3: Block Diagram

2.2 Motion Control System (UAV)

2.2.1 Overview of the UAV

The UAV model used in our project is the MFP450, a medium-sized drone platform with
a 410mm wheelbase. It is equipped with a Pixhawk 6C open-source flight controller,
M8N-GPS, brushless motors, custom hard-shell batteries, Minihomer telemetry, an in-
tegrated optical flow ranging module, camera, and other devices. This UAV meets the
requirements for stable flight both indoors and outdoors, and it is suitable for various
applications including teaching and development.

Key Features:

• Stability and Reliability: The UAV is structurally robust and reliable, constructed
from aluminum alloy and carbon fiber materials for high strength and durability,
ensuring stability during flight.

• Flexibility and Compatibility: It has high compatibility, supporting the integration
of additional sensors to facilitate the development of functional models.

• Rich Power Outputs: Provides various power output options, making it convenient
to install additional sensors and onboard computers.

• Open Source Support and Secondary Development: Offers rich open-source code
support to meet the needs of users for secondary development, along with compre-
hensive secondary development materials.

3

2.2.2 Flight Control Structure and Interface Functions

The flight control system is a critical component of the UAV, responsible for monitoring
and controlling various actions and functions of the aircraft. Below are the commonly
used interfaces in the flight control system and their functions:

Figure 4: Flight Control Interface Diagram

• FMU PWM OUT / IO OUT: Used for outputting PWM signals to servos or ESCs
to control the position or speed of the aircraft’s servos, or for general-purpose in-
put/output, connecting various external devices or sensors.

• Telem1 / Telem2 / Telem3: Used for serial communication with remote controllers
or other devices to transmit remote control commands, data, etc. Telem3 can also
connect to an I2C device.

• CAN1, CAN2: Used for connecting ESCs, battery management systems (BMS), op-
tical flow sensors, gyroscopes, etc., for bidirectional data exchange.

• PPM/SBUS RC IN: Used for receiving signals from the remote controller, support-
ing PPM and SBUS input protocols.

• USB: Used for connecting external devices to the flight controller for data transmis-
sion and communication.

4

• Power1/Power2: Receives DC power from batteries or other power modules to sup-
ply power to the flight controller and related devices.

• I2C: Used for connecting various sensors such as barometers, temperature sensors,
compasses, as well as other expansion modules like GPS modules, optical flow sen-
sors, etc.

• DSM: Digital serial communication protocol used for communication with remote
controllers, transmitting channel data and status information.

2.3 Sub-system overview

This projects consist of 4 subsystems:

• AI-powered response generation system

• User Interface

• Planning & Control system

• Sensor System

These sub-systems sense the context of the tour, planning the tour, and interact with users
in a natural manner. The emphasis of the sub-systems are the integration of strong abil-
ity of Retrieval-Augment Generation into a mobile system. These subsystems link the
cloud, the PC, and the embedded mobile systems into an interactive tour guiding as-
sistant.

2.4 AI-powered response generation system

Figure 5: AI-powered response generation system

This model focuses on building an assistant to answer user queries about the ZJU-UIUC
campus. The user’s query can be a question about the campus or a command to the
drone. The text generation and embedding modules are powered by OpenAI (OpenAI,
2023) and are hosted in their clouds.

5

2.4.1 System Architecture and Design

The system is architected to efficiently handle two distinct types of queries: informational
and operational. The architecture is modular, with each module specializing in tasks such
as intent detection, data retrieval, and command validation. This modular design facil-
itates scalability and maintenance while ensuring the system can evolve to incorporate
future enhancements or functionalities.

The system can be broken into the following parts:

• Vector DB storing related campus material

• Intent Extraction module extracting user’s intent.

• Search Engine module search for related entries in Vector DB

• Answer Generation

To build this system, we design the following steps:

• Collect related data and tag them into a vector database. (Deadline: Yuntong,
Weiang, 2024-3-20)

• Design a simple framework, given a user question + context, output an answer.
(Deadline: Hao, 2024-3-21)

The workflow is as follows: Before the workflow, we first store the document of the cam-
pus in a vector DB in a well-defined data structure.

Branch1: When the user’s input is a question to the ZJU-UIUC campus.

1. Upon each user input, we detect the intent of the user. If the intent is asking ques-
tions,

2. We retrieve the document related to the user’s question in the vector database.

3. Combined with the retrieved info and the prompting, we output the answer to the
user’s question.

Branch2: When the user’s input is a command to the UAV.

1. Upon each user input, we detect the intent of the user. If the intent is commanding
the drone,

2. We select one of the valid commands and then pass it to the command-validator.

3. If it’s a valid command, we pass it to the drone.

2.4.2 Input and Output of the Subsystem

6

Table 1: Input and Output of the AI-Powered Response Generation Subsystem

Field Name Type Meaning

User Query Input Campus related query or a command to drone

User Location Input Current GPS location of user

Answer Output Answer to user’s question

Command Output Parsed output Command to the drone

2.4.3 Data Collection and Tagging

The initial step involves collecting comprehensive data regarding the ZJU-UIUC cam-
pus, including academic information, facility locations, and UAV operational guidelines.
This data is then processed to identify key concepts and entities, which are subsequently
tagged to enhance the search and retrieval capabilities of the vector database. This process
involves a combination of automated NLP techniques and manual verification to ensure
accuracy and relevance.

Table 2: Vector DB Data Store Table
Field Name Type Meaning

d id INTEGER Indexing of the entries

location STRING Location of the described place

outlook STRING Appearance of the location

keyword STRING keyword of the description

description STRING a text describing related info about a location in ZJUI campus

2.4.4 Protection Sub-Unit

Just like any hardware system, the subsystem’s IO and behavior needs appropriate amount
of protection. For instance, we must ground the I/O of the module so that the module
would not output illegal commands or commands that exceed the tolerance of the other
units.

