ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Augmenting Virtual Reality (VR) with
Smell

Team #15

BAOYI HE (baoyihe2@illinois.edu)
KAIYUAN TAN (kt19@illinois.edu)
X1A0 WANG (xiaow4@illinois.edu)
YINGYING LIU (yl73@illinois.edu)

Sponsor: Rakesh Kumar
TA: Qi Wang

May 10, 2023

Abstract

The absence of scent in virtual reality (VR) experiences limits the immersive potential of
these technologies, preventing users from experiencing a full sensory experience. Our
virtual reality (VR) system aims to provide a more immersive and realistic experience for
users by integrating scent cues into the virtual environment. In this report, we demon-
strate that with virtual reality (VR) hardware, an Arduino micro-controller, a well-designed
circuit that controls the scent emitter, virtual reality (VR) software to generate virtual
scenes, and a scent simulator to generate correct scents information corresponds to the
given virtual scenes, we successfully implemented all high-level functionalities of the
system.

ii

Contents

1 Introduction

11 Purpose.
1.2 Functionality
1.3 Subsystem Overview
2 Design
2.1 Virtual Reality (VR) Subsystem
2.1.1 Design Description
2.1.2 Design Justification
2.2 Scent Simulator Software
221 Design Description
2.2.2 Alternative Design
2.2.3 Design Justification
23 ScentEmitter.
2.3.1 Design Description
2.3.2 Alternative Design
2.3.3 Design Justification
2.4 External Perception
24.1 Design Description
242 Alternative Design
243 Design Justification
2.5 Between Subsystems: Data Transmission

2.5.1 Design Description
2.5.2 Design Alternative

2.5.3 Design Justification

3 Cost and Schedule

3.1

3.2

Cost Analysis
3.1.1
3.1.2 Parts
Schedule

4 Requirements and Verification

4.1
4.2
4.3
44
4.5

Virtual Reality (VR) Software
Scent Simulation Software
Virtual Reality (VR) Hardware

Scent Emitter.

External Perception Subsystem

5 Conclusion

51
52
53

Accomplishments

Uncertainties

Future Work

1ii

Labor

5.4 FEthical Considerations
References
Appendix A Code of Scent Simulator
Appendix B Diffusion Equation
Appendix C Alternative Data Transmission Design

Appendix D Circuit Schematics of Atomization Unit

iv

28

29

30

30

32

1 Introduction

1.1 Purpose

Virtual reality (VR) technologies are rapidly growing and becoming more prevalent in
our daily lives. However, these technologies have not yet fully addressed the sense of
smell, which is a critical aspect of human experience. The absence of scent in virtual
reality (VR) experiences limits the immersive potential of these technologies, preventing
users from experiencing a full sensory experience. There are several challenges associated
with integrating smell into virtual reality (VR) systems. One of the main challenges is
replicating scents accurately and consistently. Unlike visual and auditory cues, scents
are complex and difficult to reproduce. Additionally, the delivery of scent cues must be
carefully controlled to ensure that users are not overwhelmed or nauseated.

To solve the problem, our team proposes a solution, which incorporates hardware and
software components that can simulate various scents in real-time, in response to events
in the virtual reality (VR) environment. As shown in Figure 1, our device is composed of
three parts physically: one virtual reality (VR) headset, one neck scent-emitter which is
responsible for emitting scents, and one perception module for collecting environmental
information such as wind speed and room size. The headset needs to be connected via
DisplayPort 1.2 and USB 3.0 to a computer to load the virtual scenes we built. The sensors
on will be connected to the computer via Arduino. When the user enters our virtual
world, he will see our carefully designed game scenarios including a 3D writing program,
drinking tea, plucking apples from a tree, a farmland, and a garden. When the user
gets closer to the objects that have a special odor, the scripts attached to those objects in
the virtual world will start to transmit distance information to our software. Based on
physical models, our scent simulator will simulate the scent intensity and duration the
scent emitter should have, and then transmit this information to it. Finally, the user will
smell the corresponding scent emitted by the scent emitter. Besides, we also design an
interaction module, where a guest of wind in the real world can generate virtual wind
in the virtual world, that is, the flowers and mills will sway in the wind with the sensed
wind speed.

Scent Simulator

Controller

Figure 1: Overview of our solution

1.2 Functionality

Virtual Reality (VR) Software and Hardware Deliver a smooth and immersive demo at
a minimum of 90 FPS. This allows users to have a complete and immersive experience in
the virtual world. Incorporate diverse scenarios to showcase the integration of olfactory
elements in VR scenes. There should be 0 latency when switching into different scenarios.
This provides users with an interesting gaming experience and adds more fun to our
project.

Scent Simulator Software Employ suitable physical models for scent simulation, incor-
porating valid modifications and assumptions. This allows users to have sensory experi-
ences like in the real world. Accurately map the relationship between distance and scent
intensity for a seamless and natural user experience. One object should be matched to
exactly 1 scent without mistakes. This also allows users to have sensory experiences like
in the real world.

