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1 Introduction

1.1 Background

Intersections pose a significant risk to transportation safety, as they account for a vast
majority of severe urban traffic accidents. For example, about 43% of all crashes in the
United States occur at or near an intersection [1], about 40% of all casualty crashes in
Norway occur at junctions, about 33% of crashes in Singapore. Moreover, these numbers
kept increasing over the years[2].

This situation primarily arises from the following two reasons: It’s a common case the
vehicles traveling in orthogonal directions cannot notice each other due to the obstruction
of buildings, thus leading to a high risk of collision. Besides, non-motor vehicles and
pedestrians are more possible to appear in the blind spot vision of vehicles, since there
are usually plenty of them gathering in the intersection. These two facts create difficulties
for a single vehicle to observe potential collision and avoid it, no matter what technique
it exploits.

Additionally, today, most of the urban intersections are under passive control mecha-
nisms such stop signs, yield signs and traffic lights. Stop signs require vehicles to come
to a complete stop, even when there are no other cars at the intersection. This reduces
efficiency by causing unnecessary deceleration. According to a very conservative calcula-
tion performed by Victor Miller at Stanford University[3], unnecessary traffic stops in the
United States can account for 1.2 billion gallon consumption per year, which can satisfy
an average American to fill up a 15 gallon tank every other week. Such passive inter-
section control mechanisms have lead to significant amount of energy waste and call for
adaptive control mechanisms.

1.2 System Diagram

To address the safety and efficiency issues at urban intersections, we propose the V2V-
based Network Cooperative Control System (VVCCS). The vehicle-to-vehicle (V2V) com-
munication can help the vehicle get a holistic view of intersection conditions and make
intelligent decisions accordingly. Figure 1 showcases an intersection scenario that our
VVCCS focuses on.

1.2.1 Initial Design

We present the overview of our system in Figure 2, which consists of four subsystems:

1. Control Subsystem. The control subsystem ensures that the vehicle can run at the
desired speed, accelerates and decelerates in time. The vehicle will be controlled
by commands with the parameter of pulse-width modulation (PWM) and steering
angle. Besides, localization is also implemented via the control subsystem by esti-
mating the motor state to infer the position of the vehicle.
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Figure 1: intersection scenario

Figure 2: system overview

2. Information Sensing and Fusion Subsystem. We use cameras and the Lidar to
sense the environment. Approaching vehicles and pedestrians at the intersection
will be recognized and tracked. To realize a better precision, information from cam-
eras and Lidar will be merged before being sent to other vehicles through V2V net-
work.

3. Communication Subsystem. All vehicles equipped with V2V communication tech-
nology will be able to share their current state, including location, velocity, accelera-
tion, and heading, with each other in real-time. This will enable each vehicle to have
a holistic view of the intersection’s traffic condition and make informed decisions to
avoid potential accidents.

4. Collision Avoidance. The avoidance algorithm running on both the server and ve-
hicles will analyze the data received from the V2V communication and intersection
approach recognition subsystems and make decisions on the best course of action to
avoid potential collisions. Information like vehicle velocity, distance, and direction
will be considered to ensure both safety and efficiency.

1.2.2 Final Design

During this semester, we made several block-level changes based on our study and progress.
The final version overview of our design is shwon in Figure 3. We respectively ellaborate
the changes made to each subsystem.

1. Control Subsystem. We added a feedback term of detected motor speed to con-
struct a closed loop for controlling more accurately (the arrow from ”Motor” to ”Ve-
hicle Positioning”).
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Figure 3: Final Design
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2. Information Sensing and Fusion Subsystem. We combined detected obstacle po-
sitioning and calculated vehicle positioning together.

3. Communication Subsystem. Instead of direct communication, we set up a dis-
tributed database and conducted read-write style communication.

4. Collision Avoidance. We changed the planned ML models into leasing strategy
because of the real-time response requirement and the time limit.

1.3 Performance Requirement

To ensure that our proposed solution is effective and efficient, we have established the
following high-level performance requirements:

1. Control Accuracy: The control subsystem must performs immediate response (
< 0.1s) to the signal generated from top-level algorithm. The system also requires
the vehicle to go straight (deviation angle < 0.005rad), meaning that the lateral de-
viation should be less than 1 centimeter after running for 2 meters.