The specific groundings are listed in the following table:

7

Table 3: AI-Powered Response Generation Subsystem Protection Unit

Index Protection Object Protection Explanation

0 Input text Either campus-related question or a command to drone

1 Output Text Must have a length between 0 to 255 words

2 Output Command Valid command to drone

3 Output Text Must exceed confidence threshold

2.4.5 Version Iteration

We’ll make a testing dataset to test all aspects of the module, this dataset covers many
useful scenarios and will be open-sourced in the following link. In our verification part,
this dataset will play a significant role in evaluating whether this module is working
efficiently. We will gradually iterate the version based on the accuracy on the testing
dataset. We will also improve the response time step by step.

2.4.6 AI-powered Response Generation Subsystem Interface

Figure 6: Interface Demo

The code is available at project repos

8

https://github.com/MooMooHorse/ZJUI_tourguide_openAI_backend

2.5 User Interface

Figure 7: User Interface Diagram

The User Interface (UI) subsystem serves as the primary point of interaction between the
users and the AI-powered response generation system. It is designed to be intuitive and
user-friendly, enabling users to easily submit queries about the ZJU-UIUC campus and
issue commands to the UAV.

2.5.1 Subsystem Architecture and Design

The User Interface (UI) subsystem is the principal conduit for user interactions within
the AI-powered response generation system. It is meticulously crafted to be both in-
tuitive and user-friendly, enabling seamless submission of queries and UAV command
issuance.

The subsystem is comprised of several key components:

• A web server that accepts and distributes messages.

• Client interfaces for visitors to interact with the system.

The architecture delineates the following operational flow:

1. The web server receives messages from various visitors through the user interface.

2. Depending on the message type, identified as a question or a command, the server
routes the message to the respective subsystem for processing.

The design leverages a set of defined APIs to manage the interactions between the UI and
other subsystems, promoting real-time processing and ensuring data consistency and re-
liability. The modular nature of the design allows for scalable and maintainable enhance-
ments, critical for future integration and functionality expansion.

The envisioned deliverables include:

9

Figure 8: Simple UI

• Hosting the web service on a remote server.

• Developing an easy-to-navigate, full-stack framework.

• Establishing a robust connection between the web server and the AI and Planning
subsystems.

This architecture is designed to provide a seamless, efficient, and secure user experience,
whether it’s for informational queries or operational control over the UAV.

2.5.2 Input and Output of the Subsystem

Table 4: Input and Output of the User Interface Subsystem

Field Name Type Meaning

UAV Instructions User2Server Input Take-off, Land, Stop instruction to UAV

User Questions Input Questions about ZJUI Campus

User Destination Input User’s destination

AI Answer Output Answer to user’s question

UAV Instructions Server2UAV Output Take-off, Land, Stop instruction to UAV

• Finalize hosting web service (Xuanbo, 2024-3-21)

• Build an easy-to-use full-stack framework (Xuanbo and Hao, 2024-3-30)

• Connect the web server with the host server (Xuanbo, 2024-3-21)

10

The input to the user interface subsystem is the answer to the user’s questions and the
status of the drone. The output of the subsystem is questions by the user and commands
to the drone.

2.5.3 Frontend Development

The frontend of the UI subsystem is developed using React and JavaScript, offering a dy-
namic and responsive web interface. The design features a minimalist layout to enhance
user experience and facilitate ease of use. Key elements of the UI include:

• Question Input Block: A dedicated area where users can type in or voice their
queries about the ZJU-UIUC campus.

• Instruction Buttons: Several interactive buttons designed to issue predefined com-
mands to the UAV, such as ”Take off,” ”Land,” and ”Stop”. Besides, there is an
additional button to send questions to AI-powered Generative System ”Send”.

• Campus Image Display: An image block that dynamically displays photographs of
the ZJUI campus, which could be relevant to the user’s queries or for showcasing
UAV functionalities.

This design ensures that users have a straightforward and efficient way to interact with
the system, whether seeking information or controlling the UAV.

2.5.4 Remote Server Setup

The subsystem utilizes Ali Cloud for hosting the remote server, establishing a robust and
scalable infrastructure. The connection to the server is secured via SSH, ensuring en-
crypted communication channels. This server plays a critical role in:

• Managing connections between end-users and the Planning & Control subsystem.

• Facilitating data exchange between the UI and AI subsystems, ensuring seamless
integration and real-time response capabilities.

2.5.5 Connection with AI Subsystem

The integration between the UI and the AI subsystem is essential for the real-time pro-
cessing of user queries and drone commands. This connection is established through a
well-defined API that:

• Allows for the seamless transmission of user inputs from the UI to the AI subsystem,
where they are processed to generate responses or drone commands.

• Enables the AI subsystem to send back the generated responses or status updates
directly to the UI, ensuring that users receive immediate and relevant feedback.

This integration is designed to be highly efficient, minimizing latency and maximizing
the accuracy and relevance of the information provided to the users.

11

2.6 Planning & Control Subsystem

Figure 9: Planning and Control Block Diagram

The Planning and Control Subsystem is an integral component of our UAV operational
framework, designed to process commands from the user interface, assess the current
status of the drone, and issue precise navigational instructions based on the drone’s spec-
ifications. This subsystem interfaces directly with PX4 APIs, an open-source flight control
software, to monitor and control the UAV’s flight parameters. The primary input to this
subsystem is the user’s command and the drone’s status, while its output is the com-
mand to the UAV, ensuring that each operation is executed safely and efficiently.