Scent Emitter The frequency of the oscillator is between 108 and 110 Hz. The overall
frequency should be between 0.12 and 0.13 Hz for low-level, between 0.24 and 0.26 Hz
for medium-level, and no-gap oscillating for high-level. This ensures the stable emission
of various scents. Select distinct and appealing scents for differentiation. Combinations
of different scents should be available. The weight of the neck scent-emitter will not
exceed 0.3 kilograms, making it easy for users to carry around during virtual reality (VR)
experiences, and have less stress on users’ necks. This design enables the scent emission
device to be lightweight, comfortable, and aesthetically pleasing.

External Perception Module The wind speed should affect the virtual scenarios. The
wind sensor must be able to detect wind speed in the range of 1m/s to 60m/s for the
resolution ratio to be lower than 0.2m/s to fit our requirements. The wind sensor should
transmit wind speed to the computer smoothly with a speed of at least 100Kbps. This
allows our real-time detection information of wind speed to be transmitted to the software
with little latency and thus allows users to have an immersive experience.

Communication between Components Maintain sufficient bandwidth of no less than
2Mbps for real-time inter-component communication. This allows communication among
three parts to be fluent, and latency to be minimized. Ensure communication doesn’t ob-
struct user movement or interaction with VR scenes. The overall reaction time should be
no more than 300 milliseconds. This includes the scent simulator’s calculation time and
data transmission time between different protocols.

1.3 Subsystem Overview

Our whole device consists of five subsystems, including two software subsystems: a vir-
tual reality (VR) software to generate virtual scenes and a scent simulator to generate
correct scents information corresponding to the given virtual scenes. To be more spe-
cific, the scent information includes scent species, scent intensity, and scent duration. The
virtual reality (VR) software enables us to build engaging scenarios, tell users interac-
tive stories, and transport people to new worlds by building virtual reality experiences,
which allows our device to fulfill the most important high-level requirement-immersive
experience. This subsystem also needs to pre-process users’ movement information and
head orientation collected by virtual reality (VR) hardware and transmit the information
to scent simulation software for further calculation. The scent simulation software gets
the pre-processed data from virtual reality (VR) software and uses our efficient and effec-
tive algorithm to decide which scent to emit, how long the scent last, and how strong the
smell is. This information will then be transmitted to the scent emitter subsystem for the
release of real scent.

VR Software
(Unity Packages & Oculus Integration)
VR Hardware

Oculus SDK [.
Unity Game Project OVRManager.cs | Rift $ Legend
/ f Headset

Q Transmission Protocol

| > ----» Data Flow
[L Rift S
Y Player Transform Controllers > Power
Distance from Odor Source (Position & Rotation of
' Head & Controller)

' External Perception
Scent Simulator ! P

H : [-1 Room Size |{=---------
: H H . Abstract) Space
3D Coordinate \ _ ¥ ¥ Y - : (Perce)mj‘
Reconstruction Worktable Height| «¢--' P
o9 < NRF24L01 Module)
Input Parameter
Calculator Wind Speed
[
Average Horizontal Distance to | | Vertical Distance to Odor
~ =

IS N
Velocityu | | Odor Source X and y Source z

5V
- Arduino Scent A Scent € Scen b
Intensity &
Duration : : : :
cTT T T N & TN
| V P
Gaussian Plume) Store -) | Ceramic |
(. Oscillator I
b
B |
>
|
|

Scent Emitter

(! !
Y Y A J

|

|

1 |

[Species Intensity Duration J |
|

Figure 2: Block Diagram

The remaining three subsystems incorporate hardware components: the virtual reality
(VR) hardware for users” motion capture and model rendering, a scent emitter to emit
scents based on information got from the scent simulator, and an external perception
module to collect environment information such as room size and wind speed. The vir-
tual reality (VR) hardware provides the hardware basis for virtual reality (VR) software
and uses Rift S as the key hardware component. It consists of a virtual reality (VR) head-
set and two controllers. Through the headset, the user (as the camera inside the project)
can see virtual scenes. The scent emitter consists of a scent cartridge, an Arduino module,
a selection unit, and an atomization unit with several ceramic ultrasonic oscillators. The
external perception module is composed of two parts: one wind sensor and one space
perception module. Wind sensors collect wind speed information and then transmit them
to virtual reality (VR) software using a wireless connection protocol. The reason we de-
sire to collect the room size information is that the diffusion of scents is highly related to
the room’s condition.

Two software run on the computer, where data transmission is handled by process com-
munication protocols. The scent emitter and external perception module are integrated
together into a neck scent emitter, which users can hang on their necks. The VR head-
set and the computer are connected via DisplayPort1.2, where the virtual scenes will be

4

loaded via the wired connection. The scent-emitter and external perception module use a
wireless communication module—NRF24L01 to talk with the software on the computer.
The novelty of our proposed solution is that we not only emit scents based on correspond-
ing scenes but also integrate environment information in our virtual scenes. For example,
when users use our device outside, they may feel a guest of wind. We also generate wind
in virtual scenes, enabling users to experience a full sensory experience.

