
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Remote Driving System

Team #17

BO PANG (bopang5@illinois.edu)
JIAHAO WEI (jiahaow4@illinois.edu)

KANGYU ZHU (kangyuz2@illinois.edu)

TA: Yi Wang
Sponsor: Liangjing Yang

May 21, 2023

Abstract

Traditional chauffeuring services provide convenient and secure transportation but have
limitations and drawbacks. A remote driving system leveraging communication technol-
ogy and mixed reality has been developed to address these challenges. This system al-
lows chauffeurs to control vehicles remotely, eliminating the need for their physical pres-
ence. The system enhances human capabilities by accessing and operating in previously
impractical or inaccessible areas while reducing risks associated with dangerous environ-
ments. Deploying human operators to remote locations becomes more cost-effective and
time-efficient with this solution.

The remote driving system consists of four subsystems: HoloLens 2, Driving Control,
Server, and TurtleBot3. The server acts as the central component, facilitating communica-
tion among the subsystems. The Driving Control subsystem handles control commands,
while the HoloLens 2 subsystem presents real-time information to the user interface. The
TurtleBot3 subsystem performs movements and captures environmental data.

By integrating remote driving systems, the limitations of traditional chauffeuring services
can be overcome, enabling safer and more efficient transportation in challenging environ-
ments.

Keywords: remote driving system, mixed reality, communication technology

ii

Contents

1 Introduction 1

1.1 Purpose . 1

1.2 Functionality . 1

1.3 Subsystem Overview . 2

2 Design 3

2.1 HoloLens 2 . 3

2.1.1 Glasses and Screens . 3

2.1.2 Microphone and Speech Recognition 3

2.1.3 Camera and Position Adjustment . 4

2.1.4 Videos and Face Detection . 6

2.2 Server . 7

2.2.1 Unity . 7

2.2.2 Decoder and Motion Signal Transmission 8

2.3 Driving Control . 8

2.3.1 Mechanical Part . 8

2.4 Turtlebot3 . 10

2.4.1 Motions and Status . 10

2.5 Name Server . 12

2.6 Video Transmission . 13

2.6.1 Socket Connection Class . 13

2.6.2 VideoFrame Class . 13

2.6.3 VideoCapture Class . 13

2.6.4 BasicProtocol Class . 14

2.6.5 Working Principle . 14

2.7 Audio Transmission . 15

3 Verification 16

3.1 HoloLens 2 . 16

iii

3.1.1 Screens in HoloLens 2 . 16

3.1.2 Speech Recognition and Face Detection 17

3.2 Driving Control . 17

3.3 Turtlebot3 . 18

3.3.1 Motion . 18

3.3.2 Status . 18

3.4 Name Server . 19

3.5 Video transmission . 19

3.6 Audio transmission . 20

4 Cost and Schedule 21

4.1 Cost Analysis . 21

4.2 Schedule . 21

5 Conclusion 24

5.1 Accomplishments . 24

5.2 Ethical Considerations: . 24

5.3 Future Work . 25

References 26

Appendix A Requirement and Verification Table 27

iv

1 Introduction

1.1 Purpose

While traditional chauffeuring service offers people a convenient and secure mode of
transportation, it is not without its drawbacks. Under some circumstances, the potential
dangers and risks typically encountered in dangerous or unsafe environments can put
human chauffeurs at risk. In some areas, Humans are limited by their physical capabil-
ities and have difficulty performing specific tasks without endangering themselves. In
some cases, deploying human chauffeurs to distant or remote locations can be expensive
and time-consuming, requiring significant resources.

Given the advancements in communication technology and mixed reality, it is now feasi-
ble to develop a remote driving system where chauffeurs can remotely control the owner’s
vehicle. This innovative solution eliminates the need for chauffeurs to be physically
present. With such a remote driving system, humans can broaden their capabilities,
gaining access to and effectively operating in areas otherwise considered impractical or
unattainable. It also allows operators to control robots from a safe distance, effectively
minimizing the potential dangers and risks associated with such environments. Also, in
some cases, it offers a solution to significantly decrease the costs and time required for
deploying human operators.

1.2 Functionality

We will substitute a TurtleBot3 (a programmable robot) for the automobile to reduce the
complexity of the control subsystem. We want to achieve the following high-level project
functionality:

• Under a chauffeur’s operation, the TurtleBot3 should be able to navigate through
the whole campus. This verifies the functionality of remote driving.

• The video delay from the TurtleBot3 should be at least 100 ms. The postponement
of the chauffeur’s commands should be within 50 ms. This ensures a smooth user
experience for chauffeurs and users’ safety.

• The server can handle at least two connections from different chauffeurs. All chauf-
feurs can view the status of the TurtleBot3, and the one who will drive the TurtleBot3
will be selected according to a policy. This enables chauffeurs to take turns during
service, thus improving the duration and distance of chauffeuring services.