2.6.1 Notation and Explanation

Table 5: Notations Used for Planning and Control Subsystem

Name Meaning

Node The map is continuous, we extract a sets of locations as nodes

Map Database A data-store for the node

Next Node The next node we plan to go to

Link The minimum route unit linking 2 nodes

Command An instruction to UAV or from user

Parsed Command An instruction equivalent to a set of MAVSDK APIs

MAVSDK a software dev kit consists of APIS instructing UAV

Search Engine A module searching for next node given current location and command

Reformulation A process formulating instruction to comply with MAVSDK APIs

12

2.6.2 Subsystem Architecture and Design

This subsystem obtains a command and it reformulates the command to the drone to
execute. The reason why this module is essential and vital is this module helps visitor has
a safe and comfortable trip. This subsystem objective is to find a short and comfortable
route for user to take while taking the tour inside ZJU-UIUC campus.

This subsystem establishes a robust connection with a remote server to access vital flight
data, including starting points, destinations, flight altitudes, and other navigational pa-
rameters. This connection is crucial for retrieving real-time information necessary for
flight planning and control. The communication between the Planning & Control Sub-
system and the remote server is facilitated through a secure, encrypted channel, ensuring
the integrity and confidentiality of transmitted data. This setup allows the subsystem
to:

• Obtain real-time updates on weather conditions, no-fly zones, and other environ-
mental factors that may affect flight paths.

• Receive user-defined flight parameters such as starting location, destination, and
preferred flight height.

• Update the UAV’s mission parameters in response to changing conditions or user
commands.

2.6.3 Input and Output of the Subsystem

Table 6: Inputs and Outputs

Inputs Outputs

From the Unmanned Aerial Vehicle
(UAV):

• Latitude and longitude position of
the UAV.

• Current velocity, acceleration, and
attitude (orientation) of the UAV.

To the Unmanned Aerial Vehicle
(UAV):

• Attitude control commands for the
UAV.

• Velocity and acceleration control
commands for the UAV.

From the AI-Powered Generative Sys-
tem:

• Responses generated by the AI
system based on user queries.

To the AI-Powered Generative System:
• User queries directed to the AI

system.

From the User Interface System:
• User commands and requests sub-

mitted through the interface.

To the User Interface System:
• Responses provided to users

based on their queries.

13

2.6.4 Data Collection and Tagging

The subsystem must use a data store which stores the locations and other related meta-
data for each link. A link is a pair of nodes. A link is a viable path. Any connections
between nodes that are not linked are not a valid path. For instance, if the connection
between 2 nodes cross a lake which visitor is impossible to follow, it won’t be our data
store.

2.6.5 Algorithms for Subsystem

Let’s define the mathematical model for the planning and control subsystem:

• Nodes N : A set of extracted locations from the continuous map, which serve as
possible waypoints for the UAV.

• Map Database D: A datastore that contains the nodes and links information.

• Links L: Directed edges between nodes representing the minimum navigable path
for the UAV. Each link connects two nodes and has associated costs (like distance,
time, or energy consumption).

• Commands C: Instructions from the user or system that need to be executed by the
UAV.

• Parsed Commands P : Translated commands into MAVSDK API calls.

• MAVSDK M : The software development kit used to control the UAV.

Given:

• Current Node ncurrent: The UAV’s current position represented as a node.

• Destination Node ndestination: The target position the UAV needs to reach.

Objective

Find the optimal path Π from ncurrent to ndestination minimizing the cost function F , which
could include factors like distance, time, energy, etc.

Constraints

• The UAV can only travel along links in L from one node to another.

• The path must start at ncurrent and end at ndestination.

Dijkstra’s Algorithm for Pathfinding

Dijkstra’s algorithm can be used to find the shortest path from ncurrent to ndestination in a
graph represented by nodes and links.

1. Initialize a priority queue Q with the starting node ncurrent, setting its cost to 0 and
all other nodes to infinity.

2. While Q is not empty:

14

• Extract the node n with the lowest cost from Q.

• If n is ndestination, terminate and reconstruct the path.

• For each neighbor nnext of n connected by a link l in L:

– Calculate the tentative cost to reach nnext as the sum of the cost to reach n
and the cost of l.

– If the tentative cost is less than the current cost to reach nnext, update it and
add nnext to Q.

The result of Dijkstra’s algorithm is the path Π that optimizes the cost function F , provid-
ing an efficient route for the UAV from the starting point to the destination.

Implementation with MAVLink Python Package: The MAVLink Python package pro-
vides a comprehensive set of tools for communicating with the UAV, offering functional-
ities such as:

• Sending navigational commands and mission updates to the UAV.

• Receiving real-time status information, including location, battery level, and flight
mode.

• Managing telemetry data to monitor and adjust flight parameters as needed.

This package is instrumental in bridging the gap between high-level operational com-
mands and the low-level directives understood by the UAV, ensuring that the subsystem
can effectively translate user intentions into actionable flight paths.

2.6.6 Integration with QGroundControl Platform

QGroundControl (QGC) represents a pivotal tool in the UAV operational toolkit, offering
an intuitive and feature-rich ground control station interface for UAV management. This
open-source platform provides full flight control and mission planning capabilities for
any MAVLink-enabled drone, making it an indispensable asset for our project.

Key Functionalities of QGC: The QGC platform is renowned for its comprehensive
suite of functionalities, designed to enhance the operability and efficiency of UAV mis-
sions. Some of its most notable features include:

• Intuitive Flight Planning: Users can plan missions with ease, specifying waypoints,
actions, and objectives directly on a detailed map interface.

• Real-Time Flight Data Monitoring: QGC displays live telemetry data, including
UAV position, altitude, and battery status, allowing for close monitoring and im-
mediate adjustments.

