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1 Introduction

1.1 Problem

In many scientific and engineering fields, understanding the behavior of complex systems
often requires analyzing interactions between multiple variables over time and space.
Three-dimensional visualization offers superior expressiveness, effectiveness, and appro-
priateness in representing data information. [1] However, visualizing such systems in tra-
ditional 2D formats can be limiting, especially when dealing with dynamic phenomena
or spatial dimensions. To overcome this limitation, there is a growing need for innova-
tive visualization tools that can represent these systems in three dimensions, providing
a more intuitive understanding of their behavior. Additionally, for problems involving
spatial dimensions, a 3D visualization can illustrate how variables change not just over
time but also across different points in space.

Modern software capabilities include sophisticated 3D visualization tools that not only
enhance data comprehension but also facilitate interactive exploration and analysis. [2]
However, screen-based 3D visualization is confined to the dimensions of the display de-
vice, limiting the viewer’s ability to perceive objects from various angles and distances
as they would in real-life settings. It may also struggle to accurately convey the scale
of objects, leading to misconceptions or misinterpretations of their size and proportions.
Thus, by developing a real-time 3D visualization platform, researchers can observe how
variables evolve over time and space from different angles.

The primary objective of this project is to design and implement a portable and user-
friendly 3D real-time visualization system capable of accurately representing the solution
of time-varying 2D differential equations. The surface will be colored by projecting an
image from the top. An example solution of the differential equation is illustrated in Ap-
pendix B, Our system will provide researchers with a comprehensive tool for visualizing
and analyzing complex systems” behavior. Moreover, such a tool could extend its appli-
cation from mathematics to various disciplines, including physics, biology, engineering,
and environmental science.

1.2 Solution

To effectively address the challenges outlined in the problem background, our solution
will also incorporate advanced features for enhanced user engagement and analytical ca-
pabilities. Our solution aims to create a 3D real-time visualization of a time-varying 2D
Differential Equation function. This visualization platform will dynamically represent the
changing behavior of the function over time. Additionally, we will project the color to the
surface from either the top or below, adding another dimension of visual interpretation.
Our design has four subsystems. The User Interface subsystem will get the Differential
Equation from the user and transmit the data to the Control system. The control sub-
system will get the Differential Equation solution from the User Interface subsystem and



then convert the information to languages that the mechanical devices can understand.
Our Mechanical system adjusts the height of the stick based on the signal transmitted
from the Control subsystem. Additionally, this module will use a canvas to cover the top
of the grid-like sticks to create a smooth visualization surface for displaying the solution.
Finally, we will design a Coloring Subsystem which will project images to the canvas
either from the top or below.

1.3 Visual Aid

Based on the solution we propose, a pictorial representation of our project is shown in

Fig(T
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Figure 1: A pictorial representation of the device

1.4 High-Level Requirement List

e The device should provide a user-friendly interface that enables users to input dif-
ferential equations easily and view the status of computations and solutions on the
screen clearly.

e The 3D visualization system must update dynamically and respond to changes in
the differential equation solution in real time, ensuring that users can observe the
behavior of the system as it evolves over time without significant delays or lags.

e The entire system should be robust and reliable, capable of maintaining stable oper-
ation over extended periods. It should withstand environmental factors and varia-
tions in input conditions without compromising the accuracy or functionality of the
visualization.
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Figure 2: A pictorial representation of the device

2 Design Requirements

2.1 Block Diagram
The block diagram of the device is shown in Fig. 2|

2.2 Subsystem Overview

In this section, we give overviews of each subsystem, discussing the responsibilities and
functions of them.

2.2.1 User Interface Subsystem

The User Interface (UI) Subsystem serves as the interface between the user and the visu-
alization system. It receives input Differential Equations from the user, calculates the so-
lution for them, and transmits the data to the Control Subsystem for visualization. Firstly,
we need a Graphical User Interface (GUI) which contains components such as text input
tields, buttons, sliders, and a keyboard for user interaction, allowing users to input Differ-
ential Equations through a graphical interface. Secondly, once the user inputs the Differ-
ential Equations, the module utilizes Raspberry Pi to compute the solution. Thirdly, after
computing the solution, the Raspberry Pi transmits the data, including the time-varying
solutions of the Differential Equations variables, to the Control Subsystem for visualiza-
tion. Lastly, the Raspberry Pi will provide feedback on the screen regarding the status of
the computation, such as progress indicators or error messages in case of invalid input or
computation failures.