2. Object detection: The speed and success rate are major consideration of the ob-
ject detection. Both slow and unsuccessful detection may cause failure of collision
avoidance, hence harming the effectiveness of our control system. The vision-based
object detection system must achieve a minimum of 90% success rate for each sam-
ple and the algorithm should finish processing 10 frames per second in detecting
other vehicles and pedestrians at intersections.

3. Collision avoidance : The Collision avoidance algorithm must possess 100% ac-
curacy. The system must achieve a minimum of 99% success rate in simulating
collision avoidance at intersections, including some wilful emergencies.

5. Communication Performance: The bandwidth and latency are two major factors
that influence the efficiency of our system. The bandwidth of communication tech-
nology will restrict the package size and information amount we want to transfer,
while the latency should be considered when designing the collision avoidance al-
gorithm. We quantitatively assess the condition of laboratory network and make
decisions accordingly, which will be discussed in the communication section.

5. Energy efficiency: The overall energy consumption of the system must be lower
than the energy consumption required by traditional traffic control mechanisms,
such as traffic lights and stop signs.

By meeting these high-level requirements, we can ensure that our proposed solution ad-
dresses the safety and efficiency challenges at urban intersections effectively and sustain-
ably.
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2 Design

Our team use the Quanser Car[4] (Qcar) as the experimental car to finish the design. The
Qcar (Figure 4) is equipped with many sensors, such as a LIDAR, a RGBD camera, and
two CSI cameras on the left and right side. Those sensors can capture detailed information
about the environment. Qcar also has a on-board GPU to support necessary computation
for information processing. Besides, we make a detailed investigation on the physical
characteristic of Qcar and present it in Appendix A.

Figure 4: Qcar Diagram

To your best understanding, we will describe our design procedure, design details and
corresponding verification for in each subsection, respectively.

2.1 Software Stack

In this section, We will illustrate the software stack of VVCCS on the vehicle, including
the top-level design considerations, workflow of the program, and specific functionality
of each block. Figure 5 shows the overview of software components.

In the diagram, there are three main blocks (orange, blue, and green) and red arrows
between them. The red arrows indicate inter-block data transfers, as main blocks con-
tinuously share data via corresponding function calls. The orange block refers to Python
files that read and process the raw data from the hardware (like Lidar, cameras, and mo-
tors). We use Python here because the Qcar itself provides some basic hardware drivers
in Python. The green block refers an environment pool implemented in etcd, a distributed
and reliable database, where we store all observed objects. The blue block refers to the
main function of VVCCS. We realize it in Go, since it can both call the Python API and
easily interact with etcd. After launching, all three main blocks will be initialized and will
run concurrently.

The main function in Go principally contains a loop with three code blocks: Perception,
Decision-Making, and Control. The perception block polls the Python interface to get
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Figure 5: Software Stack

data. The system will then obtain the state of observed surrounding objects from the Li-
dar and Camera after a information fusion module, and the state of itself from the motor.
Thereafter, the perception block will create new objects, delete outdated objects, and up-
date the state of objects that are under tracking in the etcd. The decision-making block
runs the whole collision avoidance algorithm with stored data in etcd, and output desired
speed to the control block to enforce it. After finishing all three blocks, our system will
wait for a certain time before entering the next loop so that it can stay synchronized with
the sampling and information fusion module in Python.

The design of software stack is the last step to finish VVCCS, so the verification is rela-
tively straightforward. As long as the system works, it will prove that our design satisfy
all requirements.

2.2 Control subsystem

This section shows the design and implementation details of the control subsystem of
VVCCS. In order to success, the control subsystem must fulfill the following three re-
quirements:

1. The vehicle goes straight.

2. The vehicle can run at given speed.

3. The vehicle has the ability to measure the location of itself, so that the relative po-
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sition of different vehicles can be calculated after they receive messages from each
other.

At first, we intuitively think that each Qcar will definitely go straight. But actually the de-
viation problem is severe because the diameter of the wheels on the two sides are not per-
fectly equal, and the suspension cannot maintain totally horizontal. Thus, we measured
the steering parameter for two Qcars, which are −0.066 and −0.041, respectively.