• Vehicle Setup Configuration: The platform provides tools for configuring UAV set-
tings, calibrating sensors, and adjusting flight parameters to optimize performance.

15

• Log Analysis: Post-flight data logs can be analyzed within QGC to assess flight
performance, identify potential issues, and refine operational strategies.

Benefits for the UAV System: The integration of QGC into our UAV project brings sev-
eral significant advantages, enhancing both the development and operational phases:

• Enhanced Mission Planning: QGC’s user-friendly mission planning tools allow for
the precise and efficient design of flight paths, directly contributing to the success
of complex UAV operations.

• Operational Flexibility: With real-time data monitoring and vehicle configuration
capabilities, QGC provides the flexibility needed to adapt to dynamic operational
environments and mission requirements.

• Safety and Compliance: The platform’s comprehensive data logging and analy-
sis features support thorough post-mission reviews, facilitating adherence to safety
protocols and regulatory compliance.

• Streamlined Development: By leveraging QGC’s robust features and MAVLink
integration, we can accelerate the development process, focusing on custom func-
tionalities specific to our project’s needs without reinventing basic control and mon-
itoring capabilities.

The synergy between QGroundControl and our subsystems significantly enhances our
UAV’s operational capabilities, enabling sophisticated mission planning, real-time con-
trol, and detailed performance analysis. Through this integration, we aim to achieve
a level of precision, safety, and efficiency that sets a new standard for UAV operations
within the ZJU-UIUC campus context.

16

2.7 Sensor System

This section provides an overview of the sensor subsystem, detailing the specific sensors
used for measuring humidity, temperature, and angular rate. Each sensor’s type, model,
and primary functionality are outlined to give a clear understanding of how they con-
tribute to the overall system.

2.7.1 Temperature Sensor

- Type & Model: LM35-D, a precision integrated-circuit temperature sensor. - Function-
ality: The LM35-D provides a linearly proportional voltage to the Celsius temperature. It
does not require any external calibration to provide typical accuracies of ±0.25°C at room
temperature and ±0.75°C over a range of -55°C to 150°C. The sensor’s output voltage is
10mV/°C.

Figure 10: Circuit

Figure 11: Info

2.7.2 Humidity Sensor

- Type & Model: SHT4x, a high-accuracy digital humidity and temperature sensor. -
Functionality: The SHT4x series is designed for high-volume applications. It provides
fully calibrated, linearized, and temperature-compensated digital output. This sensor is
capable of measuring relative humidity with a typical accuracy of ±1.5

Figure 12: Circuit

Figure 13: Info

17

2.7.3 Gyroscope Sensor

- Type & Model: L3GD20, a three-axis digital angular rate sensor (gyroscope). - Func-
tionality: The L3GD20 sensor measures angular rate along three perpendicular axes (x,
y, and z). It offers selectable full scales of ±250, ±500, and ±2000 degrees per second.
The sensor is capable of detecting rates of rotation with a sensitivity that allows for the
measurement of very small motions. It is suitable for applications that require motion or
gesture detection, including gaming and virtual reality inputs.

Figure 14: Circuit

Figure 15: Info

2.7.4 LED Display

The LED display serves as the visual feedback mechanism for the sensor system, trans-
lating sensor readings into visually understandable signals for the user. It incorporates
both single-color and multi-color LEDs to represent different data and states of the sen-
sors.

- Type & Model: The system utilizes a combination of RGB LEDs and single-color LEDs
to indicate various sensor states and values. RGB LEDs are used for detailed feedback,
capable of displaying a wide range of colors by mixing red, green, and blue light. Single-
color LEDs provide simple status indications.

- Functionality:

• Temperature Visualization: The color spectrum of the RGB LED represents the tem-
perature range detected by the LM35-D sensor. Cooler temperatures are represented
by blue colors, moderate temperatures by green, and higher temperatures by red.

• Humidity Visualization: The brightness level of a specific blue LED indicates the
relative humidity level measured by the SHT4x sensor. Lower brightness corre-
sponds to low humidity levels, while higher brightness indicates high humidity.

18

• Motion Detection: Angular movement detected by the L3GD20 gyroscope triggers
a pattern of blinking or changing colors on the RGB LED, indicating the direction
and intensity of the movement.

• Status Indicators: Single-color LEDs indicate the operational status of the sensor
system, such as power on/off, sensor error, or data transmission activity.

- Control Method: The microcontroller dynamically controls the LEDs based on the sen-
sor inputs. PWM (Pulse Width Modulation) is used for adjusting the brightness of the
LEDs and for mixing colors in the RGB LED. Digital output pins of the microcontroller
are utilized to switch single-color LEDs on and off.

Figure 16: LED Circuit

This LED display subsystem enhances the user interface by providing an immediate and
intuitive visual representation of the sensor data, thereby facilitating quick and easy in-
terpretation of the environment’s current conditions as detected by the temperature, hu-
midity, and gyroscope sensors.

Each sensor interfaces with the microcontroller to provide real-time data that can be pro-
cessed and used to control the LED output, representing the system’s measured environ-
mental and motion parameters.

19

2.8 Tolerance Analysis

Ensuring the robustness of the UAV system involves conducting a thorough tolerance
analysis. This analysis focuses on identifying potential vulnerabilities within the system,
assessing risks, and devising strategies to mitigate these risks. Two critical areas of con-
cern include route planning stability and communication system delays.

2.8.1 Route Planning Stability

Route planning is susceptible to various environmental factors that can affect the UAV’s
ability to navigate effectively. These factors include wind, physical obstacles, and the
presence of visitors within the campus.

Risks:

• Wind can significantly alter the UAV’s course, leading to deviations from the planned
route and potentially unsafe conditions.

