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Abstract

Nowadays, people lack convenient and objective means to evaluate their
dances in everyday entertainment, and existing dance-scoring products like
JustDance on Xbox necessitate complex equipment but only offer relatively
simplistic evaluation. Simultaneously, the demand for diverse dance style
evaluations is growing, which has motivated us to develop a user-defined
dance scoring system. Through the culmination of our senior project devel-
opment efforts, we have successfully created an easily accessible and afford-
able PC-based dance scoring machine. This system also incorporates a team-
developed bracelet, enabling evaluation across multiple aspects and flexible
assessment criteria.
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1 Introduction

1.1 Purpose: Problem and solution

The problem that the dancing scoring robot addresses is that people who engage in dance
for personal entertainment and exercise often lack access to expert feedback on their tech-
nique and performance quality. In traditional dance settings, such as dance studios or
fitness classes, instructors may not have the time or resources to provide individualized
feedback to every participant. This can lead to frustration and a lack of motivation to
continue dancing.

The dancing scoring robot provides a solution to this problem by offering personalized
evaluations of the user’s dance performance, including feedback on elements such as
rhythm, timing, and posture. By using the machine, dancers can receive immediate feed-
back on their performance, allowing them to make adjustments and improve their skills
in real time. Additionally, the machine’s scoring system can provide a fun and engaging
way for users to track their progress and challenge themselves to improve their scores.
The dancing scoring robot thus provides an accessible and effective means for people to
improve their dance skills and achieve their fitness goals.

Although there are existing products with similar goals, these products evaluate users
based on simple and, in most cases, mono criteria. For example, Just Dance using X-
box1 evaluates users’ performance based merely on their pose matches, neglecting the
continuity and fluency of their motions. Our team aims to resolve these limitations by
devising a solution that achieves more objective dance scoring by implementing three
distinct evaluation methods. We will utilize hardware components such as a camera,
smart bracelet, processor, storage, and display to create a robot capable of scoring the
dancers’ performance. The robot will have good human-computer interaction to enhance
user experience.

To ensure a comprehensive evaluation of the dancers’ performance, we will adopt three
different methods for evaluation. Firstly, we will evaluate whether the dancer’s move-
ments are based on both pose matches and motion continuity. Secondly, we will as-
sess how well the dancer’s movements match the dance music. Lastly, we will evaluate
the dancer’s body condition in real-time, analyze the intensity of their movements, and
record the dancer’s hand movements in greater detail. By integrating these three eval-
uation methods, we can create a robust and comprehensive evaluation of the dancer’s
performance, which will be displayed on the screen. This solution will enable judges to
make more objective decisions and provide dancers with valuable feedback to improve
their performance.

1.2 High-Level Requirement List

• The dancing scoring robot contains the bracelet and the PC, which is portable and
easily accessed by users.

1https://www.xbox.com/en-US/games/store/just-dance-2022/9N04KQK2LBZL
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• The dancing scoring robot should be able to generate multiple aspects of evaluations
on users’ dances, including motion matching, rhythm matching, and exercise effect.

• The user could define the ‘standards’ of the evaluation by uploading the reference
video. Then the scores would be given out with respect to the user-defined ‘stan-
dards’.

• The dancing scoring robot should be user-friendly and interactive with our human-
computer interaction subsystem. All subsystem evaluation results are clearly la-
beled on our UI.

• The dancing scoring robot should be efficient. A 15s long dancing video could be
processed and evaluated within 5 minutes.

• The evaluations generated by the dancing scoring robot are reasonable and aligned
with intuitions, which have been verified by several users’ feedback.

1.3 Block Diagram

Figure 1: Block Diagram
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2 Design

2.1 Bracelet

Our project dancing scoring robots gives a comprehensive and precise evaluation on
users’ dancing exercises. It consists of evaluation systems which are mainly software-
based and exterior equipment. I am responsible for the smart bracelet implementation,
which is responsible for collecting the kinematics data and health-related vital signals.

For the kinematics monitoring module, it consists of a gyroscope and an accelerome-
ter. Signals are collected through the IMU and transmitted to the microprocessor on
the board. The signals are converted from measured analog signals into digital signals
through ADC. The microprocessor preprocesses the data to identify the current move-
ment and count the number of certain movements. The processed kinematics data is
transmitted to the exercise effect evaluation subsystem through a Bluetooth mesh net-
work.

The health monitoring module consists of a Pulse sensor to collect the real-time heart
rate. The heart rate collected is transmitted to the Exercise Effect Evaluation Subsystem
through the Bluetooth network. This vital signal monitors the user’s health and gives the
necessary information for a personalized exercise effect evaluation process.