2.2.2 Control Subsystem

The Control Subsystem is in charge of the stick height adjustments. It translates solutions
of Differential Equations received from the User Interface Subsystem into actionable con-
trol commands for the Mechanical Subsystem. This involves mapping the mathematical
solutions to physical actions, such as the movement of the sticks. This subsystem in-
cludes the hardware setup, software development, and the integration of the two. For
hardware setup, we will use Raspberry Pi as the central controller for the system. It will
be connected to motors which will adjust the height of the stick and sensor which will
give feedback on the height information to the Raspberry Pi. For software development,
we will use Python to control the actuators based on received data and feedback from
sensors. The Control Subsystem manages the accurate adjustment of stick height, serv-
ing as a vital connection between user commands, mathematical calculations, and actual
movement in the system.

2.2.3 Mechanical Subsystem

The mechanical subsystem consists of rods that can move up and down dynamically in
accordance with the displayed solution. A layer of rubber foil is secured to the top of
each rod, ensuring the visualization remains seamless. Inputs from the control subsystem
dictate the movements of this subsystem, which then executes these commands. Addi-
tionally, it provides feedback to the control subsystem for adjustments and fine-tuning.
The system is designed to adhere precisely to the commands from the control system,
aiming for high accuracy and precision in movements. Moreover, it’s built to be sturdy,
effectively reducing minor vibrations and environmental noise.

2.24 Coloring Subsystem

The Coloring Subsystem is on the top of the device and it gets the solution of the Differen-
tial Equations from the Raspberry Pi. Given the height data, the subsystem employs logic
to assign colors based on the height of the sticks. For example, the highest sticks could
be assigned to the color red, while the lowest points are assigned to the color blue. As
the height of the sticks changes, the subsystem must dynamically adjust the projections
in real time to reflect these changes. This is achieved by having a tiny projector connected
to the Raspberry Pi, taking the time-varying solutions of the Differential Equations, and
coloring the surface with the time and height of the sticks changing. We plan to imple-
ment this feature at the end since it needs to synchronize accurately with the mechanical
part. The implementation of this subsystem will greatly enhance the 3D visualization and
enable observers to easily discern patterns within the solution, leading to more informed
insights.



2.3 Subsystem Requirements
2.3.1 User Interface Subsystem

1. The GUI should be well-designed that includes components like text input fields,
buttons, sliders for user interaction. This interface should be intuitive and user-
friendly to allow users to easily input Differential Equations.

2. The subsystem should be designed for reliability, including robust error handling
and validation of user inputs to prevent crashes and ensure accurate computation
results.

2.3.2 Control Subsystem

1. The Raspberry Pineeds to connect to 25 stepper motors, each of them given a stable
6V voltage, allowing it to achieve 500 RPM (Revolution Per Minute) rotation rate. A
Matlab simulation of 3D visualization and 25-point interpolation is shown in Fig
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Figure 3: Matlab simulation

2. The time interval of different height signals given to the stepper motors should not
exceed 1 second.

3. The control system is responsible for synchronizing the surface coloring and the
movement of the sticks. We can leverage parallel computing in the two cores on
the Raspberry Pi. That said, every time the microcontroller sends the signals to the
sticks, it should also send the generated coloring image to the projector simultane-
ously.

2.3.3 Mechanical Subsystem

1. The stick and the connection of which with the motor must be robust to support the
canvas without noticeable wobbling during and after the motion.



2. The motors should act accurately and nearly identically according to the signal in-
put from the control subsystem.

3. The canvas needs to be elastic and resistant to tearing, while reflecting the position
of different sticks accurately.