• Obstacles such as trees and buildings may not only hinder the UAV’s path but also
pose a risk of collision.

• Visitors moving unpredictably through the campus can introduce dynamic vari-
ables, complicating the UAV’s navigation and safety protocols.

Wind’s impact on UAV navigation can be analyzed using vector mathematics, specifically
the wind triangle theory. The ground speed vector (V⃗g) of the UAV is the vector sum of
its airspeed vector (V⃗a), which is the speed and direction relative to the air, and the wind
speed vector (V⃗w), which represents the speed and direction of the wind. This relationship
is given by:

V⃗g = V⃗a + V⃗w (1)

2.8.2 Communication System Delay

Delays in the communication system can arise in two main interactions: 1) between the
user and the remote server, and 2) between the remote server and the planning & control
subsystem.

Risks:

• Delays in user commands reaching the UAV could result in outdated or inappropri-
ate actions being taken, especially in fast-changing environments.

• Latency in the planning & control subsystem receiving data from the remote server
may lead to decision-making based on stale information, compromising operational
safety and efficiency.

Communication delays in UAV operations can be quantitatively analyzed using the con-
cept of network latency, which encompasses the time it takes for a signal to travel from the

20

source to the destination and back. This delay, represented by ∆t, can significantly affect
real-time decision-making and UAV control, particularly in dynamic environments.

The total communication delay (Ttotal) experienced in the system can be modeled as the
sum of various components, including user interface to remote server latency (Tuser-server),
server processing time (Tserver-proc), and remote server to UAV latency (Tserver-UAV):

Ttotal = Tuser-server + Tserver-proc + Tserver-UAV (2)

Each component of this model can be independently measured and optimized to reduce
the overall delay in the communication system.

The operational risks posed by communication delays can be further examined through
the lens of control system theory, particularly in terms of the impact on the UAV’s control
loop stability. A delayed control signal can be modeled in the time domain as:

u(t) = K · e(t−∆t) (3)

where u(t) is the control signal at time t, K is the gain, K = 1 if the signal is received and
K = 0 instead, e(t − ∆t) represents the error observed at a delayed time, and ∆t is the
delay.

2.8.3 GPS Locating Error

Global Positioning System (GPS) technology is crucial for UAV navigation, offering real-
time location data that guides the UAV’s flight path. However, GPS signals can be subject
to interference from environmental factors, such as atmospheric conditions, buildings,
and signal jamming, leading to potential errors in location accuracy.

Risks:

• Mission Failure: Critical missions requiring precise location data, such as aerial
photography or targeted delivery, could fail due to inaccurate positioning.

GPS locating error (Egps) can be influenced by several factors, including signal propaga-
tion delay, atmospheric conditions, and multipath errors. The total error can be modeled
as a combination of these factors:

Egps = Epropagation + Eatmospheric + Ereceiver (4)

Where:

• Epropagation represents the error due to signal propagation delay.

• Eatmospheric accounts for delays caused by atmospheric conditions (ionospheric and
tropospheric delays).

• Ereceiver represents the error due to inaccuracies in the GPS receiver itself.

21

This model highlights the multifaceted nature of GPS errors and underscores the impor-
tance of comprehensive testing and calibration to minimize overall error in UAV naviga-
tion systems.

22

3 Cost and schedule

3.1 Cost Analysis

3.1.1 Labor

The labor cost is calculated based on the working hours and wage pricing of each team
member. We set the hourly wage at 100 RMB based on market research and the skill
levels of team members. Considering the total project duration of 8 weeks with 40 hours
of work per week, the total working hours per team member are:

40 hours/week × 8 weeks = 320 hours

Therefore, the labor cost per team member is:

100 RMB/hour × 320 hours = 32000 RMB

We chose an hourly wage of 100 RMB, which is based on market wage levels and the skill
and experience levels of team members. According to survey data from the Institute of
Electrical and Electronics Engineers (IEEE) [1], the average salary for graduates in Elec-
trical and Computer Engineering (ECE) is around 200,000 RMB per year. Calculated on
a full-time basis, the average hourly wage is approximately 100 RMB. Thus, our pricing
aligns with market rates and incentivizes team members to dedicate sufficient time and
effort while maintaining cost-effectiveness.

3.1.2 Parts

If the duration of the project is 8 weeks, we need to consider the costs of ChatGPT4 API
and Simple Application Server, which are billed monthly, for 2 months.

ChatGPT4 API has a monthly cost of 240 RMB, multiplied by 2 months equals 480 RMB.

Simple Application Server has a monthly cost of 49 RMB, multiplied by 2 months equals
98 RMB.

The table below provides a breakdown of the parts and their estimated costs:

Now let’s recalculate the total cost:

5174 + 680 + 10× 2 + 15× 2 + 20 + 50

+ 480 + 98 + 18× 6 = 6819 RMB

Therefore, the total cost is 6819 RMB.

23

Description Manufacturer Part # Quantity Cost (RMB)

Drone PixHawk MFP450 1 5174

Mavlink Module Amovlab - 1 680

Temperature Sensor Adafruit TMP36 2 10

Humidity Sensor DHT22 DHT22 2 15

Pressure Sensor Bosch BMP280 1 20

PCB Board Custom - 1 50

Simple Application Server Alibaba Cloud - 1 49 per month

ChatGPT4 API OpenAI - 1 240 per month

Battery Nanfu - 6 18

Table 7: Parts List and Estimated Costs

3.1.3 Grand Total

The grand total cost of the project can be calculated by summing up the labor cost and the
cost of parts:

• Labor: 32,000 RMB

• Parts: 6,819 RMB

Grand Total: 32000 + 6819 = 38,819 RMB

3.2 Schedule & Milestone

3.2.1 Milestone 1: Basic Hardware Configuration and Functionality

This milestone focuses on establishing the foundational hardware capabilities of the UAV,
ensuring it can perform basic functions independently.