2.1.1 Embeded Design

The bracelet contributes to the dancing scoring system by collecting the vital signal and
kinematics signals in an instant-time manner. In order to meet the functional require-
ments, the bracelet mainly consists of 1 microprocessor, 2 sensors, and 1 communication
module. The Accelerometer contributes the kinematics signals and the Pulse sensor con-
tributes the vital signal. The wire connection diagram is shown in Figure 5 below. In the
Figure below, only the core chips are presented with some pins unconnected. All those
pins are well-soldered in the modules in the real components. Above the connection line
in the Figure, the port communication types are clearly stated. The power supply is 5V,
where the current go through a transformer to 3.3V, then supply the power to all other
electronic components. The requirements of the bracelet consist of 2 parts. First, the
bracelet should meet the function of collecting the kinematics signals which are clearly
enough for motion evaluation analysis. Second, the bracelet should be human-friendly,
without any potential harm to the users.
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Figure 2: Bracelet Wire Connection Diagram

The accelerometer is MPU6050, which is read every 500 ms. The detailed verification and
requirements are illustrated in the following section.

The pulse sensor gives out an analog signal which is created by the reflection rate change
during the pulse under the human skin. This signal could be plotted out as the photo-
plethysmogram. The pulse sensor amped the response.
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Figure 3: Sample PPG
[1]

A relative sharp upward rise in the signal value occurs as the pulse wave goes up, then
go back down. The Dichroic notch of the pulse wave holds a larger amp than the upward
wave. Thus, a significant rise directly after the dichroic notch would happen. In this case,
our code is designed to avoid double-counting the pulse.

2.1.2 Physical Arrangement

In order to get the physical dimension of the whole bracelet, firstly we list out the elec-
tronic modules’ dimensions as shown in Table 2.1.2 below. Then we decide the relative
layout of the total modules. Based on the sensor working environment, the pulse sensor
must be on the side facing the skin. From the aspect of human-machine interaction, in
order to keep the heat transfer rate as large as possible, the battery is placed on the top.
The total layout is shown in Figure 4. Thus, we could get the minimum dimensions inside
the bracelet shell: 62*35.7*17, with the unit of millimeter.

Modules Length (mm) Width (mm) Height (mm)

STM32 22.86 53.34 2.00

CC2541 35.70 15.20 2.00

MAX30100 Diameter = 16.00 2.00

TPS63020 24.00 34.00 4.50

Battery 62.00 62.00 8.50

Table 1: Bracelet Component Dimension
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Figure 4: 2D Assembly Layout version 1

The first version of the bracelet is 3D printing the bracelet shell with PLA, the dimen-
sions of the outer shell would be around 65*60*70, as Figure 5 shows. This version of the
bracelet takes the large space that Dupont wires would take, with low space efficiency
and a relatively rough human-machine interaction. The most significant progress made
in this first version is that it helps to confirm the way of the shell-belt connection mecha-
nism.

In order to improve the space efficiency and the human-machine interaction, I tried to cut
off all the Dupont wires(Figure 6). The soldering process is time-consuming and causes
severe problems with the components’ functionality. One microcontroller is burned out,
and the Bluetooth chips are seriously damaged due to the high temperature of the weld-
ing pen.

Figure 5: 3D printed bracelet shell, the first
version of the bracelet.

Figure 6: Soldered components, the second
version of the bracelet.
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The third version of the bracelet (Figure 7 and 8)shows a compromise between weara-
bility and functional stability. The electronic components connect through Dupont wires
rather than welding. The shell of the bracelet is built by PMMA, which is fabricated
through a laser-cutting process. The connection mechanism and dimensions between the
shell and the belt carry on the first version. The final dimension of the bracelet is around
45*50*60 (mm).

Figure 7: The third version(front view) Figure 8: The third version(bottom view)

2.2 Motion Evaluation Subsystem

For the motion evaluation subsystem, our main goal is to calculate the pose accuracy of
the user compared to a standard dance video, which could either be uploaded or retrieved
from our database. Our steps for the motion evaluation subsystem are based on the signal
processing of quaternionic data [2].

2.2.1 Global Synchronization

The original video will start recording before the music starts, the time between the start
of the recording and the start of the music is redundant and needs to be cropped so that
the video can correspond to the original music soundtrack. Moreover, the site environ-
ment is not quiet and should contain many disturbances, thus, the recorded music piece
might not perform well in beat extraction with many background noises. That is the rea-
son why we need to do the synchronization and replace the raw audio track with the
original one. This synchronization will also be useful to align the acceleration data from
the smart bracelet.