2.3.4 Coloring Subsystem

1. The coloring subsystem consists of a tiny projector connected to the Raspberry Pi.
The changing frequency of the coloring surface should be consistent with the move-
ment of the surface, which is supposed to be more than 1Hz.

2. The projected images should be able to cover just about all 0.5m*0.5m areas of the
surface.

3. The color coding needs to be accurate and timely based on the user input.

2.4 Tolerance Analysis
2.4.1 Timely responses of the motor

Each dynamic stick in our project is powered by a motor, making the motor’s respon-
siveness to the microcontroller a crucial factor in the project’s visual effectiveness. We
employed stepper motor linear actuators for the precise vertical movement of the sticks.
In Appendix B, we explored the detailed simulation of a heat wave function solver. The
sticks are designed to move vertically within a 16 cm range, allowing us to adjust the
time-varying function to a visually optimal spectrum. By identifying the highest and the
lowest values of the function, we calculate the median to serve as the horizon for each
display:.

Given that our control over the sticks” movement is limited to directing their motion
through the motor’s positive and negation poles, and lacking a viable method to change
their speed, we simulated the motion of the sticks in any direction as uniform linear
motion. However, according to the moving trajectory of sticks shown in Figure [ the
stick’s moving distance varies across different frames given the same time interval. Con-
sequently, we propose two major constraints for determining the frame rate of the de-
vice:

1. The maximal stick’s achievable moving velocity.

2. The maximal time interval that the microcontroller dispatches the motion com-
mands to the motor.

A reasonable breakdown of the working period of the motor consists of (1) the screw per-
forming rotation, and (2) waiting for the next signal sent from the microcontroller.

The RPM of the stepper motor shaft is directly related to the linear speed of the external
nut (and consequently the stick attached to it) in a proportional manner. The screw lead is
the distance the nut moves parallel to the screw axis when the screw makes one complete
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Figure 4: The trajectories of sticks

revolution, with unit mm/rev. The formula to calculate the linear speed Vji;eqr (in unit
mm /min) based on the motor’s RPM and the screw’s lead L is:

Viinear = RPM - L (1)
Given that the screw lead is 2mm/rev, the linear speed of the stick is:

Viimear = B00RPM - 2mm/rev = 1000mm/min ~ 1.667cm/s

Therefore, given that the maximum travel distance per work cycle is set to 1.5 cm, the
minimum duration of a work cycle must be t,,pt0r = % = (.899s. Since the time
taken by the microcontroller to transmit signals to the motor is negligible relative to the
movement latency of the actuators, a time interval of 1 second is sufficient to guarantee

the device’s full operational capability.

2.4.2 Synchronization between the sticks and the projection

The synchronization between the movement of the sticks in the Mechanical Subsystem
and the projection of colors in the Coloring Subsystem is of great importance to 3D vi-
sualization. Inconsistency or delay in this synchronization could lead to inaccurate and
confusing visualization of the differential equation solution. Therefore, we need to en-
sure that the movement of the sticks and the projection of colors occur within an ac-
ceptable time. Assume that the mechanical movement of the sticks takes ¢,, seconds to
complete, and the coloring subsystem requires ¢. seconds to project the colors onto the
surface. Through testing and adjusting the RPM of the sticks, we try to minimize the time
difference |t,, — t.| to less than 0.5 seconds.



2.4.3 Accuracy of the numerical solutions

Many of the Differential Equations do not have an explicit solution. Hence, we need to
use a numerical method to get an approximate solution. To ensure the solution solved by
a numerical method is similar to the true solution, we need to perform a tolerance analy-
sis on the difference between the two.

Let’s denote:
* u(x;,y;,t;) as the true solution of the Differential Equation at each grid point.
® Unum (i, Yj, ) as the solution obtained numerically in Python at each grid point.

We can measure the difference between the true solution and the numerical solution us-
ing a suitable metric such as the L2-norm. The error at each grid point (z;,y;,t;) can
be calculated using the absolute difference between the true solution and the numerical
solution:

€ijk = |u(l‘17 Yj, tk) - unum<x’i7 Yj, tk)| (2)

Then, the L? norm of the error over the entire grid can be approximated by summing the
squared errors at each grid point and taking the square root:

lella~ > €2 3)
i g,k

where the sum is taken over all grid points (z;, y;, t).