1

1.3 Subsystem Overview

The system comprises five distinct subsystems: HoloLens 2, Driving Control, Server,
TurtleBot3, and Name Server. The server is the central component, receiving, process-
ing, and transmitting information to facilitate interaction among the other three subsys-
tems. Specifically, the Driving Control subsystem is primarily responsible for obtaining
and sending control commands. The HoloLens 2 subsystem delivers real-time informa-
tion to the user interface. The TurtleBot3 subsystem is equipped to execute movements
based on instructions and capture real-time environmental data. To achieve a fast data
transmission between Turtlebot3 and Server, direct network connections are established
between them. This is done with the help of the Name Server subsystem.

Figure 1: Block Diagram

2

2 Design

2.1 HoloLens 2

The HoloLens 2 system encompasses all the knowledge and insights that the driver can
acquire. The Server is responsible for transmitting the video signal, which is then dis-
played on the HoloLens 2 device, enabling the driver to perceive the surrounding en-
vironment from various perspectives. The Unity platform facilitates the projection of
real-time car information onto the HoloLens 2, serving as a reference for the driver. With
HoloLens 2, it is crucial to ensure that the driver can observe a clear video stream cap-
tured by the remote TurtleBot3 camera, positioned virtually 1 meter from the driver. The
driver’s field of view in front should span approximately 120 degrees, extending from left
to right. Moreover, they should have the ability to see additional angles by turning their
head.

2.1.1 Glasses and Screens

The HoloLens 2 glasses function as a visual interface for experiencing mixed reality. They
allow users to view and engage with virtual information superimposed onto the physical
world, resulting in a blended reality environment. When using these glasses, it is essential
to ensure that the driver has an unobstructed and steady field of view. Specifically, the
screen should be positioned 1 meter from the driver, and the immersive virtual interface
should be situated directly in front of them. For the screens in HoloLens 2, due to the
wide angle of our cameras (the front-facing camera has a 120° field of view), displaying
the feed on a flat plane in HoloLens 2 would appear somewhat unusual. To address
this, we have designed a slight curvature for the screens displayed in HoloLens 2. By
adjusting the screens to a suitable curvature, the field of view appears more realistic, and
the driver can also see a wider range of angles by turning their head. Additionally, we
have incorporated important information onto the screens, such as the car’s speed and
battery level. This information helps the driver to have a better understanding of the
car’s motion status.

2.1.2 Microphone and Speech Recognition

The HoloLens 2 device is equipped with three front-facing environmental audio capture
microphones and two user voice capture microphones. These microphones can capture
both ambient sounds and the voice commands issued by the user. Additionally, the
HoloLens 2 includes an embedded speech recognition library, which can capture and rec-

3

Figure 2: Two screens designed in Unity3D

ognize the user’s vocal input, allowing for subsequent actions based on the recognized
commands. The functionality of speech recognition is crucial for the remote driving sys-
tem. When the driver needs to interact with the HoloLens 2 environment while driving,
using gesture-based interactions poses certain safety risks. However, by employing voice
interactions, the safety of the system can be significantly improved. To address this, we
have designed a series of commands such as ”reset camera”, ”play music” and ”mode
conversion”, enabling drivers to interact with the HoloLens 2 device safely.

2.1.3 Camera and Position Adjustment

HoloLens 2 has the capability to display real-time footage captured by the TurtleBot3 car’s
cameras. The car is equipped with both front-facing and rear-facing cameras. The main
screen of the HoloLens 2 can show the feed from the front-facing camera, while the feed
from the rear-facing camera is displayed on top of the main screen. However, the posi-
tions of the two screens in the HoloLens 2 may not align with the driver’s direct line of
sight during driving. This is because the camera position of the HoloLens 2 may not nec-
essarily be in front of the driver when establishing the connection between the HoloLens
2 and the PC server. Additionally, the driver’s seating position may vary. To ensure that
the screens in the HoloLens 2 are positioned in front of the driver during driving, we have
implemented a ”reset camera” method. Through the speech recognition functionality of
the HoloLens 2, users can issue the ”reset camera” command, which automatically aligns
the positions of the two screens with the forward-facing perspective of the HoloLens 2

4

camera.

For the design detail, when we want to adjust the position and orientation of an object
based on the current camera position of HoloLens 2, we need to calculate the adjusted
position and rotation states.

For the position state, it can be calculated using the following approach: Assume the cam-
era position vector pc, camera forward vector fc, and camera up vector uc are represented
as:

pc =

pcx

pcy

pcz

 , fc =

fcx

fcy

fcz

 , uc =

ucx

ucy

ucz

We can combine the camera position and the camera forward and up vectors into a ma-
trix:

M =

[
pc fc uc

]
=

pcx fcx ucx

pcy fcy ucy

pcz fcz ucz

Then, the target position vector pt can be represented as a homogeneous coordinate vec-
tor, where the variable ‘scale‘ represents the scaling factor and the variable ‘offset‘ repre-
sents the offset. Thus, the target position vector pt can be calculated as:

pt = M ·

scale

offset

0.0

Perform matrix multiplication to obtain the reset position coordinates of the target ob-