2 Design

2.1 Virtual Reality (VR) Subsystem
2.1.1 Design Description

Based on Unity, this subsystem is responsible for creating virtual scenes for users. The
virtual reality (VR) software enables us to build engaging scenarios, tell users interactive
stories, and transport people to new worlds by building virtual reality experiences. To be
more specific, this module takes sensory information from virtual reality (VR) hardware
(includes users’ location, head position information, and physical actions) and external
perception module (includes wind direction and wind speed) as input, and output is
constructed virtual scenes based on the data. If there is an odor source in the scene, virtual
reality (VR) software will also output the head position and users” position towards the
odor source to the scent simulator. This data transmission will be reached by Inter-Process
communication protocols using sockets. We design a classic village scene as a whole for
all 5 daily scenes to happen, including a writing program, a tea-drinking scenario, an
apple-picking program, a farmland, and a garden. The corresponding scents the user
expected to smell while engaging with the virtual world are ink, tea, apple, soil, and
flower respectively. The block diagram of this subsystem is shown below.

VR Hardware

Figure 3: Block Diagram of Virtual Reality (VR) Subsystem

The overview of our built virtual scenario is shown in Figure 4. In the 3D writing pro-
gram, the user will smell a subtle ink scent as he gets closer to the brush and the intensity
of the smell increases when the user starts grabbing and writing. The simulation result
is shown in Figure 5. In the tea-drinking scenario, the user can smell the scent of the tea
while “drinking” it. The simulation result is shown in Figure 6. In apple plucking sce-
narios, the user can harvest apples from apple trees and interact with all the apples in the
scene. The simulation result is shown in Figure 7.

Figure 4: Overview of Simulation Result Figure 5: Simulation result for 3D writing

Figure 6: Simulation result for tea drinking Figure 7: Simulation result for apple garden

In the farmland scenario, the user can walk onto a piece of farmland and get down closer
to the ground to smell the scent of fresh soil. The simulation result is shown in Figure
8. Finally, in the garden scenario, the user can smell the scent of flowers in the garden.
The effect of the external perception module is implemented in this scenario by involving
the data from the wind sensor in the real world in this simpler scenario. The simulation
result is shown in Figure 9.

Figure 8: Simulation result for farmland Figure 9: Simulation result for garden

The virtual reality hardware provides the hardware basis for virtual reality (VR) software
and is responsible for motion capture and model rendering, which uses Rift S as the key
hardware component. It consists of a virtual reality (VR) headset and two controllers.
Through the headset, the user (as the camera inside the project) can see virtual scenes. The
headset can track the direction of users’ sight. The Rift S uses an LCD with a resolution of
1,280 x 1, 440 per eye, and refresh rates are slightly lower at 80H z to 90H z. The controllers
are used to track the position of the hands and control the experience inside the virtual

6

reality (VR) environment. They feature a protruding black handle and a ring extending
from the top for six degrees of freedom (6DOF) position tracking via a camera mounted
on the headset. The rings extend to the physical controls of each device and wrap around
the user’s thumb while giving them plenty of room to move. The data collected by the
sensors will be transmitted to the virtual reality (VR) software subsystem for virtual scene
generation and movement information pre-processing.

2.1.2 Design Justification

To make sure that the scent is generated synchronously, this distance is calculated at the
updating frequency of the VR rendering, which is set to be 0.02 seconds. Then this dis-
tance is sent to the scent simulator through UDP. However, to be compatible with the
Arduino data transmission efficiency, the sending frequency is set to be 6 seconds. This
is accomplished by calling InvokeRepeating(”"MethodName”, initialDelay, repeatRate),
which allows you to schedule the execution of a method repeatedly with a specified de-
lay and repeat rate. Notice that the script should be attached exactly to the gameobject
with a mesh renderer and a transform instead of a rect transform to guarantee the perfor-
mance.

2.2 Scent Simulator Software
2.21 Design Description

For our project, we need to relate the emission rate in the real world with the user’s
distance from various scent-emitting sources in the virtual world. The block diagram of
this subsystem is shown below in Figure 10.

Let @1, P, denote the scent emission rate and scent concentration at the user’s location in
the virtual world. Let ()5, P, denote the scent emission rate and scent concentration at the
user’s nose position in the real world. Our goal is to calculate (), based on the condition
P1 = Pzi

Ql T% Qz "%

Pi(ri,t) = ——— e a0t = ———— . ¢ 4Dt = Py(ry,t
1) (4nDt)3 (47 Dt) 2{rert)

Njw

The last approximation step is because we are assuming the distance between the user’s
nose and our scent emitter is negligible compared to the user’s distance to the scent-
emitting source in the virtual world. This derivation shows that the scent emission rate
in the real world is also exponentially related to the distance in the virtual world. Based
on this equation, and with our empirical knowledge about the relationships between dis-
tance and concentration, we can calculate the desired emission rate in the real world for
a given distance in the virtual world.

The determination of the emission rate, as related to the distance within the virtual world,
has now been established. The subsequent question is how this emission rate can be regu-
lated. To address this, we introduced a specific simplification or assumption: the concept

7

of temporal partitioning, wherein time is divided into discrete slots. This arrangement
allows for selective activation of a portion of the scent emitter at any specific time slot, as
depicted in Figure 11. Each scent molecule is thus associated with a time period that is
a multiple of a designated unit time slot. This strategic temporal partitioning provides a
mechanism to manipulate the frequency of release for individual scent molecules.