There are many algorithms for alignment, like the basic Dynamic Time Warping (DTW)
algorithm, which make cross-media alignment possible [3], for example, music to note,
music to lyrics, music to video motion. . . Here, since we are aligning two recordings of the
same music, we can use Cross-Correlation (GCC) to estimate the time delay. This method
was mainly used for solving the differences-of-arrival (TDOAs) problems between signals
received at an array of sensors [4], of which the essence is also to handle the same music
sequence with different offsets.

Basically, the procedure is divided into three steps:
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Firstly, a converter will extracts recorded audio (with background noise) from the video
and stores it in the current folder.

Secondly, the generalized cross-correlation is used to find the delay. The principle of
GCC is simple: Assume we have two audio signals T and B (which might have some
insignificant differences) with a different offset, keep the signal B unchanged, slide the
signal T from left to right, and calculate the same change trend of B and T at each sliding
step. If the same change trend of B and T reaches the maximum when sliding to the nth
step, it means that the time difference between B and T is n steps (i.e., n sampling points),
then shift T by n sampling points to align it with B.

In statistics, we use the covariance Cov(X, Y )to describe the degree of similarity and dif-
ference in trends between the two variables, and n indicates the correlation. In signal
processing, for two discrete signals fi and gi, the cross-correlation function can be defined
as:

Rfg(m) =
∞∑

t=−∞

f ∗[t]g[t+m] (1)

For continuous signals f(x) and g(x), the cross-correlation function can be defined as:

Rfg(m) =

∫ ∞

t=−∞
f ∗(t)g(t+m)dt (2)

So now, for audio signals B and T, we calculate the distribution of their correlations at
different m, and the m at the biggest correlation is the time difference between these two
signals.

Since both Python and MATLAB provide functions of cross-correlation, we can easily
realize this algorithm. Here I use scipy.signal in Python as an example:

Figure 9: Music Alignment using GCC

The first plot in Figure 9 is the original audio waveform, the second plot is recorded audio
with noise in the background, and the third one shows the correlation of different shift
times, the highest correlation, which means two signal has the highest overlap, relates
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to the lag of recorded noisy signal(the index is sample number). The lag time can be
calculated by dividing the sample rate of the audio signal.

In this sample, the time delay is about 2.1275736961451246 seconds.

Last, adjusts the recorded video to the correct offset calculated before, it’s unnecessary to
plug back the original audio because we only need the motion data from the video at the
correct timeline. However, we can plug it back to verify the correctness of the offset.

2.2.2 3D Pose Extraction

In order to reduce the cost of our overall system, we decided to use Mediapipe to extract
the 3D skeleton of the video. In our program, we record the user’s 33 joints’ 3d coordi-
nates for every frame and save those data into a text file. Then, transform this text file into
a numpy.array in the shape of (n,33,3), where n represents the number of total frames.

2.2.3 Pre-Filtering

Since our 3d pose extraction method might have some errors, especially at the time when
quick movement happens. In order to reduce the high-frequency tracking noise, we apply
a Gaussian window in the frequency domain [2]:

G(u) = e−2( u
σ·T )2 (3)

Here we choose σ as 0.1 of the video’s fps, which is a proper coefficient to smooth the
pose movement curve properly. The figure below shows how this filter smoothes the
original noisy curve. The blue curve represents the original joint’s movement and the
orange curve is the curve after filtering.

Figure 10: Gussian Filter

2.2.4 Fast Spatial Alignment

The first step for comparing the users’ 3D dancing information with the standard using
pre-processed 3D skeleton information is to do a rigid transformation. The goal of this
step is to minimize the effects of the variance of the heights and positions between the
user and the dancer in the standard video. In this way, the source of the difference can be
limited to the motions of evaluating subjects.
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As can be viewed from the vivid illustration in Figure 11, we will scale the user and move
his/her centroid to align as closely as possible with the standard by

p′ = kp+ d,

, where p is the original 3D skeleton information, and p′ is the aligned information. The
scale is calculated as the square root of the proportion between the absolute values of the
standard video dancer’s 3D skeleton data P and the user’s 3D skeleton data Q as

k =

√
|P(j, t)|
|Q(j, t)|

.

The shift of position d is calculated by the difference between their centroids

d = cp − cq,

where

cp =
1

J × Tp

J∑
j=1

Tp−1∑
t=0

pj(t), cq =
1

J × Tq

J∑
j=1

Tq−1∑
t=0

qj(t),

with J denoted as the number of joints (in our case 33), Tp and Tq are the numbers of the
frame for p and q respectively.

Figure 11: Illustration for fast spatial alignment.

2.2.5 Local Temporal Synchronization

After we align the static of the user and the standard video as best as we could, we start
to do local temporal synchronization. This is to avoid situations in which users get ex-
tremely low scores when they are only several beats behind since for the motion evalua-
tion subsystem, we are only comparing how well their poses are. To do this, we deploy a
dynamic programming algorithm dynamic time warping (DTW).
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2.2.6 Covariance and Correlation Calculation

We are ready to do our covariance based on the idea of convolution

Ctotal(τ) =
1

J × T

J∑
j=1

T−1∑
t=0

P(j, t)Q(j, t).