Drone Control and Movement: The first objective is to achieve independent movement
and control of the drone. This involves configuring the propulsion system, including
motors and propellers, and integrating them with the flight controller. Key considera-
tions include: Calibration of electronic speed controllers (ESCs) to ensure responsive and
stable flight. Implementation of a basic manual control system, possibly using a radio
transmitter and receiver, to test movement capabilities.

GPS Integration: The integration of the GPS module aims to enable the UAV to sense its
location accurately. This functionality is critical for navigation and will later support ad-
vanced features such as autonomous flight. Aspects to detail could include: Selection of

24

a GPS module that offers high accuracy and fast lock-on times. Strategies for minimizing
GPS signal interference, ensuring reliable location data.

Sensor Powering and Testing: Ensuring that all onboard sensors can be powered and
transmit data correctly is crucial at this stage. This involves: Establishing a power dis-
tribution system that meets the energy requirements of each sensor without affecting the
UAV’s overall power balance. Conducting initial tests to verify that sensors (e.g., depth,
temperature & humidity, air pressure) are operational and accurately capturing environ-
mental data.

3.2.2 Milestone 2: Software Integration and Functional Testing

Milestone 2 advances the UAV project by integrating software controls with the previ-
ously established hardware framework, allowing for more sophisticated operations.

Control Subsystem Integration: The key objective is enabling the drone to be controlled
via the software-based control subsystem. This involves: Developing or customizing soft-
ware that can send commands to the flight controller, adjusting parameters such as alti-
tude, speed, and direction based on real-time inputs. Ensuring the control subsystem can
process inputs from the user interface and translate them into actionable commands for
the drone.

Data Reception from GPS and Sensors: At this stage, it’s crucial that the control sub-
system can receive and process data from the GPS module and other sensors. Consider-
ations include: Implementing communication protocols that allow for the efficient trans-
mission of sensor data to the control subsystem. Integrating GPS data to enhance flight
planning capabilities, allowing the UAV to adjust its route based on location informa-
tion.

Route Planning and Simulation: The ability to output routes based on sensor and GPS
data is a critical step towards autonomous flight. While actual drone movement isn’t re-
quired at this milestone, the focus should be on: Developing algorithms that can calculate
optimal flight paths based on input data (e.g., avoiding obstacles, minimizing energy con-
sumption). Simulating these routes in a controlled environment to validate the planning
logic and identify potential improvements.

3.2.3 Milestone 3: Basic Autonomy and Obstacle Awareness

Milestone 3 aims to enhance the UAV’s autonomy by enabling it to follow a human subject
and navigate from point A to point B without obstacles, incorporating initial capabilities
to recognize and plan routes around obstacles.

25

Human Following Without Obstacles: The system will be developed to recognize and
follow a human subject using image processing or motion detection technologies. This
feature requires: Integration of camera sensors with real-time video processing software
to identify and track the human subject. Algorithms for dynamic adjustment of the UAV’s
flight path to maintain a constant distance to the subject.

Point-to-Point Flight with Dynamic Speed Adjustment: The UAV will autonomously
navigate between designated points A and B, implementing logic to slow down or stop
if the human subject moves beyond a predefined distance. This involves: Developing
waypoint navigation software that utilizes GPS coordinates for precise location tracking.
Implementing distance monitoring algorithms to dynamically adjust the UAV’s speed
based on the subject’s proximity.

Obstacle Recognition and Avoidance Planning: Introducing the capability to detect
obstacles and compute alternative routes. Key development steps include: Utilizing
depth sensors and image recognition to identify obstacles within the UAV’s flight path.
Integrating path planning algorithms (e.g., A* or Dijkstra) to calculate detours around
obstacles.

3.2.4 Milestone 4: Advanced Autonomy with Obstacle Navigation

Milestone 4 builds on the previous capabilities, enabling the UAV to navigate complex
environments with obstacles, and introduces predefined route selection.

Obstacle Navigation and Human Proximity Response: Enhancing the UAV’s software
to handle dynamic obstacles while maintaining awareness of the human subject’s loca-
tion. This requires: Advanced obstacle detection and avoidance algorithms capable of
real-time adjustments to the flight plan. Refined human tracking algorithms to ensure the
UAV can safely navigate around obstacles without losing the subject.

Predefined Route Selection: The system will offer a selection of starting and ending
points for navigation, improving the UAV’s versatility for different mission scenarios.
Implementation includes: A database of GPS coordinates representing various prede-
fined routes. A user interface allowing selection from available starting and ending point
pairs.

3.2.5 Milestone 5 [Optional]: Interactive Communication and Control

The optional Milestone 5 focuses on enhancing user interaction with the UAV through a
web application, voice commands, and interactive chatting.

Web Application for Signal Transmission: Developing a simple web application that
enables users to send commands to the UAV. This involves: Creating a user-friendly inter-

26

face for command input. Establishing a secure and reliable communication link between
the web app and the UAV’s control system.

Voice Command Reception and Destination Setting: Integrating voice recognition tech-
nology to allow users to issue commands and set destinations vocally. Key components
include: Voice recognition software capable of processing and interpreting user com-
mands. Software logic to translate vocal commands into navigational actions or desti-
nation coordinates.

Interactive Chatting for Environmental Awareness: Implementing a chat interface that
enables the UAV to communicate with the user about its surroundings, enhancing situa-
tional awareness. This feature requires: Integration of natural language processing (NLP)
algorithms to understand and respond to user queries. Access to real-time sensor data,
allowing the UAV to provide updates on environmental conditions or navigational sta-
tus.