— Continuous Signal Discrete Signal
Gaussian Plume _
e /\/\/ iR E
Update

Scent A 2

Gi te si | fi t ti t ()
enerate signal for current timestamp Scent B 3
== 10 [0]1 1 4mmm oo

ScentD 7
Scent E (1}

Figure 11: Control of Emission Rate
Figure 10: Block Diagram

2.2.2 Alternative Design

To accurately calculate the scent concentration at the user’s position in the virtual envi-
ronment, we derived the Gaussian Plume Model equations that account for factors such
as wind direction, wind speed, scent source location, and atmospheric stability class.
This involved researching the Gaussian Plume Model and adapting it for our specific
use case.

The Gaussian Plume Model is a widely used mathematical model for predicting the dis-
persion of pollutants in the atmosphere [1]. It is based on the assumption that the pol-
lutant concentration distribution in the horizontal and vertical planes follows a Gaussian
distribution. The equation for the Gaussian Plume Model adapted for our scent diffusion
application is given by:

C(z,y,2) = %exp (—%) {exp (—%) + exp (—%)] ., (1)

where:

- C(z,vy, 2) is the scent particle concentration at the point (z, y, z).

(is the scent particle emission rate.

U is the wind speed.

H is the height of the scent particle source.

- 0, and o are the horizontal and vertical dispersion coefficients, respectively.

The dispersion coefficients o, and o, depend on the atmospheric stability class and down-
wind distance z. They can be calculated using empirical formulas, such as the Pasquill-
Gifford-Turner (PGT) curves [1]-[3]. These formulas provide values of o, and o, for dif-
ferent stability classes and downwind distances.

The Gaussian Plume Model-based equation serves a dual purpose in our scent simulation
module: Firstly, it enables us to predict scent dispersion within the virtual environment,
a crucial aspect for accurately determining the scent concentration at the user’s nose po-
sition. Secondly;, it facilitates the conversion of the calculated scent concentration at the
user’s location into appropriate intensity and duration settings for the scent-emitting de-
vice. The specifics of these relationships, as well as their implications for our scent simu-
lation module, will be elaborated upon in subsequent sections. The code implementation
details of the Gaussian Plume Model are shown in Appendix A.

Another way to relate scent diffusion in the virtual world and in the real world is to solve
the 3D diffusion equation. The 3D diffusion equation describes the propagation of a dif-
tusing substance in a three-dimensional space, considering factors such as concentration,
diffusion coefficient, and time. The details of this alternative method are shown in Ap-
pendix B.

2.2.3 Design Justification

For Gaussian Plume Model, one sample figure is shown below in Figure 12, showing the
scent diffusion in the x-y plane.

Scent Concentration Distribution in the x-y Plane (Stab\litylgiegﬁsfi)

6
5
4
3
2
1
.i.

000 025 050 075 100 125 150 175 2.00
Downwind Distance (x)

40
20

0

Crosswind Distance (y)
Scent Concentration

=20

40

Figure 12: A Sample Simulation Result

The Gaussian Plume Model takes into consideration the wind direction and speed. But
it cannot be directly applied to our problem of estimating the scent concentration at the
user’s location since the Gaussian Plume Model is designed to investigate the macro-
scopic diffusion of pollutants from a chimney. In comparison, our application is relatively
small-scale.

The diffusion equation is suitable for our application but it involves constants that cannot
be easily measured. Specifically, the diffusion coefficient D depends on numerous fac-
tors such as the nature and state of the substance undergoing diffusion, the medium in
which it is diffusing, the temperature and pressure conditions, and the presence of other
interacting species. The perfumes used in our system involve various molecules whose
sizes cannot be easily estimated. Therefore, we cannot directly apply the solution to the
diffusion equation.

However, both the Gaussian Plume Model and the Solution to the Diffusion Equation
indicate that the concentration at steady-state is exponentially proportional to the square
of the distance from the scent-emitting source, specifically:

u(r)es =A-QC™"" (2)

where:

u(r)ss is the scent particle concentration at distance r from source in the steady state.

@ is the scent particle emission rate.

A, C are constants yet to be determined.

r is the distance from the scent-emitting source.

Comprehensive tests have been devised to evaluate the module’s performance in various
scenarios and under different conditions. Throughout our development of the system,
the following system-wide tests have also been carried out:

- User Experience: This test will involve real users experiencing the ”Augmented
VR with Smell” system and providing feedback on the scent simulation module’s
performance. The primary objective is to evaluate user satisfaction and identify
areas for improvement.

- Robustness and Reliability: This test will focus on assessing the scent simula-
tion module’s ability to handle extreme or unexpected conditions, such as abrupt
changes in wind direction or speed, or malfunctioning sensors. The goal is to en-
sure that the module remains functional and accurate under all circumstances.