5

ject:

pt =

ptx

pty

ptz

1

= M ·

scale

offset

0.0

 =

pcx fcx ucx

pcy fcy ucy

pcz fcz ucz

0 0 0

scale

offset

0.0

For the rotation state, assume the camera rotation matrix is denoted by Rc, the downward
rotation angle is denoted by θx, and the rotation matrix for the target object is denoted by
Rt. First, we calculate the downward rotation matrix RlookDown, which corresponds to the
rotation angle θx, and can be represented as:

RlookDown =

1 0 0

0 cos(θx) − sin(θx)

0 sin(θx) cos(θx)

Next, we multiply the camera rotation matrix Rc with the downward rotation matrix
RlookDown to obtain the rotation matrix for the target object Rt:

Rt = Rc ·RlookDown

2.1.4 Videos and Face Detection

The video information captured by the remote car’s camera can be directly transmitted
to the HoloLens 2 or undergo certain processing, such as implementing face detection on
the video information. This auxiliary method can enhance safety as it enables the system
to identify and monitor the presence of pedestrians, cyclists, or other individuals near the
vehicle. Therefore, we implemented a network that could perform rapid face detection.
When a human face is detected in the video, it can be visually indicated by enclosing it
with a red bounding box. Consequently, this can assist the driver in making better judg-
ments regarding the presence of pedestrians in their field of view, thereby enhancing the
safety of the system. In addition to that, depending on the quality of the network environ-
ment, the driver can choose to activate or deactivate face detection through voice control.
Through testing, it has been observed that in a well-functioning network environment,
incorporating face detection operations ensures low latency in video transmission.

6

Specifically, we utilized the Haar cascade in OpenCV for detecting faces. The Haar cas-
cade algorithm is widely recognized as the most popular method for object detection in
OpenCV. Its primary advantage lies in its high-speed performance. Haar cascades prove
to be highly efficient[1], especially when deployed on resource-limited devices where
more resource-intensive object detectors are not feasible. The following diagram illus-
trates the specific process of detection:

Figure 3: Haar cascade algorithm detection procedure

2.2 Server

The Server Subsystem is crucial in facilitating information exchange as a pivotal link for
signal control. Its responsibilities encompass decoding the video information transmitted
by the TurtleBot3 and displaying it on the HoloLens 2. Additionally, the Server Subsys-
tem is responsible for transmitting signals from the Driving Control Subsystem to the
TurtleBot3, enabling effective control over the vehicle.

2.2.1 Unity

Unity is a versatile game engine and development environment that finds extensive appli-
cation in developing augmented reality (AR) applications. In this project, it is imperative
to establish a connection between Unity and HoloLens through the MRTK package. Si-
multaneously, Unity must receive real-time information from the server, encompassing
data from the vehicle, video feed, and other pertinent information.

There are two connection methods for connecting HoloLens 2 to a PC server. One is
through a Wi-Fi connection, and the other connects the HoloLens 2 to the PC via a USB in-
terface. In the second method, the PC establishes a connection by obtaining the HoloLens
2’s IP address on the local network. We have utilized the second connection method be-
cause it is more stable and has lower latency.

7

2.2.2 Decoder and Motion Signal Transmission

When the driver manipulates the steering wheel, accelerator, and brake in the driving
control subsystem, the motion signals are transmitted via USB to the PC server. The PC
server needs to receive these signals in real-time and convert them accordingly. Subse-
quently, the converted signals are sent to the remote Raspberry Pi on the car via the TCP
protocol.

For the specific conversion process:

l =
float(throttle − brake)

2
× MAX LIN VEL

The throttle and brake reflect the braking and acceleration states in the driving control,
and their values range from [−1, 1]. By subtracting them and mapping the result to the ve-
locity range that turtlebot3 can achieve, we can control the forward and backward move-
ments of the car.

a =
float(wheel)

1
× MAX ANG VEL × (−1)

The wheel represents the rotation value of the steering wheel, which also ranges from
[−1, 1]. We can steer the car by mapping the angular velocity to the angle range that
turtlebot3 can achieve.

By sending l and a to the remote car, we can achieve remote control of the car through the
driving control.

Name Server is designed to handle three requests, namely JOIN, LEAVE, and GET. Send-
ing request JOIN hostname to Name Server will register the hostname and sender’s IP
in its record. Sending request LEAVE hostname will delete the record of hostname. By
sending request GET hostname, the sender will receive the IP address of the specified
hostname from Name Server. If hostname does not exist in Name Server’s record, an
empty string will be returned.

2.3 Driving Control

2.3.1 Mechanical Part

We used pedals and steering wheel as the interface between automobiles and drivers to
provide a direct and accurate control mechanism. The steering wheel is designed with a

8

larger diameter than other possible controls, such as levers or buttons, which allows the
driver to exert greater force and have better control over the steering mechanism. Also,
the circular shape of the steering wheel allows for a full range of motion, enabling the
driver to turn the wheels smoothly and progressively. This makes it easier to negotiate
turns, navigate tight spaces, and maintain vehicle control. Besides, the steering wheel is
positioned in a comfortable and intuitive way for the drivers. It is located within easy
reach and allows for a natural hand placement, giving the driver a stable grip for precise
control.