As the motor of Qcar is controlled by PWM instead of voltage change, we need to build
a map from the duty cycle to the actual speed. After the sampling and analysis, we find
that their relation can be expressed as a linear function shown in Equation 1

dutyCycle = k ∗ vtarget, k = 0.1 (1)

However, the Qcar takes too much time to achieve the desired speed when we want to
enforce the collision avoidance algorithm in such control system. Hence we add feedback
terms to realize faster convergence . In Equation 3, we introduce an proportional error
and an integral error so that the system can provide additional power to approach the
desired speed. The intuition behind it is that the proportional error can provide rapidly
respond to a change of desired speed and the integral error will augment the correction
as long as the difference exists. It successfully fulfill the requirement 2) for the control
subsystem.

e(k) = vtarget − vcurrent (2)

dutyCycle = kff ∗ vtarget + (kp ∗ e(k) + ki
∑k

i=0 e(i))) (3)

Lastly, we need to handle the localization issue since Qcar is not equipped with a GPS
module. We proposed two alternative plans to tackle this problem. The first one is to
set up several signs and make each vehicle to measure its relative position against the
sign, as we have a sensing subsystem can recognize those objects and report the location.
Nonetheless, our test shows that the sensing subsystem fails to recognize the sign as the
vehicle goes away. The sign will become overly small in the camera, to the extent that the
sensing algorithm will ignore it. This problem is irreparable due to the restriction of the
processor capability of Qcar.

Therefore, we turn to another plan, which requires the Qcar to measure the distance it
travelled by monitoring the state of motor. Once the Qcar can estimate its real-time speed
with the state of motor, we can integrate the speed to calculate the distance. Additionally,
we hardcode the initial position of Qcar into the system and always run it from there, so
that the Qcar can calculated its location accordingly. As we can only monitor the count of
motor’s spin, we deduce following formula (Equation 6) to further compute the speed of
vehicle:

kps = ((13 ∗ 19)/(70 ∗ 37)) (4)
kcr = (1/720/4) ∗ 2π (5)
Vcar = kps ∗ kcr ∗ rwheel ∗ Vmotor (6)
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kps refers to the ratio of pinion to spur. kcr refers to the ratios of counts to rad. Vmotor refers
to the encoder speed in counts/s. rwheel refers to the wheel radius. All parameters are
listed in Qcar’s product manual.

We verify the effectiveness of control subsystem by conducting two experiments:

1. We make the Qcar run for a preset distance (D), and measure its lateral deviation
(dl)as well as the actual distance (da).

2. We make the Qcar run in the speed v1 and output its real-time speed to the console.
We then change the speed to v2 by commands at t1 and record the first time when
the output speed goes below v2 as t2. The time different δt = t2 − t1 will be used to
judge the performance of our control algorithm.

D (m) dl (cm) da (m)

1 0.41 1.004

1.5 0.72 1.508

2 0.93 1.993

2.5 1.30 2.515

3 1.68 3.019

v1 (m/2) v2 (m/s) δt (s)

0.3 0.1 0.007

0.3 0.5 0.08

0.3 1 0.23

1 0.3 0.012

1 2 0.39

Figure 6: Experiment Results

Figure 6 illustrates that the Qcar’s response time to speed change is negligible while both
lateral deviation and distance measurement satisfy the requirement discussed in section
1.3.

2.3 Sensing subsystem

In this section, we will present a detailed description on the sensing subsystem, including
its primary components, information processing procedure, and the refinement for better
performance.

2.3.1 Primary Components

Camera
Qcar contains a Intel D435 RGBD Camera and a 360°2D CSI (Camera Serial Interface)
Camera system, as shown in Figure 4. There are four 8MP 2D CSI cameras (Figure 7) at
the front, left, rear and right side of the vehicle. Each camera has a wide-angle lens provid-
ing up to 160° Horizontal-FOV (field of view) and 120° Vertical-FOV. The corresponding
blind-spots have been shown below in Figure 8

At first, we plan to use the D435 RGBD Camera because it can measure the depth of
objects as well as shooting the photos. However, it’s hard for us to run an real-time object
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Figure 7: CSI Camera
Figure 8: Blind spots of camera

detection algorithm on the output, and the only one D435 RGBD Camera cannot generate
a holistic view of surroundings of the vehicle. So we abandon this plan and turn to adopt
the CSI cameras for sampling.