- Integration: Once all subsystems are complete, an integration test will be performed
to verify the seamless operation of the entire “Augmented VR with Smell” system.
This test will ensure that all subsystems interact as intended and that the overall
system functions according to its specifications.

2.3 Scent Emitter
2.3.1 Design Description

The scent emitter subsystem is responsible for emitting scents based on data from scent
simulation software. It includes a scent cartridge, an Arduino module, a selection unit,

10

and an atomization unit with multiple ceramic ultrasonic oscillators. The hardware is de-
signed to be portable and lightweight. The scent cartridges contain individual units with
different scents, where a sponge is used to fully absorb the liquid. The Arduino module
takes input from the scent simulator regarding the scent species, intensity, and duration,
and generates control signals to the selection unit and atomization unit. The selection
unit functions as a multiplexer and is connected to five different ceramic ultrasonic oscil-
lators. Based on the selected scent species, the corresponding ceramic ultrasonic oscillator
is connected to the rest of the atomization unit to emit the scent. The block diagram of
this part is shown above in Figure 13.

Scent Emitter

”7
: ! Dur
v 1
S
Spec
Selection Unit |- P9 o g
[
|
|
|
|
|

|
|
| scent :
|
[SRRt
|
|
|
|
J

Figure 13: Block Diagram for Scent Emitter

As we will have five different scents, we design five horizontally arranged air outlets.
The physical diagram is shown below in Figure 14 and Figure 15.

Figure 14: Physical Diagram of Scent Emitter Figure 15: Internal Layout of Scent Emitter

The oscillators used for forming the mist and the control unit used for triggering the
oscillators are both put in a neck bag, and the bad is also designed to be worn around
the neck. Inside the bag, we put the Arduino and the printed circuit board (PCB) of the
atomization unit on the button, which will be separated from the above scent cartridges
via a waterproof and corrosion-resistant groove. On top of this control unit, we have
tive separate scent cartridges. In each scent cartridge, we have a sponge immersed in
the perfume and a ceramic ultrasonic oscillator that touches the surface of the sponge.
On the top of the box, there are air outlets, and the formed mist will be scattered to the
atmosphere from this interface.

11

As shown in Figure 16, to transmit information wirelessly, we should use two Arduino
boards and a wireless transmitter and receiver. This connection will be discussed in
the below sections. The circuit can emit scent after receiving the signal from the Ar-
duino board. We use the 8th,7th,6th,5th, and 4th ports on the Arduino board to control
scents.

Figure 16: Schematic Diagram Figure 17: Selection Part

However, they can’t power the oscillation circuit directly, because four of these ports can
only output 3.3v, it’s too low for the oscillation circuit. As shown in Figure 17, the 8th port
can output 5v, which is enough for the circuit, but we just use this to test the Bluetooth
transmitter and receiver. As mentioned above, there are five identical oscillating circuits
in parallel. Figure 4 shows the selection part controlling whether the corresponding cir-
cuit will work. The most important component is MOSFET. As for simple MOSFET, if the
G gate is high, the D gate and S gate will connect. In our project, we add some improve-
ments. We add a resistor at D. So, if the G gate is high, the current just flows through the
resistor. In other words, the oscillation circuit is shorted. When the G gate is low, there
is current flow through the oscillation circuit. And because there is a small capacitance
designed in MOSFET, we should add a large resistance between the G gate and the S gate.
The g gate is connected to the port of Arduino. Figure 17 shows one branch. The other
four branches are the same.

The resistance at D gate is hard to choose. If it is large, when the oscillation circuit work,
the circuit is too small to work. If the resistance value is small, when the oscillation circuit
doesn’t work, the resistance would burn out. Therefore, we use resistors with small val-
ues and high power. It is 50 Ohms, 5w. And the resistance between the G gate and the S
gate should be large enough. Its function is to discharge the internal capacitor. We choose
3.9M Ohms. Resistors that are too large or too small will produce bad results.

For the atomization circuit, the micro atomizing plate is composed of a piezoelectric ce-
ramic ring and a metal steel sheet. The circuit schematic is shown below in Appendix D.
By driving the circuit board output PMW pulse width modulation, the piezoelectric ce-
ramic produces hundreds of thousands of times per second high-frequency co-vibration,
driving the metal sheet vibration. The liquid ejects from the metal steel sheet of thousands
of micro-holes, forms 4-6 micron small molecules, and the liquid molecular structure then

12

scatter to form the water mist. We connect a 5 V voltage micro atomizing plate. Compared
with the traditional voltage requirements of 12 V or 24 V, this micro atomizing plate has
the advantage of low energy consumption, which then reduces the requirements for elec-
tricity and further expands the use of the product scenario. We design to connect the
ceramic ultrasonic oscillator’s one pin to Arduino’s one IO, which allows the oscillator
to work during a period of time when a digital signal is in a logic high state, and stop to
oscillate otherwise.