The P and Q vectors are normalized by deducting the average to bring us back to the
correct origin.
We take the maximum of Ctotal(τ) as our final covariance

Ctotal = max Ctotal(τ), τ ∈ [0, T − 1],

and the final correlation is further obtained by

Correlation(P,Q) =
Covariance(P,Q)√

(Covariance(P,P)× Covariance(Q,Q))
.

The pose accuracy, i.e., the motion evaluation score, is the calculated correlation.

2.3 Rhythm Matching Evaluation Subsystem

Music and dance are closely intertwined and have a symbiotic relationship. As you can
feel, many dance performances have a strong correlation with the beats, like people are
born to dance involuntarily to the beats. And with certain movements being performed
on specific beats or accents, the audience can receive the emotions and messages that are
conveyed by the dance. So, based on this high correlation between music and dance,
in recent years, many researchers are using AI to automatically generate dance motions,
from which we can also see the importance of rhythm in dance.

As a part of the dancing scoring system, the rhythm-matching evaluation subsystem is
quite essential. In general dance competitions, evaluating whether the dancer can keep up
with the beat and rhythm of the music is also one of the final criteria for the judges’ scores.
In other words, the beat can be regarded as the pulse of the music, since the beat helps to
determine the timing, synchronization, and musicality of a dancer’s movements.

In this subsystem, we will check how well the dancer is dancing on the beat.

2.3.1 Relative Joint Positions

Even though the absolute joint positions can be used to do the pose matching, however,
every joint’s absolute positions include the global motion, which does not actually repre-
sent the motion of joints.

Pj(t) = P ab
j (t)− P ab

torso(t), j = 0, 1, 2, 3, ..., 32 (4)
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2.3.2 Relative Joint Velocities and Kinematic beat

Since our video’s fps is 30, the time difference is quite small, so ∆t can be used to estimate
δt. We can get the velocity by:

vj(t) =
δPj(t)

δt
←− Pj(t)− Pj(t− 1), j = 0, 1, 2, 3, ..., 32 (5)

Here we will use the calculated velocity to find out the local minima as our kinematic beat
for evaluation.

2.3.3 Music Beat extraction

After doing a lot of literature reading, beat extraction methods are varied, however, many
are based on the detected onset [5] and frequency. Thus, I decided to use a simple way to
extract beat, that is, using the audio signal processing library called librosa. The onset and
beat submodule can easily help us to visualize the detected onset and beat on the timeline
of the music. The figure 12 shown below is the Mel spectrogram and the Onset strength
& Beat of the sample music piece:

Figure 12: Mel Spectrogram and the Onset Strength & Beat

2.3.4 Beat Align Score

Many researchers have started to use neural networks to generate dance motion. Li [6]
designed an AI Choreographer based on music to generate 3D dance, in the paper, in
order to do the self-assessment, they propose a Motion-Music Correlation method to see
how well the motions they generated are, compared to the random motion. This method
inspired me how to actually do the rhythm-matching evaluation. To do the beat align-
ment between music and dance, they introduced a concept called “kinetic beat”, which
is the local minima of the kinetic velocity curve [6]. And the Beat Alignment Score [6] is
defined as:

BeatAlign =
1

m

m∑
i=1

exp(−
min∀tyj∈By ||txi − tyj ||2

2σ
) (6)

Here, Bx = {txi } is the kinematic beats, and By = {tyj} is the music beats. σ is used to
normalize different FPS [6].

12



Figure 13: Beats Alignment between Music and Generated Dance

Figure 13 visualizes the process of the beat align algorithm. The blue curve is the x-axis
of joint 19 of one video, and the green lines represent the kinematic beats are local minima
of the kinematic velocity. The red lines are the music beats.

2.4 Exercise Effect Subsystem

Energy consumption is also part of our dancing evaluation progress, with the aim of
bringing out the positive effects of dancing on the body’s strength and coordination.
Heart rate and acceleration data play significant roles in reflecting energy expenditure.
The heart rate reflects the cardiovascular response to exercise, with higher heart rates in-
dicating increased exertion. These data, captured by sensors in our bracelet, provide in-
formation about movement patterns, intensity, and changes in body motion during phys-
ical activities. And this subsystem will go from these two kinds of data, and generate the
dancer’s energy expenditure estimation.

2.4.1 Heart Rate

After comparing a lot of methods that calculate energy consumption from heart rate data
during the exercise, the equation that used the percentage of Heart Rate Reserve was
adopted.