LIDAR
The Qcar platform provides RPLIDAR A2M8, an enhanced version of 2D laser range
scan- ner(LIDAR). It can perform 2D 360 degree scan within a 12-meter range(8-meter
range of A2M8-R3 and the belowing models). It takes up to 8000 samples of laser ranging
per second with high rotation speed. The typical scanning frequency of the RPLIDAR
A2 is 10hz (600rpm). Under this condition, the resolution will be 0.45°. During every
ranging process, the RPLIDAR emits modulated infrared laser signal and the laser signal
is then reflected by the object to be detected. Figure 9 illustrates the working principle
and provides an example output of RPLIDAR.

Figure 9: RPLIDAR mechanism

2.3.2 Information Processing

A basic requirement of our sensing system is to detect what are the surrounding objects
and their positions. Using cameras and RPLIDAR, we get these two kinds of information
respectively. We then fuse such information together (1-1 correspondance). In this part
we introduce our work on getting data.

Object Detection Model
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For object detection, the Qcar hardware supports 256 CUDA Core NVIDIA Pascal™ GPU
architecture,1.3 TFLOPS (FP16) NVIDIA® Jetson™ TX2. The AI performance of Jetson
TX2 series is 1.33 TFLOPS. The four cameras support four initial image data, from which
we construct one image containing these four initial images as sub-images. We then input
the combined image into the Yolo5 object detection model in real-time. An example figure
is shown in Figure 10.

Figure 10: Object Tracking

We applied multiple models and chose the one that has the best performance in our do-
main. We also tuned the hyper-parameters as 10 frame per second to achieve our real-time
requirement.

Image Coordinates to Angle Conversion
To get the accurate position of surrounding cars, we need to first get the relationship
between image coordinates of objects and their angle to the Qcar frame. After experiment,
the raw data is like (Figure 11):

After curve fitting the data in cubic equation (Figure 12):

angle = a ∗ pixel3 + b ∗ pixel2 + c ∗ pixel + bias (7)
where a = 1.08838458e − 07, b = −5.36308439e − 06, c = 1.83988097e − 01, bias =
4.00103535e− 01.
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Figure 11: Raw data Figure 12: Curve fit

Since a and b are very small and the bias is mostly resulted from the inaccuracy of measur-
ing the offset angle, so we can simply assume there is a linear relationship between image
coordinate of object and angle to Qcar in CSI camera with angle = 0.1840 ∗ pixel + bias.
We measured and fitted the pixel-to-angle correspondence and angle-to-pixel correspon-
dence. The fitted curve can be approximated linearly in an accurate scale.

Data Fusion
The angle of surrounding cars to the Qcar can be obtained by processing images from
four cameras. At meantime, LIDAR will provide a point cloud map containing angle and
distance of each point. By extracting points in the range of angles obtained before, we can
get the distance to the surrounding car and finally get the accurate relative position by
calculating through angle and distance.

2.3.3 Performance Optimization

Multi-thread Optimization
Each loop of our perception system includes four steps: fetching data from each sensor
(camera, LIDAR, motor encoder), running object detection model, fusing prediction from
model with data from sensor, sending command to control system. However, running
such a loop serially will spend about 130ms, and it will be impossible for us to run the
system above 10Hz.
When fetching data from sensor, most time is wasted to wait for system API and we
mostly use CPU resources. When running object detection model, GPU resources is
mostly used. Before fusing data, prediction from object detection model must be pre-
pared. So that we can run object detection model and fusing algorithm in the main loop
with some threads for each sensor to fetch their data independently.

Elimination for Duplicates
In some cases, surrounding objects will be detected by two adjacent cameras at the same
time. If they are simply treat as two objects and calculate their relative position separately,
the result will be inaccurate. So that we can extract their label box from the prediction list
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of two adjacent cameras and merge them into one large box.

On the other hand, surrounding objects may be detected as two due to non-max-suppression
algorithm of object detection model. In our code, if two detected objects’ relative position
are too close, they will be merged and there will be only one object finally.

Absolute Position Calculation
The position of surrounding objects in absolute coordinate will be calculated through
Qcar’s own absolute position, Qcar’s heading and relative position of surrounding ob-
jects.

Figure 13: Kalman Filter Result
Figure 14: Inter-camera Data Processing

2.3.4 Data Smoothing

Kalman Filter
Kalman Filter is an algorithm to compute a smoothed time-evolving data given the mea-
sured non-smooth data. An example of KF output time-varying position (y-axis) is shown
in Figure 13, given the input as the measured time-varying noisy position.