The placement and design of pedals and the steering wheel are typically standardized
across vehicles, making them familiar and intuitive for drivers. This consistent layout al-
lows drivers to adapt quickly to our control system. It also simplifies the learning process
for new drivers and facilitates safe and efficient operation.

Figure 4 shows the driving Control Subsystem. The steering wheel enables the driver to
control the direction of the Turtlebot3. The pedals let the driver control the forward and
backward speed of the Turtlebot3.

Figure 4: Driving Control

The encoder captures the rotation angle of the steering wheel. The two pedals will seize
the degree to which they are depressed. Arduino will then get and process these signals
and send them to Server. As a result, Server can get the control commands from the driver
and send them to Turtlebot3 to control its motion.

A motor with power is used to simulate the mechanism of a steering wheel. This motor is

9

controlled by the signals sent from Arduino. In this way, the motor can be programmed
to restrict the rotation angle of the wheel. Specifically, if the driver rotates the wheel to
an angle greater than 540 degrees, the motor will apply a force in the opposite direction.
Thus, the driver cannot turn it further. Also, the motor can apply force during rotation
to simulate the rotation-related properties such as friction, i.e., the amount of force the
driver needs to apply to rotate the wheel.

Figure 5: PCB Design

2.4 Turtlebot3

2.4.1 Motions and Status

Turtlebot3 has ROS preinstalled. ROS (Robot Operating System) provides standard op-
erating system services such as hardware abstraction, device drivers, implementation
of commonly used features including sensing, recognizing, mapping, motion planning,
message passing between processes, package management, visualizers, and libraries for
development as well as debugging tools [2].

In ROS, the master acts as a name server for node-to-node connections and message com-
munication. A node refers to the smallest unit of the processor running in ROS. A mes-
sage is a bundle of data used to exchange data between nodes. A package is the basic

10

unit of ROS. The ROS application is developed on a package basis, and the package con-
tains either a configuration file to launch other packages or nodes. The topic is literally
like a topic in a conversation. The publisher node first registers its topic with the master
and then starts publishing messages on a topic. Subscriber nodes that want to receive
the topic request information from the publisher node corresponding to the topic’s name
registered in the master. Based on this information, the subscriber node directly connects
to the publisher node to exchange messages as a topic.

The serial package is used to utilize motors and simplify development. As shown in
Figure 6, the rosserial is a package that converts ROS messages, topics, and services
to be used in serial communication [3]. It achieves message communication between
a microcontroller and a computer using ROS. The node serial_python in package
rosserial_python will subscribe to the messages in topic cmd_vel and can send con-
trol signals to the OpenCR board, which will then control the motors. Thus, We can
publish messages on this topic to control the motion of Turtlebot3. To get the status
of the battery and speed of Turtlebot3, we can subscribe to topic battery_state and
joint_states, respectively.

Figure 6: Rosserial Server (for PC) and Client (for Embedded System)

Figure 7 shows the correlation between active nodes and messages transmitted on the
ROS network.

Figure 7: Graphical Representation of Message Communication

11

There are four nodes running in ROS, namely serial_python, ip_sender, op_receiver,
and status_sender. Node op_receiver will receive control commands from Server
and publish messages to topic cmd_vel. Node serial_python will subscribe to mes-
sages published in topic cmd_vel and communicate these messages (commands) with
the OpenCR board, which will, in turn, control the motion of Turtlebot3. The OpenCR
board will also send battery status and speed information to node serial_python. Af-
ter processing them, serial_pythonwill publish these messages in topic joint_states
and battery_state. By subscribing to these two topics, node status_sender can get
the status of Turtlebot3 and send them to Server. These messages will then be shown to
the driver.

There is a node called ip_sender. This node does not interact with other nodes. It
periodically sends requests to Name Server to update its IP address. In this way, Server
can fetch the correct IP address of Turtlebot3 from Name Server.

2.5 Name Server

Direct network connections are established between the Server subsystem and Turtlebot3
to achieve fast data transmission. To resolve their IP addresses, the Name Server subsys-
tem is needed. This system records the mapping from host names to their IP addresses
and handles requests from other hosts. As the IP addresses of Turtlebot3 and Server
Subsystem are subjected to DHCP (Dynamic Host Configuration Protocol), they will be
changed periodically. With the help of the Name Server Subsystem, they can update their
current IP addresses and get others’ correct IP addresses. Thus, direct network connec-
tions can be established.

Concerning transport protocol, UDP (User Datagram Protocol) is used instead of TCP
(Transmission Control Protocol). First, UDP has a smaller header size than TCP, result-
ing in lower packet overhead. The requests and responses are small in size, so using UDP
helps reduce the overall network traffic and latency. Second, UDP is a connectionless pro-
tocol, meaning it doesn’t establish a dedicated connection before sending data. This lack
of connection setup and teardown processes makes UDP faster. Also, this name service
operates statelessly, where each request and response is independent of others. UDP’s
stateless nature suits the requirements of this service’s communication. Finally, TCP has
built-in congestion control mechanisms to prevent network congestion and ensure reli-
able data delivery. Using UDP allows this service to bypass TCP’s congestion control
mechanisms, which can lead to faster response times and less network congestion.