HRR = 100[(activityHR− restingHR)/(maximalHR− restingHR)]

This method does not require individual calibration for each participant and can provide
rapid predictions[7].

Figure 14: Caption
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2.4.2 Acceleration Data

For energy expenditure prediction, I employed a CNN with six convolutional layers. This
architecture was chosen to capture relevant features and patterns from the acceleration
data. The CNN model was followed by a dense layer for learning complex relationships
and a linear activation layer for regression. Using the regression, enabled the model to
make accurate predictions of energy expenditure based on the input acceleration data.
Since the data set from the Internet used for model training is 50 Hz, while our bracelet
operates at a lower frequency of 2 Hz, I need to align the data. I performed linear inter-
polation for upsampling on the bracelet acceleration data. Due to the presence of max-
pooling layers in the model, I believe the discrepancy in the predictions would be mini-
mal.

2.4.3 Combination

Not every single prediction can respond to the whole-body reflection in the dancing.
Therefore, the combination of these two kinds of data can help us establish a more con-
vincing result. I found a combination model based on a branched equation[8]. This model
aims to dynamically allocate weights to the two predictions in order to achieve an accu-
rate and robust estimation of energy expenditure during dance performances.

Figure 15: Caption

The advantage of using a branched equation for weight allocation is its flexibility and
adaptability. It enables the combination model to be generalized, retaining some accuracy
even if dynamic individual calibration information was lacking.

2.5 Human Computer Interaction Subsystem

In order to integrate all our subsystems, we use Tkinter to design a GUI. Users can ac-
cess different parts of our subsystem through this GUI. The interface of GUI is shown in
Figure 16.
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Figure 16: GUI Interface

The first part of GUI is the User Information, including name, birthday (age), height,
weight, and gender. This information will be taken into consideration when evaluating
the exercise effect later. By clicking the confirmation, your information will be saved in
our program, and you can change this part whenever you want. In the second frame of
GUI, you can either choose the standard song from our existing database or upload the
video you want to estimate by yourself. If the user chooses the song from the database,
the preprocessing time for the standard video will be saved.

The frame on the left bottom is the place to upload your own recording, the user can
either select from the computer or record through this interface. This browsing function
makes it possible for people who don’t have a computer right by their side to record but
are able to use the other device to record the video. They can do the recording at any time
and in any place if they have their phone or camera with them, and upload to see their
scores when they can use the computer. Also, this flexibility also shows in the hardware
part. We do not require the user to buy the specific camera, which saves a lot of money as
well as saves time for setting up.

The frames on the right side show our evaluation of different subsystems. The upper
frame contains information on pose accuracy and rhythm-matching accuracy. And the
frame at the bottom contains vital information about your dance performance. You need
to upload the output text file produced by the bracelet, then click the ”Analysis” button
to see your average heart rate and the calories you burned during the dancing.

15



3 Verification

3.1 Verification for the bracelet

The requirements and the verification approaches for the bracelet are listed below: 1.
The kinematic sensors should record the acceleration signals that could reflect certain
body movements with peaks. 2. The system could give the average heart rate during
the exercise. 3. The communication between the bracelet and the computer should work
steadily at a distance of 3 meters. The working temperature of the bracelet should not be
above 40 Celsius.

As Figure 17 shows, here is a calculated acceleration wave plot from real-time testing. The
accelerometer shows the acceleration in the three dimensions, while our verification only
cares about the total acceleration. Even without cutting off the noise, our signal shows a
significant correlation between the sudden motion and the acceleration peak.

Figure 17: Sample Acceleration Calculated Result

From the bracelet output log, we could see the BPM is a bit above the normal range: 60-
120. However, it is still reasonable due to the exercising effect increasing the heartbeat
rate. At the same time, we use an Apple Watch on the other wrist, the bpm is around 130,
which shows the validity of our bpm measurement. Similarly, we could see the temper-
ature collected through MPU6050 is around 30 Celsius, which is a very safe temperature
both for the electronic components and the user.
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Figure 18: Sample Bracelet Ouput Log

In the drive of our Bluetooth part, the microcontroller checks the connection between
the Bluetooth and the PC every 5 seconds. During each run of our test, the microcon-
troller never sent a ‘connection failure’ message, thus the validity of communication is
stable.

3.2 Verification for the motion evaluation subsystem

The effectiveness of the motion evaluation subsystem has been fully verified through a
large amount of empirical studies.

3.2.1 Verification for the 3D skeleton information extraction

When running the motion evaluation function, the 3D skeleton information of both the
standard video and the dancer is displayed in real-time simultaneously with the video.
As can be viewed in Figure 19, the skeleton indexes well align with the dancer in the
video.
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Figure 19: Extraction of 3D skeleton information.