Inter-camera Data Processing
The surrounding object that is detected by two adjacent cameras at the same time will be
merged to improve the accuracy. A code snippet handling this part is shown in Figure 14.
For the full code, please refer to the appendix.

2.3.5 Verification

To meet the demanding requirements of our perception subsystem, accuracy and real-
time capabilities take center stage, as highlighted in section 1.3. The object detection
model exhibits an effective working range of approximately 2 meters, boasting an im-
pressive accuracy rate exceeding 90%. Enhancing the computational power of Qcar and
employing cameras with higher resolution can significantly enhance the performance of
the object detection model. Considering the real-world scale, our system must efficiently
detect cars within a range of 10 meters, ensuring comprehensive coverage. However, in
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the more localized Qcar scale, the range narrows down to approximately 1 meter, neces-
sitating the assistance of LIDAR, which excels in detecting objects within a 4-meter range.
As for the real-time requirement, our perception subsystem surpasses expectations, as it
boasts a sample rate exceeding 10 times per second, comfortably meeting our require-
ments for real-time processing and analysis.

2.4 Communication subsystem

In this section, we present the communication subsystem of VVCCS. To implement a
real-time communication while supporting multi-object tracking, we have purposed two
communication methods. We will illustrate them separately and explain the reason of our
final choice.

2.4.1 Method 1 - ROS communication protocol

The Robot Operating System (ROS) [5]is a distributed communication mechanism built
on TCP/UDP, and it processes communication at the granularity of process. In the ROS
communication framework, every process is regarded as a node (r node), and messages
are passed via logic channels called topics. When a node release a topic, all other nodes
subscribe to him will receive that topic. Therefore, ROS satisfies our requirement for
communication.

In the original plan, ROS is used to build both low-level communication (between cam-
eras, Lidar, or other devices) and and the high-level communication (V2V). We first need
to launch a master r node in the Ubuntu PC, and register the central r node of the Qcars
within local WIFI network to achieve V2V communication. For the low-level part, each
device will have its own node as the port to send data to the central r node of Qcar. How-
ever, when approaching the high-level communication, we discover that it is infeasible
to make the Qcar central node directly communicate in the ROS network because ROS
provides weak functionality to support communication between two embedded system
equipped with it. Consequently, we modify the design and construct a stream between
Qcars and the Ubuntu PC. More specifically, we implement a server and a client pro-
gram using provided python library ”Quanser” and run them at the same time to achieve
information communication. Figure 15 is the architecture for the ROS communication
method.

2.4.2 Method 2 - etcd Database

etcd [6] is a strongly consistent, distributed key-value store that provides a reliable way to
store data that needs to be accessed by a distributed system or cluster of machines. etcd
exploits the Raft consistency algorithm to coordinates nodes in the cluster. The algorithm
elects a master node as leader, who is responsible for synchronization and distribution.
When the leader fails, the cluster automatically selects another node as the lead to syn-
chronize the data. Hence, etcd is highly resistant to potential client or communication
failure and guarantees the robustness of VVCCS.
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Figure 15: ROS Communication

To implement the communication between vehicles while isolate private data, we con-
struct the following data structure in etcd, as shown in Figure 16. For each vehicle, there
are two fields, state and surrounding, recording the state of vehicle itself and detected ob-
jects, respectively. As etcd provides the functionality of synchronization, the vehicle only
need to update relevant information to its fields. When the vehicle need to make decision,
it will fetch data from all surrounding fields in the etcd, thereby realizing the interaction
with other vehicles.

Our team finally choose the method 2 as the final design, because it has better scalability
and robustness. In the real-world case, many vehicles may come and leave the intersec-
tion dynamically, so the system need to link newly joined nodes. The stream used in
method 1 requires manual configuration and operation on the console, thus fail to sup-
port more vehicles beyond the first setup. Moreover, accidental failure of vehicle clients
may directly harm other processes, like making them wait for more time, in the design
of method 1. We intend to decouple the communication and planning module for the
vehicle, which is the advantage of method 2.

2.4.3 Verification

As mentioned in section 1.3, bandwidth and latency are critical criteria for designing the
communication module. We make reasonable assumption that there are at most 50 cars at
the intersection, and synchronization latency less than 100ms is regarded acceptable.