12

2.6 Video Transmission

For the video transmission system, my task was to ensure that the video had low latency
and high resolution to meet the project’s requirements. We developed my own modules
to handle video transmission, using the Socket framework for sending information and
Opencv for encoding and decoding the image data.

Firstly, after clarifying the goals of video transmission, we decided to adopt a layered
approach to implement the code. That is, we utilized the object-oriented features of C++
to achieve code reusability. This allowed us to build my functionality more steadily. We
built four primary classes to do the video encoder and transmission.

2.6.1 Socket Connection Class

In this video transmission implementation, the difficulty level for socket transmission is
relatively low, as the most basic UDP connection was used to send‘ vector¡unsigned char¿‘
data. As the implementation process is not particularly complicated, we will not provide
a detailed explanation here.

2.6.2 VideoFrame Class

To begin with, we implemented the VideoFrame class to retrieve images. The images are
represented using two data structures, namely cv::Mat and vector¡char¿. These structures
can be interconverted between each other. The constructor of the VideoFrame class, ”ex-
plicit VideoFrame(conststd :: vector < unsignedchar > framebytes)”, uses cv::imdecode
to convert vector¡char¿ to cv::Mat. Additionally, the ”vector < unsignedchar > GetJPEG()”
function converts the cv::Mat member variable of the class to vector¡char¿.

2.6.3 VideoCapture Class

If in VideoFrame, we can open an image, save its data in an object, and convert it into a
different data type. The next step is to get real-time information from each frame in the
camera. VideoCapture’s job is to get data from the camera for each frame and convert it
into a usable data type. Therefore, VideoFrame is used in VideoCapture to return usable
image data. We use the API cv::VideoCapture(0) to get the camera’s image information,
save it as a cv::VideoCapture type data, convert it to a cv::Mat data type, and then call the
VideoFrame constructor.

13

2.6.4 BasicProtocol Class

After collecting video data, the next step is to use the BasicP rotocol class to easily convert
the collected data into the required data type for sockets. In UDP, the data type used for
transmission is vector < unsignedchar >. Once you have this data type, you can use
sockets for communication.

2.6.5 Working Principle

We also implemented stitching of cv::Mat images through functions for both horizontal
and vertical stitching. This was implemented after We achieved multi-threaded image
transmission, which can improve the video resolution.

After implementing basic video transmission functionality, you made improvements to
allow Turtlebot to simultaneously transmit video to multiple clients. To achieve this, We
developed a server for video transmission.

The server uses TCP for client connections, ensuring reliable data delivery. Video trans-
mission is done using UDP, which is suitable for real-time streaming. To handle multiple
clients efficiently, We implemented a thread pool. Each client connection is assigned two
video-transmission threads, allowing concurrent processing.

By combining TCP for connection establishment, UDP for video transmission, and a
thread pool implementation, Turtlebot can effectively share video with multiple clients
simultaneously. This setup allows our server to transmit video information to multiple
drivers and utilize different video compression rates. This allows for monitoring the en-
vironment’s safety, and our drivers can transfer control of the Turtlebot, making driving
safer.

Figure 8: Top level of video transformation

14

Figure 9: Top level of video transmission

2.7 Audio Transmission

To enable real-time communication between drivers and passengers, We implemented
audio transmission. The server accepts connections from multiple clients, each providing
audio data. The server broadcasts the audio data to other clients using multiple threads,
facilitating audio transmission. We utilized the PyAudio library for audio encoding and
decoding. In Linux, external devices are treated as files, so the playback process involves
writing the data to the speaker. This completes the audio transmission process.

Figure 10: Top level of audio transmission

15

3 Verification

3.1 HoloLens 2

3.1.1 Screens in HoloLens 2

One requirement is that the screen showing the remote view should be positioned at an
optimal distance from the driver to ensure clear visibility of the content. The recom-
mended distance is approximately one meter. To verify that, one way is to get a person to
stand one meter away from the driver and see whether the person and the screen over-
lapped from the driver’s view with HoloLens 2. Another way is to check the relative
position of the ”main camera” and ”curverdCam” in Unity:

Figure 11: Relative position of two objects in Unity

Another requirement is that the driver needs to have a 120° field of view in the forward
direction:

16

Figure 12: The driver’s field of view.

To meet this requirement, two students stood at opposite ends of the screen according to
the driver’s instructions. By calculating the angle between them, we adjusted the position
and curvature of the screen in the HoloLens 2 to meet the requirement.

3.1.2 Speech Recognition and Face Detection

To test the effectiveness of speech recognition, we repeated various commands (e.g., ”re-
set camera,” ”play music,” ”stop music,” ”detect mode,” and ”normal mode”) to see if
the HoloLens 2 could perform the corresponding actions. We also increased the environ-
mental noise to 70dB, proving that HoloLens 2 could still distinguish our commands in
such a noisy environment.