3.2.2 Verification for the accuracy of Global Synchronization

The index of the highest correlation we calculate in part “refine video” is the index of the
sample we need to shift since the x-axis is the samples of the music piece. We can compare
two waveforms after synchronization to verify. However, since there are some noises in
the background which might result in very different waveform plots, we can also verify
it by just hearing.

We shift the noise audio to the right offset and slice it into the same length as the original
audio. We use IPython.display.Audio to display these two audios, and play both audio
clips at the same time. Then they will be identified by people to see if there’s any time
delay.

When two audio clips are playing, I will mute one channel with a louder sound to see
how well the other channel continues. If the music sounds like it skips a few notes or
repeats a few notes, it means the alignment fails. I repeated this procedure many times,
and I cannot identify any time difference, the music went smoothly. Which means we get
nice time delay information.

3.2.3 Verification for rigid transformation

We performed two sets of tests. First, as illustrated in Figure 20, we choose two videos
from Produce 101, a dance show, where the two idol dancers are of similar heights and
are standing at similar positions on the stage. We have calculated a scaling factor of
k = 1.0162560097646425, which is approximately 1, and a centroid shift vector

d = [−0.03955619, 0.00640521, 0.12179582],

which has very small absolute values. The result is reasonable.

As a comparison, we have the standard video with an idol dancer who is as tall as al-
most 2 meters, and we invited one of our classmates to do the dance and adjust the
angle a bit so he appears shorter in the video. We obtain see a reasonable scale of k =
0.7603874757671618 based on the comparison of the two dancers performing the same
pose in Figure 21. Also, we shoot the video deliberately further from the dancer (Fig-
ure 21), giving a larger absolute value in the third dimension of the centroid shift d =
[−0.04265497, 0.25888725,−2.20253157].
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Figure 20: Rigid Transformation: Produce 101.

Figure 21: Rigid Transformation: Idol dancer vs our invited classmate.
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3.2.4 Verification for local temporal synchronization

We have taken the dance from the idol mentioned above as standard, and a professional
dancer’s performance with some freestyles as test. Before DTW, the pose accuracy is only
22.12, which is not reasonable since he is matching a majority of the poses. After DTW
alignment, his score has been raised more than three times to 70.93, which apparently
makes more sense.

3.2.5 Verification for the pose accuracy scores

For this part, we take the idol dance as standard and included three different tests with
great variations Figure 22. Test 1 is performed by one of our classmates who is a beginner
dancer. He took ten minutes in total to view, practice, and perform and has been given an
expected score of 50. Test 2 is performed by a professional dancer with a lot of practice,
but also with a lot of his own styles in the dance. Thus, he is given an expected score
of 75. Test 3 is made according to the skeleton extracted from the standard video and
virtually covered. Since there might be some difference in the 3D information extraction
algorithm, the third test is given an expected score of 90.

Figure 22: Experimental setup for the verification of the pose accuracy scores.

As can be viewed from our experimental results in Table 3.2.5, the motion evaluation
subsystem is able to generate pose accuracy scores of more than 90%.

Test Number Expected Score Actual Score

Test1 50 45.22

Test2 75 70.93

Test3 90 91.39

Table 2: Results for the verification of pose accuracy scores.
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3.2.6 Verification for efficiency of the motion evaluation subsystem

A 15 seconds long dancing video could be processed and evaluated within 1.5 min-
utes.

3.3 Verification for the rhythm matching evaluation subsystem

3.3.1 Verification for the accuracy of the detected beat

Since the beats’ actual time is hard to manually record, and based on the fact that the
interval between each beat is almost totally identical, the accuracy can be verified by
using the cumulative counting method. To be specific, for one music piece, we can count
the number of beats for the music piece (if the music is too long, we can only count the
first thirty seconds), and compared it with the detected beats number in the length to get
the difference. Because the manual count of beats may have errors, at least three manual
counts are required. If all three times’ results are the same, we can assume this result is
ground true, else, we will have more tries to get a correct result.

Here is our test table, we randomly choose three pieces of music for testing, since none of
these audios are very long, we will count the number of beats in the entire audio:

Music mMH1.wav (48s) mLH4.wav (34s) mLH5.wav (31s)

Manually count 1 71 64 64

Manually count 2 72 64 64

Manually count 3 71 64 64

Detected count 71 64 63

Accuracy 99.5792% 100% 98.4375%

Table 3: Beat Accuracy Test

As Table 3.3.1 shows, the results of our beat calculation basically match our manual count,
leaving aside the fact that there may be some differences that whether the initial and final
beat should be included, there is almost no error in our beat extraction.