In our experiment case, upload and download speed can maintain stable at 30MB/s in the
WIFI6 local area network. For the communication protocol using method 2, each vehicle
updates to etcd by sending a 4KB package every 100ms. A full synchronization among
all vehicles takes 2000KB/s, while occasional location updates should take 1/10 of the
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Figure 16: data base structure

maximum bandwidth, 200KB/s. Therefore, the estimated bandwidth of our method in
the real intersection scenario is approximately 2MB/s, which is much less than 30MB/s
bandwidth provided by the laboratory network. LTE or 5G technology can also serve our
use case. On the other hand, the etcd official benchmark presents that reading one single
key after putting has the 90th Percentile Latency of 8.6 ms on 64 clients, which suffices to
support VVCCS.

2.5 Collision Avoidance algorithm

This section presents our innovative collision avoidance algorithm. We will delineate the
input and output of the algorithm, and expound on how it ensures efficiency and safety
in scenarios involving both V2V and non-V2V vehicles.

2.5.1 Algorithm Specification

Our algorithm incorporates two subsystems: the lease-based scheduling subsystem and
the control subsystem. The former facilitates efficient and timely scheduling for each
vehicle aiming to traverse the intersection, while the latter governs each vehicle’s motor
to adjust speed and direction in alignment with the schedule.

The scheduling algorithm employs a series of discrete snapshots capturing the intersec-
tion state at given timestamps. Each snapshot records the speed, location, type, and a
unique identifier for every traffic participant. From this data, a lease, delineating the tem-
poral duration of a vehicle’s intersection occupancy, is created for each vehicle. A lease
can be extended, cancelled, or reapplied in response to unpredictable circumstances.

The control subsystem evaluates the lease assigned to each vehicle, modulating the vehi-
cle’s speed to adhere to the lease terms. In essence, the algorithm processes intersection
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snapshots as input to produce corresponding vehicle movements as output.

2.5.2 Lease-based Scheduling Subsystem

This subsection provides a comprehensive understanding of the elegance, simplicity, and
adaptability of our solution. The ingenuity of our design stems from its ability to strike a
balance between efficiency, safety, and timeliness depending on specific application sce-
narios and computational resources.

Our design hinges on the proven and effective FIFO (First In First Out) algorithm [7] used
for obstacle avoidance.

2.5.3 The Lock-based Algorithm

Figure 17: FIFO Algorithm

Our design exploits the highly effective FIFO (First In First Out) algorithm [8] for collision
avoidance. This algorithm metaphorically treats the intersection as a computer science
lock. Vehicles attempt to acquire the lock before entering the intersection, delaying their
entry if the lock is occupied (Figure 18). This one-at-a-time entry policy assures absolute
safety.

However, this straightforward approach presents a major drawback: the absence of schedul-
ing capabilities, resulting in safety and efficiency issues. For instance:

• Abrupt halts: Vehicles cannot anticipate when a lock might be obtained by others,
leading to sudden stops or reduced efficiency.

• Efficiency conundrums: Without advance knowledge of lock release, vehicles can’t
adjust their speed to seamlessly traverse the intersection immediately upon lock
availability. This issue exacerbates traffic congestion under heavy traffic conditions.

16



The root of these issues lies in the algorithm’s over-cautious modeling of the intersec-
tion.

Figure 18: FIFO Algorithm, low efficiency

2.5.4 Lease-based Algorithm

The drawbacks of the FIFO algorithm stem from its insufficiency of information in the
lock. We suggest integrating a concept from distributed systems - the lease - to augment
the lock’s information, thus enabling proactive, intelligent decision-making by traffic par-
ticipants.

A lease is akin to a lock, supplemented with a conservative estimation of the duration
when a traffic participant is expected to occupy a block. Traffic participants holding
currently active leases are permitted to enter the intersections. Safety is guaranteed by
ensuring leases do not overlap in time for conflicting paths in the intersection.

This lease-based approach grants a temporal window of safe intersection traversal to each
vehicle, allowing them to adjust their speed in anticipation of their assigned lease, thereby
eliminating sudden halts. Simultaneously, by reserving a time window rather than the
entire intersection, it enhances intersection usage, improving efficiency.

In a nutshell, every traffic participants action will be divided into three phases depending
on their location.

• Planning (before crossing the intersection)

• Crossing (inside the intersection)

• Post-crossing (after crossing the intersection)
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Figure 19: Lease Management, the State Machine

The Planning Phase In this phase, traffic participants will have two kinds of actions,
depending on whether it has made an lease or not. Every traffic participant starts with no
lease. To apply for a lease, they must follow these steps:

• Estimate the expected time of entering and leaving the intersection area.