To test the effectiveness of face recognition, we first activated the face detection mode
using a voice command. Then, we controlled multiple variables, such as having one or
multiple individuals appear at different distances within the field of view of the car’s
camera. The results showed that the face detection performed well as the red bounding
box was drawn on each person’s face.

3.2 Driving Control

module joystick in pygame is used to decode the output signals from the Driving Con-
trol subsystem. Figure ?? shows the output from python script teleop. This script can
interpret different kinds of controllers, decode their outputs, and send them to Turtle-
bot3.

17

As regards the Driving Control subsystem, the steering wheel and two pedals are inter-
preted as axes in a joystick. By rotating the steering wheel and depressing the pedals, the
values of the axes will change accordingly. This indicates that Driving Control is running
correctly.

3.3 Turtlebot3

3.3.1 Motion

Node op_receiver will accept connections from other servers and receive their opera-
tion commands. It will then parse these commands and publish them in topic cmd_vel.

To verify that node op_receiver has successfully received the driver’s commands and
uses them to control the motors, command rostopic -n one echo cmd_vel is used.
This command will get one published message in topic cmd_vel and print them in the
terminal. As shown in Figure 13, node op_receiver had received commands and
published them to topic cmd_vel in the form of linear and angular velocity. Another
command rostopic info shows the topic information cmd_vel. It shows that node
op_receiver is the only publisher, and the message published above must be from node
op_receiver.

Figure 13: op receiver Test

3.3.2 Status

Node status_sender will periodically fetch the IP addresses of other hosts and send
them the status of Turtlebot3. It uses receivers’ port 8082 and 8083 to send battery

18

status and current speed, respectively. By registering our machine in Name Server and
then listening on a pre-configured port, we can receive the current status of Turtlebot3
sent from it.

Figure 14 examines the functionality of node status_sender. A machine joins Name
Server with hostname Dell. A socket in this machine is created and bound to port 8082.
Then, it receives the battery voltage (12.1100) sent from Turtlebot3, as shown in the fig-
ure.

Figure 14: status sender Test

3.4 Name Server

Figure 15 demonstrates a test on Name Server Subsystem. The Name Server’s IP address
is 10.105.100.215, and the port it used is 8080. We first registered the IP address with
hostname Turtlebot3. The IP address of the local host will be used to register. After
sending GET Turtlebot3, we received the machine’s IP address running this test. As
expected, we tried to resolve the IP address of Turtlebot2, and we got an empty string.
Then, we unregistered Turtlebot3. A request acquiring the IP address of Turtlebot3
will return an empty string. This test verified that the objectives of Name Server were
achieved.

3.5 Video transmission

Based on extensive testing and validation, our server has demonstrated the capability to
effectively transmit video data to multiple clients, supporting a maximum of five clients
concurrently. During our impressive demo, we showcased the seamless integration of
the video transmission feature. One client’s video feed was streamed and displayed on
the immersive Hololens2 device, while another client’s video feed was presented on a
conventional screen.

The implementation yielded exceptional results, as all connected clients received clear

19

Figure 15: Name Server Test

and uninterrupted video streams. This successful transmission of high-quality video data
serves as a testament to the robustness and efficiency of our video transmission function-
ality.

By enabling real-time video communication between Turtlebot and multiple clients, we
have opened possibilities for various applications. For instance, the Hololens2 display
empowers one client to experience an augmented reality view, enhancing situational
awareness, while another client can monitor the video feed on a standard screen. The
flexibility to accommodate diverse client setups demonstrates the versatility and scalabil-
ity of our solution.

3.6 Audio transmission

We can confidently assert that we have successfully implemented audio transmission
functionality through our validation and demonstration. Our system achieves precise
and reliable audio transmission, enabling real-time conversations between drivers and
passengers, enhancing the overall experience with greater flexibility.

20

4 Cost and Schedule

4.1 Cost Analysis

• Labor
Assume salary per hour is ¥45. Then the total labor cost is 45× 3× 85 = 11475 ¥.

• Bill of Materials

Name Description Price Qty Total

Pi Camera wide-angle camera ¥40 2-3 ¥100

Speaker Normal Speaker ¥15 1 ¥15

Microphone Normal microphone ¥9 1 ¥9

Power supply 24V20A500W ¥88 1 ¥88

Belt HTD3M480*15MM ¥13 1 ¥13

Motor MY1016 24V300W ¥65 1 ¥65

Development Board Leonardo R3 ¥26 1 ¥26

Steering wheel ¥68 1 ¥68

DC motor drive board 4f0W DC motor drive board ¥52 1 ¥52

Pedals Normal Pedals ¥18 2-3 ¥45

Base support Just normal wood and iron N/A 1 N/A

Screws and nuts Just normal screws and nuts N/A 1 N/A

Total ¥481

• Total
The total cost is 11956 ¥.

4.2 Schedule

21

Week Bo Pang Jiahao Wei Kangyu Zhu

3/27 Learn OpenCV pro-
gramming under the
C++ framework. Choose
appropriate encoding
and decoding methods.