3.3.2 Verification for whether the Beat Align Score is reasonable

Here I use the data from the famous talent show: Produce 101. Girls in this show have
performed the same theme song and are recorded individually, which is a good resource
to test our algorithm. I randomly choose some girls’ performances, and they were given
the rates and ranks according to their performances by the professional judges. I test their
performance with the beat align algorithm, and the results are shown below. Their ranks
and rates highly correlate with the beat align scores, and it is reasonable that the dancers
with higher ranks show a better sense of the rhythm.
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Figure 23: Ranks vs Beat Align Score Figure 24: Rates vs Beat Align Score

3.4 Verification for the exercise effect evaluation subsystem

Due to the limitations that we cannot directly measure the exact energy expenditure dur-
ing dance performances, our design verification focused on qualitative analysis to assess
the reasonableness and consistency of the output results. The following steps were taken
to validate the effectiveness of our approach:

We collected heart rate and three-axis accelerometer data from a group of dancers during
their dance routines. Although we did not have direct measurements of energy expen-
diture, we used the collected data as a proxy for the intensity and effort exerted by the
dancers.

The output results from the heart rate variation analysis and three-axis accelerometer
data analysis were qualitatively analyzed for reasonableness. I examined the trends, pat-
terns, and variations in the predicted energy expenditure throughout different times in-
put.

I also compared the output results with some existing studies and established guidelines
for energy expenditure estimation during physical activities. And the results were also
highly similar. This comparative analysis helped us make our design more accurate and
convincing.

3.5 Verification for Human-Computer Interaction Subsystem

3.5.1 Verification for whether the GUI can show evaluation from different aspects
directly

Our GUI integrates all the subsystems and shows them together. The GUI interface is
clear and neat and easy for users to find their evaluation in the right frame of the GUI,
including the pose accuracy score, rhythm-matching score, and exercise effect informa-
tion.

3.5.2 Verification for whether the GUI is user-friendly

We ask our team members and classmates to use our GUI without giving any tutorials,
and almost all of them know how to use our system through this interface. Some scores
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require the user to upload or fill in something to execute. If the user forgets to do some
steps before evaluation, it will raise the error message to tell the user what to do as shown
in Figure 25

Figure 25: Hint messages in GUI

4 Cost

4.1 Cost Analysis

Costs from hardwares and external devices:

Subsystem Item Source Cost(CNY)

Bracelet (Electronic) MPU6050 Taobao 7.70

STM32f103c8t6 Taobao 77.00

MAX30100 Taobao 6.50

TPS64020 Taobao 18.70

5V battery Taobao 26.50

CH340 Taobao 4.50

CC2541 Taobao 18.01

Wires Taobao 5.62

Soldering Electronic Lab 0.00

Bracelet (Mechanical) Strap Taobao 24.00

3D printing Design Lab 0.00
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Deep Camera Intel RealSense Taobao 920.00

Motion Camera ZJUI Lab 0.00

Total 1108.53

4.2 Labor

Our fixed development costs are estimated to be 12.5CNY/hour, 10 hours/week for four
people. We consider approximately 60% of our final designs this semester (8 weeks), ne-
glecting the central server, mesh network optimization, and partnerships with NGOs:

Labor: (For each partner in the project)

Assume a reasonable salary,

(12.5CNY/hour)× 10hours/week× 8weeks = 1000CNY.

5 Conclusion

5.1 Accomplishments

By developing the dancing scoring robot, we have successfully built a robotic system that
is easily accessible and affordable since users can use their own PC to run our system
rather than having to do clumsy installations like existing products, and our bracelet is
very cheap to build compared to those on the market. Our dancing scoring robot is able
to evaluate dancers’ performance based on multiple evaluation aspects and using flexible
evaluation standards, including those given by users themselves. Last but not least, our
dancing generates reasonable and timely scores, which greatly facilitates the process of
evaluating dances for entertainment in everyday life.

The code can be found at: https://github.com/xiaohan1129/DancingScoring

5.2 Uncertainties

Though our system has been proven to be robust across a large number of tests, there
still exist some uncertainties. First of all, our bracelet has rather low wearability, making
the measured heart rates and accelerations might not be always accurate. Besides, the 3D
skeleton information extractions can fail to effectively extract the correct joint positions if
the dancer wears clothes of the same color as their backgrounds.

5.3 Ethics considerations

Our dancing scoring robot raises several ethical concerns related to fairness and user
privacy. In this response, we will examine these concerns through the lens of the Institute
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of Electrical and Electronics Engineers (IEEE) and Association for Computing Machinery
(ACM) Code of Ethics [9], [10].