3.3 Weekly schedule

27

Week Hao Ren’s Tasks Xuanbo Jin’s Tasks

Week 1 Research and plan soft-
ware architecture. Define
requirements for drone
control system.

Research and plan user
interface design. Define
requirements for software
integration with hardware.

Week 2 Develop software architec-
ture for drone control sys-
tem. Begin implementa-
tion of basic control func-
tionalities.

Design user interface for
system control and moni-
toring.

Week 3 Continue development of
drone control software.
Implement communica-
tion protocols for receiving
data from sensors and GPS
module.

Implement functionalities
for real-time visualization
of sensor data. Develop al-
gorithms for data process-
ing and analysis.

Week 4 Test and debug drone con-
trol software. Integrate
sensor and GPS data with
control system.

Test and debug user in-
terface functionalities. In-
tegrate software compo-
nents for seamless interac-
tion with hardware.

Week 5 Refine software algorithms
for improved drone con-
trol and navigation. Per-
form system integration
testing.

Refine user interface de-
sign based on feedback.
Conduct user acceptance
testing for software fea-
tures.

Week 6 Conduct thorough testing
and optimization of soft-
ware. Address any re-
maining bugs or issues.

Conduct final testing of
user interface functionali-
ties. Prepare documenta-
tion for software usage and
troubleshooting.

Week 7 Finalize software develop-
ment. Prepare for final
demo.

Finalize user interface de-
sign. Prepare for final
demo.

Week 8 Document final software
implementation and
configurations. Prepare
project documentation for
submission.

Document final user inter-
face design and functional-
ities. Prepare project docu-
mentation for submission.

Table 8: Weekly Schedule (Software)

28

Week Yuntong Gu’s Tasks Weiang Wang’s Tasks

Week 1 Research and plan hard-
ware components required
for drone control. Procure
necessary hardware com-
ponents.

Research and plan sen-
sor integration with con-
trol system. Procure neces-
sary sensor components.

Week 2 Configure hardware com-
ponents for drone assem-
bly. Test individual hard-
ware components for func-
tionality.

Set up sensors for testing.
Develop initial testing pro-
cedures.

Week 3 Set up and calibrate
drone control system
hardware. Ensure proper
communication between
components.

Conduct initial tests on
sensors to verify function-
ality. Begin data collection
and analysis.

Week 4 Conduct movement tests
on assembled drone. Eval-
uate control system perfor-
mance. Address any hard-
ware issues.

Conduct calibration tests
on sensors. Optimize sen-
sor readings and data ac-
curacy.

Week 5 Integrate hardware com-
ponents for system testing.
Conduct integration tests
with software control sys-
tem.

Integrate sensor data with
control system. Test data
communication and syn-
chronization.

Week 6 Troubleshoot and debug
hardware issues. Con-
duct stress tests on hard-
ware components. Opti-
mize system performance.

Analyze sensor data for
consistency and accuracy.
Fine-tune data processing
algorithms.

Week 7 Finalize hardware setup
and configurations. Pre-
pare for final demonstra-
tion and presentation.

Finalize sensor integration
with control system. Pre-
pare for final demonstra-
tion and presentation.

Week 8 Document final hardware
configurations and setup.
Prepare project documen-
tation for submission.

Document final sensor
integration process and
configurations. Prepare
project documentation for
submission.

Table 9: Weekly Schedule (Hardware)
29

4 Ethics and Safty

4.1 Ethical Considerations

The development and deployment of the AI-guided tour guide drone raise important
ethical considerations that must be addressed. One key concern is privacy. The use of
drones for guided tours may intrude upon individuals’ privacy rights, particularly if they
capture images or videos without consent. It’s imperative to prioritize privacy and ensure
that data collection and usage adhere to ethical standards and legal regulations.

Fairness and non-discrimination are also crucial ethical considerations. AI algorithms
utilized in the tour guide system must be designed and trained to avoid bias and ensure
equitable treatment for all users, irrespective of their characteristics. This aligns with the
principle of upholding human dignity and equality.

Additionally, there’s a responsibility to ensure the safety and well-being of participants
during guided tours. The drone will be equipped with advanced obstacle detection
and avoidance systems to minimize collision risks and prioritize user safety. Battery
safety protocols will be strictly enforced to prevent accidents, including regular inspec-
tion, proper storage, and careful handling of lithium polymer (LiPo) batteries.

Furthermore, it’s essential to minimize the environmental impact of drone operations.
The project will adhere to sustainability principles and employ eco-friendly practices
wherever possible to reduce environmental harm and fulfill ethical obligations towards
environmental stewardship.

4.2 Safety Considerations

Safety is paramount in the development and operation of the AI-guided tour guide drone.
Several safety measures will be implemented to mitigate risks and ensure the well-being
of users and developers.

Firstly, the drone’s hardware and software systems will undergo rigorous testing and
validation to ensure their reliability and stability. Emergency shutdown protocols will be
in place to address malfunctions or emergencies promptly.

Secondly, strict battery safety protocols will be enforced to prevent accidents related to
lithium polymer (LiPo) batteries. This includes regular inspection, proper storage, and
careful handling to minimize the risk of fire or explosion.

A comprehensive Safety Manual will be developed to outline procedures for safe opera-
tion and maintenance of the project, covering pre-flight checks, emergency response pro-
tocols, battery handling guidelines, human-drone interaction protocols, and maintenance
procedures. All project personnel will be required to familiarize themselves with the
Safety Manual and adhere to its protocols to ensure a safe working environment.

30

Appendix A

[1] IEEE. “IEEE Code of Ethics.” (2016), [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7- 8.html (visited on 03/06/2024).