Program OpenCR to ma-
nipulate the motion of
TurtleBot3.

Establish a connection
between Unity and
HoloLens.

4/3 Roughly completed the
framework for UDP
video transmission.
Build a PCB architecture
based on the working
principle and complete
component procure-
ment.

Understand the working
principle of the steering
control system and main
control solutions.

Complete the video
streaming from the
server into Unity for
rendering.

4/10 Complete the frame-
work for the UDP video
transmission function.

Brainstorm the working
plan for the driving sys-
tem.

Implement video stitch-
ing for multiple camera
images.

4/17 Understand the work-
ing principle of firmware
and flash the firmware.
Print PCB and solder
components.

Understand the work-
ing principle of the driv-
ing system, and attempt
to program to drive the
analysis of the steering
wheel motion signal.

Optimize the display of
remote videos in Unity,
including features such
as following movement
of head rotation.

4/24 Install cameras in Turtle-
Bot3 and make Rasp-
berry Pi collect video sig-
nals.

Understanding how
firmware works and
burning firmware.

1. Transmit information
such as battery level and
speed of the turlebot to
Unity.
2. Model AR compo-
nents in Unity and dis-
play real-time informa-
tion such as battery level
and speed.

22

Week Bo Pang Jiahao Wei Kangyu Zhu

5/1 Set up Raspberry Pi and
establish a connection
between Raspberry Pi
and the server.

Complete the driving
programming and trans-
mit the control signal in
real-time.

Collect external audio
using a microphone on
the car and transmit it to
the server.

5/8 Conduct testing. Conduct testing. Transmit the micro-
phone signal from the
server to the car radio.

23

5 Conclusion

5.1 Accomplishments

We met all the high-level requirements in our final design and prototype device. We have
successfully implemented all subsystems and confirmed their accuracy. Some notable
achievements are outlined below:

• The server can handle at least two connections from different chauffeurs. All chauf-
feurs should be able to monitor the status of the TurtleBot3, and the selection of the
chauffeur who will drive the TurtleBot3 will be determined based on a predeter-
mined policy.

• The delay of the video sent back from the TurtleBot3 is within 100 ms. The post-
ponement of the chauffeur’s commands is within 50 ms.

• The Turtlebot 3 can operate effectively on the campus with the chauffeur located
nearly 500 meters away. The chauffeur can successfully control the vehicle with low
latency.

5.2 Ethical Considerations:

We continuously improve the stability, responsiveness, and safety of the remote driving
system based on the feedback we receive from testing. This adherence to the IEEE Code
of Ethics 6 ”to maintain and improve our technical competence and to undertake techno-
logical Tasks for others only if qualified by training or experience, or after full disclosure
Of pertinent limitations”[4].

We have also carefully considered other potential safety issues. In the remote driving
system, drivers wear virtual reality devices that differ in size and weight from everyday
devices. These devices can cause distractions and fatigue, with prolonged use leading to
dizziness and compromising safety. Such issues may violate the IEEE Code of Ethics prin-
ciples, ”to hold paramount the safety, health, and welfare of the public, to strive to com-
ply with ethical design and sustainable development practices” in IEEE Code of Ethics[4].
Therefore, we recommend rigorous screening and training for drivers before system op-
eration. Adequate rest after extended driving periods is also crucial. By prioritizing these
measures, we minimize risks and enhance system performance.

In addition, our system utilizes cameras to capture real-time driving situations and trans-
mit them to a remote driver. The remote driver can interact with the vehicle using virtual

24

reality technology, ensuring passenger safety. However, this technology presents chal-
lenges. According to the ACM code of ethics, ”the emergent properties of systems should
be carefully analyzed[5].” In our system, the transmission of live video feeds may suffer
from instability and delays, posing safety risks. Weak signal areas may require reducing
video resolution, limiting the remote driver’s ability to make informed decisions. To ad-
dress these issues, we must enhance camera hardware for improved resolution and opti-
mize the transmission network. Our project proposes using 5.0 GHz channels, employing
JPEG compression for video data, and UDP for reliable and timely transmission. These
improvements enhance effectiveness and safety, providing passengers with a seamless
and secure driving experience.

5.3 Future Work

Although we have successfully met all the high-level requirements, there are still oppor-
tunities to optimize the system for a more immersive driving experience and enhanced
safety in remote operations. The following areas can be further improved:

• Algorithm Design: Intelligent automatic resolution adjustment can be implemented
in different network environments to reduce latency. Increasing the number of
servers can allow for automatic allocation of the central server controlling the car to
minimize delays as the vehicle reaches different locations, enabling seamless driver
transitions.

• Self-driving and Cruise Control: On road segments with low traffic and high safety
factors, the car can engage cruise control and automated driving functions, which
may further enhance the driving experience and improve overall system safety.

• Automatic switch between Wi-Fi and cellular network: When the Wi-Fi signal
is weak, or the congestion level of networking is high, the server in the car can
automatically switch to a cellular network to maintain a good network connection.

By implementing these optimizations, we aim to create a driving system that is not only
more immersive but also prioritizes user safety.