According to the IEEE Code of Ethics [9], engineers are required to ”treat all persons with
dignity and respect and avoid illegal discrimination or harassment.” The dancing scoring
robot must ensure that all participants are treated fairly, regardless of factors such as age,
gender, ethnicity, or physical ability. The algorithm used to score the dancers should
thus be designed to eliminate biases and be based on objective criteria such as technique,
rhythm, and musicality. The scoring system should also be periodically reviewed and
audited to ensure that it is functioning as intended and that any issues are identified and
corrected promptly.

The ACM Code of Ethics [10] emphasizes the importance of avoiding harm and ensuring
that technology is used in ways that benefit society. In the context of a dancing scoring
robot, fairness would require that the robot does not cause harm to any participant or
negatively impact their self-esteem. The robot should be programmed to provide con-
structive feedback that helps participants improve their dancing skills rather than being
overly critical or punitive. Additionally, the robot should be designed with accessibility
in mind, accommodating all types of dancers, regardless of their physical abilities.

The IEEE Code of Ethics [9] also states that engineers should ”protect the privacy and con-
fidentiality of their clients or employers’ information, including personal information.” In
the case of a dancing scoring robot, this would require that any personal information col-
lected from the participants, such as name or age, is kept confidential. Additionally, any
video or audio recordings of the participants’ performances should be stored securely
and only used for the purpose of scoring and providing feedback.

According to The ACM Code of Ethics [10], the participants should be informed of what
data will be collected, how it will be used, and who will have access to it. They should also
be given the option to request that their data be deleted after usage. The robot’s system,
especially the cloud storage, should be designed with appropriate privacy safeguards and
controls to ensure that the participant’s data is not misused or exposed to unauthorized
parties.

5.4 Future work

So far we run our system on our own computer, but it will be much easier for users to
access if we do the whole evaluation process in the cloud, Users can simply access the
website to use our services. Also, our bracelet can be further simplified into a single PCB
with a button battery and be produced in silica gel to improve human-machine interac-
tion. Moreover, if we also generate some feedback along with our scores, it will help users
better understand how to improve their performance, and this can be used as an online
dance tutor for people who want to learn the dance by themselves.

Future work can also be done to predict the video stream. The system can add some pre-
diction parts for users to see whether their dancing video will be popular if they upload
it on social media.
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Appendix A Requirement and Verification Table

Subsystem Requirement Verification Verification
status
(Y or N)

Motion
Evaluation
Subsystem

The system must be able to ex-
tract and compare poses from
3D views.

The 3D skeleton information
of both the standard video
and the dancer should be dis-
played in real-time simulta-
neously with the video and
should be aligned with the
videos.

Y

The system must achieve a
reasonable scoring of at least
90% correlation between ex-
isting dance videos and intu-
itions.

The difference between the
pose accuracy score and ex-
pected ratings should be less
than 10%.

Y

Rhythm
Matching
Evaluation
Subsystem

The system must be able to
synchronize the music that
starts at any time.

It has been verified by play-
ing the synchronized music
and the standard music at
the same time, then randomly
muting one of them to identify
whether the music is continu-
ous.

Y

The system must be able to ex-
tract the drums and beats of
different music and achieve a
minimum of 95% correctness.

It has been verified by ran-
domly selecting 3 pieces of mu-
sic and comparing the differ-
ence between the number of
manually counting beats and
detected beats. The accuracy
can reach almost 100%

Y

The system must be able to
align kinetic movements with
the rhythms/beats of the back-
ground music.

It has been verified by giving
the beat align scores through
our GUI and testing its reason-
ableness with dance videos of
Produce 101.

Y
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Bracelet +
Exercise
Effect
Evaluation
Subsystem

The kinematic sensors should
record the acceleration signals
that could reflect certain body
movements with peaks.

It has been verified by con-
ducting a 5s recording with
one large-scale movement of
the wrist, and the acceleration
calculated output shows only 1
significant peak

Y

The system could give the av-
erage heart rate during the ex-
ercise. Then give out the ex-
ercise evaluation mainly based
on calories spent during the
dancing.

Similar to the test above, the
Bluetooth output log gives a
log with the heart rate at each
sampling point. As long as the
calculated avg BPM is within
the 60-150, it could be verified

Y

The communication between
the bracelet and the computer
should work steadily at a dis-
tance of 3 meters. The work-
ing temperature of the bracelet
should not be above 40 Celsius.

From the output log, the tem-
perature could be easily read.
At each test run, the communi-
cation is stable without failure
warning.

Y

Human-
Computer
Interaction
Subsystem

The system must be user-
friendly.

It has been verified by asking
some people to use the GUI
without telling them how to
use it, and most of them can
use our GUI without giving
any hints.

Y

The system should show our
evaluation from different as-
pects directly.

It has been verified by showing
the user the right part frame
of our GUI, which includes the
pose accuracy score, rhythm-
matching score, and exercise
effect information.

Y
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