2.3.2 Alternative Design

There are several options for the external structure. A simple and straightforward design
is to place the emitter on the ground or on the table. This kind of design doesn’t need
to worry about stability and don’t have strict requirement for weight. However, as the
user may move around in the virtual world, the head position and the relative distance
towards the emitter are uncertain, and the actual performance will surely be influenced.
Hence, we consider designing a wearable device. For debug purposes, the structure can-
not be strictly closed. Therefore, we design a pencil-box-like structure, where we can
open it easily to debug the circuit and check the connections.

2.3.3 Design Justification
We designed various tests to justify our system.

¢ Test oscillation circuits: Supply 5v DC voltage to oscillation circuits separately. Test
if they can emit scent as soon as the power is supplied.

Result: All oscillation circuits work well under 5v DC voltage.

¢ Test whether the amount of scent emitted is related to the voltage: turn the magni-
tude of voltage from 3v to 6v, observing scent emitting.

Result: When the voltage is 3v, the LED on the circuit is blinking, this means the
voltage is too low. There is no scent emitted. As the voltage improves, more scent
is emitted per unit of time. So the amount of scent and voltage are positively corre-
lated.

* Add a selection part to the electronic control part of the scent emitter to choose
scents. Using MOSFET to control.

Result: After changing several schemes and resistors, the correct scent is emitted
according to the signals input.

¢ Test how to adjust scent intensity and duration. There should be at least two emit-
ting speeds.

Result: The scent emitting speed can’t be adjusted by adjusting the voltage because
the voltage is constant. Therefore, use emitting frequency to express intensity. It can
emit scent continuously or intermittently.

13

2.4 External Perception
2.4.1 Design Description

The external perception subsystem consists of an abstract space perception module and
wind sensors. The abstract space perception module is based on virtual reality hardware,
and to be specific, a camera mounted on the headset. The camera captures the room
size and worktable height information and sends it to virtual reality (VR) software via
DisplayPort 1.2 and USB 3.0 physically. Unity also provides libraries and APIs for users
to directly extract the information. The wind sensors are integrated with an external plug-
in. The block diagram with physical labels is shown in Figure 18.

Arduino Personal Computer

Setup Serial.begin(); serialPort Initialize

In the Loop Set Parameters

Receive Information

Figure 18: Block Diagram

Figure 19: Core Code

On Arduino Uno, pins 0 and 1 are used for communication with the computer. To use
these serial ports to communicate with the personal computer, I use a USB-to-serial adap-
tor. We need to create a bi-direction channel. On the one hand, as shown in the above
physical diagram, the wind sensor collects wind information and sends it to the personal
computer via a serial port in Arduino and utilizes serial class in C# to get the information.
On the other hand, to let scent-simulator software send data to the scent-emitter, the data
need to first be transferred to Arduino via serial port, and then transfer to the receiver
side Arduino to enable wireless control. According to the official document provided
by Arduino [4] and Microsoft [5], for the communication from computer to Arduino, on
the Arduino side, I first write a while loop using Serial.available() to detect serial cache.
On the C# side, I first create a new SerialPort object using the new SerialPort(). Then,
I set read/write timeouts, port names, and other appropriate properties. Finally, I use
Serial Port.Open() to open the channel and use serial Port.WriteLine() to send correct
data. For the communication from Arduino to the computer, the overall logic is similar,
and I call different functions like serial Port. ReadLine() for C# and Serial.write() for Ar-
duino. The core code with flowchart is shown in Figure 19. The connection between the
microcontroller and wind sensor is quite straight forward as shown in Figure 20. The
positive pin from the wind sensor is connected to an Analog-to-Digital Converter (ADC),

14

which is a series of interfaces on the microcontroller. Analog-to-Digital Converter (ADC)
is able to convert continuously varying analog signals into discrete digital signals, which
can be processed by digital circuits. The negative pin from the wind sensor is connected
to the GND pin on Arduino.

+(Brown) ADC

Wind Sensor [GND

Figure 20: Abstract Connection Figure 21: Alternative Design

2.4.2 Alternative Design

There are two kinds of wind sensors in the market, one needs voltage control while an-
other doesn’t need. The wind sensor I mentioned in the previous section doesn’t need
external voltage input. Another wind sensor works under 7-24V DC, so it is obvious
that the voltage provided by Arduino is not enough. If we adopt it, we need tp use the
MT3608 DC-DC voltage-up converter module to increase the voltage from 3.7V to 7.5V.
The output pins of the voltage transformer are connected to the wind sensor’s VCC pin
and Arduino’s Vin Pin. The wind sensor’s output is connected to Arduino’s ADC inter-
face (A0-A6), I connect to AO here. I use analogRead(A0) to read data. The schematic
diagram for this design is shown in Figure 21.

2.4.3 Design Justification

We did 10000 experiments on the data transmission between the wind sensor and the
microcontroller. As the results show, among 10000 experiments, almost all transmissions
can satisfy our time constraint. Therefore, it is safe to think that our device meets the
high-level requirement we made in previous sections.

15

5000

4000

3000

2000

1000

Figure 22: Data transmission time between wind sensors and PC.