• Check if there are any conflicting leases.

• If there are no conflicting leases, register its lease into etcd, using the expected time.

• Else, postpone its lease to the next available slot and register the lease into etcd.

These steps guarantee no two leases can overlap at the applying phase. After a lease has
been acquired, the traffic participant should constantly check the following:

• If the current lease can be bring forward? If yes, bring the lease forward to the
first available slot. This step is necessary as sometimes, a previous lease can get
cancelled. In this case, we want to actively check if a lease can be put forward for
efficiency concerns.

• Check if the current lease is still possible to satisfy within the car’s mechanical capa-
bilities. If it is impossible to catch up with a lease anymore or the lease has expired,
we want to cancel the lease and reapply the lease.

The Crossing Phase In this phase, traffic participants mainly do the following for lease
management:

• Check if its lease is about to expire. If yes, extend the lease and postponing other
participants’ leases if necessary, to avoid other participants from entering the inter-
section before you leaves.

The Post-crossing Phase In this phase, traffic participants mainly do the following for
lease management:

• Cancel the lease if it is still active. A lease might still be active after the participant
has left the intersections because of many factors such as conservative time predic-
tion. We want to early-cancel the lease so that other traffic participants can bring
their lease forward.

Managing Non-V2V Traffic Participants Not all traffic participants are equipped with
V2V communication capabilities and as such, they may be unable to apply for leases
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autonomously. To navigate this issue, we assign the responsibility of creating leases for
these participants to the V2V participants that detect them. However, the intentions of
non-V2V participants are opaque to V2V participants, thus their entry and exit times
are predicted conservatively. In the event of a conflict, we prioritize non-V2V leases by
postponing V2V leases instead. This strategy is implemented to minimize the impact of
unpredictability from non-V2V participants on the safety of the overall system.

2.5.5 Enforcement

Once the lease for each vehicle is assigned, the control subsystem is responsible for en-
suring each vehicle adheres to its lease.

The vehicle control subsystem acts as the intermediary between the lease-based schedul-
ing subsystem and the physical layer of vehicle motors, regulating speed and trajectory to
meet the scheduling requirements. It receives the assigned lease and the vehicle’s current
state (speed, location, etc.) as inputs, and then outputs the required speed adjustments
and trajectory plans.

• Planning: If there is not a lease, the traffic participants should keep going at its
current speed. If there is a lease, the participant change its speed according the
requirement of the lease. If the participant is about to arrive at the intersection but
still does not have a lease available, it stops until the leasing system makes a lease.

• Crossing: Keep its speed at the advised speed (often set by the government), stop if
the current lease is preempted by a non-V2V traffic participant.

• Post-crossing: Keep its speed at the advised speed (often set by the government)

The control subsystem and the leasing algorithm, together, will make intersection colli-
sion efficient and safe.

2.6 Verification

To verify the properties of the system, we have designed 4 experiments. One for showing
the efficiency of the algorithm, and two for showing the safety of the algorithm.

The first one is a comparison experiment, the experiment setup contains two V2V vehi-
cles trying to pass the intersection at the same time from different directions and compare
the total time to both cars to cross the intersection under our lease-based scheduling al-
gorithm and the lock-based algorithm. We show that our algorithm is consistently 30%
faster.

The second one consists of two V2V vehicles trying to cross the intersection at the same
time. We show that the lease-based scheduling system is able to let both cars cross without
crashing into each other.

The third one consists two V2V vehicles and one non-V2V vehicles trying to cross the
intersection at the same time. We show that without V2V communication, the non-V2V
vehicle will crash into the other V2V vehicle as due to visual obstacles, the two cars cannot
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see each other. However, with our algorithm and communication, the V2V vehicle is able
to slow down to avoid collisions with the non-V2V vehicle.

The fourth one consists of two V2V vehicles trying to cross the intersection at the same
time. But before they cross, a sudden obstacle arise that blocked their ways. We show that
the vehicles are able to do emergency stops and are able to recover from expired leases
right after the obstacle is cleared out of their way.

During our tests of the system, we find that the above four experiments has a 100% suc-
cess rate.