25

References

[1] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple fea-
tures,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. CVPR 2001, vol. 1, 2001, pp. I–I. DOI: 10.1109/CVPR.2001.
990517.

[2] YoonSeok Pyo, HanCheol Cho, RyuWoon Jung, TaeHoon Lim, ROS Robot Program-
ming.

[3] Ken Conley, Dirk Thomas, Jacob Perron. “rospy.” (), [Online]. Available: http : / /
wiki.ros.org/rospy.

[4] IEEE. “IEEE Code of Ethics.” (2016), [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7-8.html.

[5] ACM. “ACM Code of Ethics and Professional Conduct.” (2018), [Online]. Available:
https://www.acm.org/code-of-ethics.

26

https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2001.990517
http://wiki.ros.org/rospy
http://wiki.ros.org/rospy
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics

Appendix A Requirement and Verification Table

Requirement Verification Verification
status
(Y or N)

1. Retrieve video information
from the server.

1. Check the display on
HoloLens2. If the displayed
image on HoloLens2 is the same
as the simulated image in Unity,
and the simulated functions, such
as clicks, can be performed in
HoloLens2, then the verification
is successful.

Y

2. Retrieve data information from
the Server sent by the distant car
(e.g., car battery, speed).

2. Check whether Unity can dis-
play the real-time image transmit-
ted from the remote car camera,
focusing on frame rate and la-
tency. The verification is success-
ful if there is no disconnection or
the frame is dropping for a long
time.

Y

3.HoloLens2 can display a stable
immersive virtual interface (e.g.,
dashboard, driving environment)
in front of and below the user (at
a close distance).

3. Continuously change the
running status of the car, and
check whether the data infor-
mation about the car in Unity
changes dynamically accordingly.

Y

4. Using natural language, The
driver could reset the screen’s po-
sition in HoloLens 2.

4. Use the command ”reset cam-
era” to test whether the camera
can be reset.

Y

27

5. The screen displaying the re-
mote view needs to be at an ap-
propriate distance from the driver
so that they can see the con-
tent. The distance is set to about
one meter, and the alignment of
the screen displaying the remote
view can be reset when the driver
changes position.

5. When the driver is driving or
slightly moving, check whether
the remote view screen is fixed.
Verify the distance between the
screen and the driver by first
recording the driver’s current po-
sition, then having the driver pass
through the screen, and finally
measuring the distance between
the two recorded positions to see
if it is 1 m.

Y

6. It can provide drivers with a
stable view of the remote driving
environment (captured by the car
camera), with the interface dis-
played in a curved shape, sur-
rounding the driver’s field of
view (approximately 124°).

6. Ask the driver to look straight
ahead and have someone stand
about 120 degrees off the driver’s
front, ensuring that the driver can
see the scene from this angle on
the screen.

Y

7. The driver could enable mu-
sic to get a more immersive expe-
rience with commands in natural
language.

7. Use the command ”play mu-
sic” and ”stop music” to see
whether the music function is
okay.

Y

8. The driver could enable human
face detection mode with a com-
mand in natural language so that
the box will be shown to detect
human faces in the main camera
screen of the Turtlebot 3.

8. Use the command ”detect
mode” to see whether there is a
box on the human face when the
main camera on Turtlebot 3 cap-
tures a human.

Y

28

9. The driver could enable human
face detection mode with a com-
mand in natural language so that
the box will be shown to detect
human faces in the main camera
screen of the Turtlebot 3.

9. Use the command “detect
mode” to see whether there is a
box on the human face when the
main camera on Turtlebot 3 cap-
tures a human.

Y

10. Establish a reliable connection
with the Server to transmit the
control signals. The connection
delay should not exceed 10ms.

10. Correctly receive and process
various control signals sent from
the Server and convert them into
control signals of the car.

Y

11. Test the communication delay
between the OpenCR module and
the Server to ensure that the delay
does not exceed 10ms.

11. Send various types of con-
trol signals to the OpenCR mod-
ule to verify whether it can accu-
rately convert them into control
signals for the car and control the
car. Testing can be done using a
simulation environment or an ac-
tual car.

Y

29

	Introduction
	Purpose
	Functionality
	Subsystem Overview

	Design
	HoloLens 2
	Glasses and Screens
	Microphone and Speech Recognition
	Camera and Position Adjustment
	Videos and Face Detection

	Server
	Unity
	Decoder and Motion Signal Transmission

	Driving Control
	Mechanical Part

	Turtlebot3
	Motions and Status

	Name Server
	Video Transmission
	Socket Connection Class
	VideoFrame Class
	VideoCapture Class
	BasicProtocol Class
	Working Principle

	Audio Transmission

	Verification
	HoloLens 2
	Screens in HoloLens 2
	Speech Recognition and Face Detection

	Driving Control
	Turtlebot3
	Motion
	Status

	Name Server
	Video transmission
	Audio transmission

	Cost and Schedule
	Cost Analysis
	Schedule

	Conclusion
	Accomplishments
	Ethical Considerations:
	Future Work

	References
	Appendix Requirement and Verification Table