When we implement the Differential Equation solving algorithm, we need to calculate the
error difference based on some Differential Equations that we know the true solutions. We
need to ensure the ||e||y < Ti,, where Ti, = 1072

3 Ethics & Safety

In the development and use of any product, safety should always be the top priority. To
ensure “the safety, health, and welfare of the public” as outlined in IEEE’s ethical guide-
lines[3], we should strictly adhere to relevant regulations throughout the research and
development phases, as well as inform users about the proper usage and to communicate
the potential risks with misuse.

Furthermore, to be forthright and grounded in reality when making claims or estimates
based on the data at hand[3], we should make it clear that the visualized differential
equation solution is an approximation. Despite our efforts to closely simulate real-world
scenarios, users should understand that it is not a substitute for real solutions.



The essence of design lies in simplifying life and enhancing work efficiency. It’s crucial for
society to aim for respect, inclusivity, fairness, and balance, guaranteeing that everyone
can access the necessary tools and resources for a rewarding life, free from discrimination
related to race, religion, gender, disability, age, national origin, sexual orientation, gen-
der identity, or expression[3]]. At our core, we are committed to enabling individuals to
engage with differential equations in a more direct way while learning.
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Appendix A Define and Solve 2D Time-Dependent PDE

Below is a pseudocode of how to obtain a partial differential equation (PDE) from the
user and solve it using numerical methods.

Algorithm 1 Solving 2D Time-Dependent PDE z(z, y, t)

1: Input: User-provided PDE
Prompt User Input:
pde_input <— Get input from the user in the format ’a% + bgiyg + c% = f(z,y,t)
Parse Input:
Parse pde_input to extract coefficients a, b, c and the function f(x,y,t)
Spatial and Temporal Domain:
Define spatial and temporal domain by generating arrays xz_values, y_values, t_values
using desired parameters
Initialize Solution Array:
9: Initialize array z_values of size (num_points_x, num_points_y, num_points_t) with ze-
ros
10: Boundary and Initial Conditions:
11: Set initial conditions for z(z,y,t) at t = 0 using input initial condition function
12: Time-stepping Loop:
13: for n in [0, num_points_t — 1] do

*®

14: foriin [1,num_points_x — 1] do

15: for j in [1, num_points_y — 1] do

16: Implement Numerical Scheme:

17: z_wvalues[i, j,n + 1] < Update rule for z(x,y,t) at (z;, y;, tnt1)
18: end for

19: end for

20: end for

21: Output: Solution of the PDE z(z,y, t)
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Appendix B Matlab Animation of Heat Equation

2D time-dependent PDE appears a lot and has wide applications. One common PDE that
exhibits time variation in two spatial dimensions is the heat equation. The heat equa-
tion describes how a quantity (such as temperature) changes over time in a given region,
based on its spatial distribution and the rate at which it diffuses.

The heat equation in three dimensions (including time) is given by:

du 9%u N 0%u N 0%u
ot~ “\o2 T a2 922

Where:
* u(z,y,z,t)is the temperature (or another quantity) at position (z, y, z) and time ¢.

* « is the thermal diffusivity coefficient, a constant that characterizes the material’s
ability to conduct heat.

o 9% denotes the partial derivative with respect to time.

2 2 . . . .
o Ju Ou 94 are the second partial derivatives with respect to z, y, and z re-

2'LL
a2t g and
spectively. These terms describe how the temperature changes along each spatial

dimension.

This equation describes how the temperature u(z,y, z,t) evolves over time due to the
diffusion of heat in three dimensions. The spatial derivatives account for the change in
temperature along the z, y, and 2 directions, while the time derivative describes how the
temperature changes over time.

The animation depicting the solution of the heat equation in MATLAB [4], is illustrated
in Fig

Solution of Heat Equation over Time Solution of Heat Equation over Time Solution of Heat Equation over Time

(a) frameatt=1 (b) frame at t =12 (c) frame at t = 35

Figure 5: Animation of Heat Equation
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