[2]OpenAI. (2023). ChatGPT (Mar 14 version) [Large language model]. https://chat.openai.com/chat

[3]QGroundControl. (2024). PX4. http://qgroundcontrol.com

[4]Alibaba Cloud. (2024). Simple Application Server. https://www.alibabacloud.com/tc/product/swas

[5]Mavlink. (2024). MAVLink Developer Guide. https://mavlink.io/en/

[6]Hart, P. E.; Nilsson, N.J.; Raphael, B. (1968). ”A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths”. IEEE Transactions on Systems Science and Cybernetics.
4 (2): 100–7. doi:10.1109/TSSC.1968.300136.

[7]Dijkstra, E. W. (1959). ”A note on two problems in connexion with graphs”. Nu-
merische Mathematik. 1: 269–271. CiteSeerX 10.1.1.165.7577. doi:10.1007/BF01386390.

[8]pixhawk. (2024). MFP450. https://pixhawk.org

31

Appendix B Requirement & Verification Table

Table 10: Subsytem Index Table

Subsystem Name Subsystem Index(S-Index)

AI Powered Response Generation Subsystem 1

User Interface Subsystem 2

Planning and Control Subsystem 3

Sensor Unit Subsystem 4

Table 11: Requirement & Verification Table

S-Index Requirement Verification Points

1 Detect user intent with
at least 25% accuracy

Test with a diverse set of input
queries and verify the accuracy

of intent detection.
3

1 Detect user intent with
at least 50% accuracy

Continue testing and refining
to achieve higher accuracy. 3

1 Generate response within 60 seconds
Measure retrieval time with

various queries to ensure
performance within the initial time limit.

2

1 Generate response within 30 seconds
Optimize system to improve

performance and meet the final
time requirement.

3

1
Generated answers must match

the user’s intent with an accuracy
of at least 25% in given dataset

Compare generated answers with
expected answers for a set of

test queries to calculate initial accuracy.
3

1
Generated answers must match

the user’s intent with an accuracy
of at least 50% in given dataset

Enhance answer generation logic
to meet or exceed the final

accuracy requirement.
3

1
Handle and process user

commands to the UAV with
50% accuracy

Test with a set of valid and invalid
commands to verify that commands
are processed with partial accuracy.

1

1
Handle and process user

commands to the UAV with
100% accuracy

Finalize command handling
to ensure complete accuracy. 2

2
The web server must handle and

route messages with less than
2 seconds latency

Test message routing on the server
under load and measure latency 3

Continued on next page

32

Table 11 continued from previous page

S-Index Requirement Verification Points

2

The client interface
must provide intuitive

access for users to submit queries
and control the UAV

Conduct usability testing with
participants to assess ease of use

and intuitiveness
3

2
The system must accurately process

and display responses to user queries
within 3 seconds

Verify by querying the system and
timing the response and display update 2

2

UAV command buttons must send
correct instructions

to the UAV subsystem
with 100% accuracy

Test each button and verify that
the correct command is sent to

the UAV subsystem
2

3
Must accurately process user
commands and drone status

within 10 second

Perform stress testing with
simultaneous user commands and

verify response time
4

3
Must accurately process user
commands and drone status

within 1 second

Perform stress testing with
simultaneous user commands and

verify response time
4

3 Must optimize the UAV route
based on the current status

Test with different scenarios
(no-fly zones, different areas) to verify

route optimization
6

3
Should maintain a secure and
encrypted connection to the

remote server

Verify the encryption standards
and conduct penetration testing

to assess security
4

3 Must integrate seamlessly with
the PX4 APIs for flight control

Execute a series of flight tests
to ensure proper integration

and control
2

4 Power supply successfully
power the hardware unit Power supply LED works correctly 2.5

4
LED display works correctly

according to direction of UAV
and temperature and humidity

Display correct
direction signal and

LED signal for temperature
and LED signal for humidity

2.5

1,2
3,4 End to End works correctly

Can complete a guide
for appointed locations

while iteracting with visitors
5

33

	Introduction
	Problem and Solution Overview
	Visual Aid
	High-level requirements list

	Design
	Block Diagram
	Motion Control System (UAV)
	Overview of the UAV
	Flight Control Structure and Interface Functions

	Sub-system overview
	AI-powered response generation system
	System Architecture and Design
	Input and Output of the Subsystem
	Data Collection and Tagging
	Protection Sub-Unit
	Version Iteration
	AI-powered Response Generation Subsystem Interface

	User Interface
	Subsystem Architecture and Design
	Input and Output of the Subsystem
	Frontend Development
	Remote Server Setup
	Connection with AI Subsystem

	Planning & Control Subsystem
	Notation and Explanation
	Subsystem Architecture and Design
	Input and Output of the Subsystem
	Data Collection and Tagging
	Algorithms for Subsystem
	Integration with QGroundControl Platform

	Sensor System
	Temperature Sensor
	Humidity Sensor
	Gyroscope Sensor
	LED Display

	Tolerance Analysis
	Route Planning Stability
	Communication System Delay
	GPS Locating Error

	Cost and schedule
	Cost Analysis
	Labor
	Parts
	Grand Total

	Schedule & Milestone
	Milestone 1: Basic Hardware Configuration and Functionality
	Milestone 2: Software Integration and Functional Testing
	Milestone 3: Basic Autonomy and Obstacle Awareness
	Milestone 4: Advanced Autonomy with Obstacle Navigation
	Milestone 5 [Optional]: Interactive Communication and Control

	Weekly schedule

	Ethics and Safty
	Ethical Considerations
	Safety Considerations

	Appendix
	Appendix Requirement & Verification Table