2.6.1 Engineering Feasibility and Future Improvements

In this project, we have shown that the ”lease” concept can have great potential in ad-
vanced intersection traffic scheduling with a minimum working example. Simple as it
is, we want to show that the ”lease” concept actually enables further space utilization
optimization. For example, we can split the intersection into multiple blocks which have
independent lease management systems, to increase the space utilization.

Figure 20: Lease Algorithm, Improved

Since lease application and the collision avoidance algorithm is largely limited by the
accuracy of the prediction algorithm and the movement planning algorithm, the engi-
neering team can easily, based on their specific needs, swap the existing prediction and
movement planning algorithms with better ones or simpler ones to balance between per-
formance and amount of computing resource available.
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3 Costs

According to [9], the minimum hourly wage in Illinois is 8.3$. We set the desired hourly
salary as 9$ based on that. During the first eight weeks, each partner contributes about 10
hours a week to the project, including writing documents, conducting experiment, and
meeting with TA or professors. We take a break in the Labor Day Holiday and spend
approximately 20 hours to refine VVCCS and prepare the final demo in the last week.
In total, the labor cost for each member amounts to 225$, derived from the given for-
mula:

In addition, we purchase a remote control car that costs 489¥ for the final demo.
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4 Conclusions

4.1 Accomplishment

In summary, VVCCS achieves successful collision avoidance in all our experiments at
intersection. The overall energy consumption is much lower than that required by tradi-
tional traffic control mechanisms, such as traffic lights and stop signs.

In this project, We implement the precise control of the speed of Qcar by combining the
feed-forward and feedback term in the command to drive the motor, and realize the lo-
calization by converting the motor state to real speed and conducting the integration. The
vision-based object detection subsystem achieves detecting other vehicles and pedestri-
ans in the complex environment. Moreover, We exploit the etcd distributed data base to
make vehicles communicate with each other. Lastly, We propose the idea of lease to help
to schedule the timeline for each to pass through the intersection.

4.2 Ethical Considerations

Ethics is a crucial aspect of any new technology, especially those involving autonomous or
semi-autonomous systems. Below are some key points we take into consideration:

Bias and Discrimination. We ensure that the algorithms and systems are designed to
be fair and equitable, and that they do not perpetuate or exacerbate existing inequalities.
When deciding forcing which vehicle to decelerate during a conflict, we adhere to the
FIFO principle and give no special priority to any vehicles. Conduct Clause 1.4 Be fair
and take action not to discriminate. [10]

Privacy. The use of V2V technology raises concerns about privacy, as it involves the ex-
change of sensitive information between vehicles. We ensure that personal information is
properly protected and that the data is only used for the intended purpose. We also guar-
antee that vehicles cannot read and write data to other’s private field in the distributed
data base to prevent information leakage. Conduct Clause 1.6 Respect privacy.[10]

4.3 Limitation and Future Work

Although VVCCS achieves the safety and efficiency in collision avoidance and scheduling
at the intersection, it has several limitations as well.

As we use the yolo5 model to recognize surrounding objects, we only detect the type of
object in the perception module. We preset the size of each type of objects, and hard-
code it into the system. However, even the same type of object, like the trucks, may have
different sizes in the real world. It’s necessary to upgrade the perception subsystem so
that we can collect more comprehensive information. Possible solutions include merging
the depth camera or echo location system into current one.

On the other hand, the VVCCS currently can only control the vehicle running in a line. It
can nether control the vehicle to turn at the intersection, nor make the vehicle detour
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when the blocking object remains stationary. To improve the system, we need better
control and pose prediction module so that the vehicle can accurately acquire and release
the lease and perform more intelligently.

If we can further develop VVCCS to eliminate the limitation, it will support more sce-
narios and have a wide employment. Our system is economically efficient and will sig-
nificantly save the fuel cost, hence reducing the environment contamination. The V2V-
based system will also save government’s expenditure on the built on infrastructures that
needed in V2X solutions. Therefore, VVCCS is prospective and deserves more technical
and economical attention.
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Appendix A Qcar Dimensions

The dimension of Qcar is shown in Figure 21 and Figure 22.

Figure 21: Qcar Dimensions

Item Value

weight 2.7kg

Length 0.425 m

Height 0.182 m

Width 0.192 m

Tire diameter 0.066 m

Wheelbase (Figure 21 #1) 0.256 m

[l]Front and Rear Track

(Figure 21 #2, 3) 0.170 m

Maximum steering angle ±30°

Figure 22: Dimensions
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