2.5 Between Subsystems: Data Transmission
2.5.1 Design Description

Data transmission is a necessary part of software design. Virtual reality (VR) software
needs to transmit the user’s position information, including distance to the odor source
in virtual scenes and the user’s head orientation to the scent simulator. To be abstract,
scent simulator and virtual reality (VR) software are two processes run on the computer.
Overall, the criteria for this part of the design is that the data should be transmitted in
real time with high efficiency. Missing some packets in the transmission is acceptable
in our scenario, as the virtual reality (VR) software is continuously sending data to the
simulator.

Virtual Reality (VR) Software Scent Simulator Software

Initialize Socket Initialize Socket
For Scent Simulator Software:

ket = new Socket(InterNe

. Bind (IPAd:

Socket . BeginReceiveFr

rk, Datagram, Udp);
el

Data, 0, ReceiveData.Length,...);

For Virtual Reality(VR) Software:
. o 0

Bind IP Address and Port new [Bind IP Address and Port

+ Distance to Odor Source
= Head Position
Send Information ive Information
+ Scent Simulator Software:
while (true)(
bytel] buftfer ne wvte (4];

int len = socket
il (1 Q) {break; }

Begin process data
¢ Virtual Reality (VR) Software:
sockel socketSend = o as Sockel;
while (true){
if (isSendData) {

ncoding. UTFS. GetBytes (inputMessage) ;

Figure 23: Pseudo-code with flow-chart for data transmission protocol based on sockets.

A socket is an inter-process communication method that encapsulates the details of net-
work communication and allows people to connect and transfer data to any communi-
cation endpoint on the network. Actually, we don’t require two processes to run on the

16

same host, as the socket is able to maintain communication between processes on differ-
ent hosts. We adopt a lightweight data transport protocol that works on top of IP-user
datagram protocol (UDP) to ensure transmission efficiency, as packet loss is acceptable
in our case. First, both the virtual reality (VR) software and the scent simulator create a
socket. They will then call socket API-bind, to bind their IP addresses and ports. After
that, virtual reality (VR) software sends data packets to the scent simulator using socket
API-sendto(), and the scent simulator receives the message using another socket API-
recv from(). The overall pseudo-code with flowchart is shown below in Figure 23.

In general, we use two Arduino micro-controller development boards and two NRF24L.01
modules, and each pair works as a transmitter or a receiver. The high-level logical dia-
gram is shown in Figure 24.

Arduino Arduino

NRF24L01 NRF24L01

Figure 24: High-level Logical Flowchart for Wireless Data Transmission Method.

NRF24L01 is a single-chip wireless transceiver chip produced by NORDIC that works
in the ISM band of 2.4GHz 2.5GHz. Wireless transceivers include frequency generators,
enhanced “SchockBurst” mode controllers, power amplifiers, crystal oscillators, modula-
tors, and demodulators. The output power channel selection and protocol settings can be
set through the SPI interface. Its greatest advantage is that it has very low current con-
sumption. The schematic diagram and pin definition of this module is shown in Figure
25 and 26.

==

Heyto e u:
q Ly LN]

Figure 25: Schematic Diagram of NRF24L01 Figure 26: Pin Definition of NRF24L.01

By looking up the datasheet, we found that this module works under 1.9V-3.6V. It has 126
communication channels and 6 data channels. Obviously, GND pin and VCC pin should
be connected to GND pin on Arduino and 3.3V voltage source respectively. CE pin on

17

NRF24L01 module connects to pin 8 on Arduino, CSN pin on NRF24L01 module connects
to pin 9 on Arduino, SCK pin on NRF24L01 module connects to pin 13 on Arduino, MOSI
(MO) pin on NRF24L01 module for output connects to pin 11 on Arduino and MISO (MI)
on NRF24L01 module for input connects to pin 12 on Arduino. The pin wiring diagram
is shown in Figure 27.

The only thing that remains to be discussed here is programming. To realize the wireless
data transmission, I write two pieces of code on the transmitter side and receiver side
respectively. Basically, SPI.h,nRF24L01.h, and RF24.h are three libraries I need. On the
receiver side, we first configure NRF24L01 with the correct CE pin and CSN pin. Second,
we open the writing pipe and reading pipe with the previously defined address. Then,
we start listening. In the loop, we use radio.available() to listen to the incoming data
and use radio.read() to read the data. The data then will be processed and control the
atomization units. For the transmitter side, the main difference is in the loop, the data
received from the scent simulator will be sent using radio.write(). The core code with
flowchart is shown below in Figure 28.

clude <SPI.h>
clude <nRF24LO01.h>
lude <RF24.h>

i
Include Libraries $i
¥

Configure NRF24L01 i
penReadingPipe (1, addressesl);
etPALevel (RF24_PA MIN) ;

Receive Data: radio.startListening();

Start Listening

Send Data: radio.stopListening();

Receive Data: |

radio.read(&data, sizeof (data));
T [

b
&
- . =

ICcsePe

Receive/Send Data

DIGITAL (PuM=~)

Za A
3
L.

Send Data: |

TX . radio.write (&data, sizeof(data));

Rxmm Arduino”

Figure 27: Pin Wiring Figure 28: Core Code

2.5.2 Design Alternative

For software data transmission, Based on the official document provided by Unity [6],
my alternative considered solution is to use Unity-provided lower-level networking API.
This can establish connections, communicate using a variety of “quality of services”, en-
able flow control (like TCP), and do basic statistics. First, we need to set the maximum
packet size and the thread timeout limit, and then initialize the network transport layer
using NetworkTransport.Init();. As we only need to send data from virtual reality (VR)
software to scent simulator software, we think adding one channel is enough. After con-
tiguring the channel, we can initialize the host topology and set the maximum connec-
tion number. Then, we can bind this network topology with our host IP addresses and
an available port. For virtual reality (VR) software, it needs to connect to the scent simu-
lator with the correct IP address and port number, and then send data using provided
interface NetworkTransport.Send(). For scent simulator software, it receives data by
NetworkTransport. Receive(). Finally, after communication, we can shut down the con-

18

nection using NetworkTransport. Disconnect(). The overall pseudo-code with flowchart
can be found in Appendix C.

2.5.3 Design Justification

We did 10000 experiments on the data transmission between wireless modules and be-
tween two software. As the results show, among 10000 experiments, almost all transmis-
sions can satisfy our time constraint. Therefore, it is safe to think that our device meets
the high-level requirement we made in previous sections.

7000

8000 6000

5000
6000

4000
4000 3000
2002
2000
2000
436 1000

51 86 38

0
<=0.999 <=1 >1 <0.01 <=0.65 <=1 <=2 >2

<0.0001 <=0.998

Figure 29: Time between two software Figure 30: Time between wireless modules

3 Cost and Schedule

3.1 Cost Analysis
3.1.1 Labor

According to the latest available data from UIUC’s Engineering Career Services office,
the median starting salary for ECE graduates in 2020 was $77,000 per year. Assuming a
standard 40-hour workweek, the salary is $37 per hour. For this project, each of us works
12 weeks and 12 hours/week. The total Labor cost is: 4 x 12wk x 12hr/wk x $37/hr x 2.5 =
$53280

3.1.2 Parts
Description Manufacturer Part # Quantity Cost
Rift S OCULUS oculus rift s 1 $597
Ultrasonic atomizer. MIJIA MJXFJO1IXW 6 $12
Resistor zave 0805 12 $0.5
Capacitor Risym 0805 18 $0.7

19

Triangular inductor Eckert 6X8(12uH + 6 $1
440uH)
Terminal receptacle. WXRKDZ PH2.0 6 $0.25
MOS. Eckert SOT 23-3 6 $0.5
SOT 23-6 MCU. Yingguang PMS160 6 $0.1
EPGC. Eckert FR-4 6 $1
Micro mini 5P. yeulnelg / 6 $4.2
Dirt scent perfume. DORIS FRA- | 2019001299 1 $14
GRANCE
Sweet osmanthus scent KEYO 2021004223 1 $3.5
perfume. NKNK
Tea scent perfume. KEYO / 1 $3.5
NKNK
Ink scent perfume. OTHER J20112481 1 $3
Apple scent perfume. | POACHERM- / 1 $4.5
AN
Table 1: Parts List
Total cost: $53280 + $645.75 = $53925.75
3.2 Schedule
Week Kaiyuan Tan Yingying Liu Xiao Wang Baoyi He
3/13 Discuss with Discuss with Discuss with Discuss with

professors;
Research
physical model.

professors;
Design hardware
structure of scent
emitter.

professors; Learn
how to model
virtual structure
using Rift S.

professors;
Design hardware
structure of scent
emitter.

20

Design structures

3/20 Define the Design circuit of | Continue to learn
physical model | the scent emitter; | how to model a of exterior
of the scent Decide specific virtual world structures;
simulator; Use hardware using Rift S; Compare
math to components used Make a demo different
theoretically in scent emitter; virtual scene materials and
verify the Buy these using Rift S. decide which
feasibility of the components. materials to use.
model.
3/27 Discuss our Discuss our Discuss our Discuss our
virtual scenes; virtual scenes; virtual scenes; virtual scenes;
Start writing Start building the | Start modeling Decide specific
codes for the scent-emitter the virtual world hardware
scent simulator. including using Rift S. components used
hardware and in the external
electronic control perception
parts. module.

4/3 Organize calls Build Continue to work | Start building
with our sponsor; scent-emitter on modeling the external
Continue to work including virtual world perception

on modeling the hardware and using Rift S; module;
scent simulator. | electronic control | Consider data Consider data
parts. transmission. transmission.

4/10 Finish coding Finish prototypes | Finish modeling | Continue to build

part of the scent of the the virtual world the external
simulator; Test scent-emitter; using Rift S; Test perception
and debug the Test and debug and debug the module; Test the
software. the scent-emitter. VR software. reliability.
4/17 Connect scent Connect the Connect Rift S Finish build the
simulator with scent-emitter with the scent external
external with the scent simulator perception
perception model simulator; Test software; Test module; Test the
and Rift S; Refine the device and and refine the connection.
the code. refine based on | code to reach the
performance. best
performance.
4/24 Assembly Assembly Assembly Assembly
subsystems; Test | subsystems; Test | subsystems; Test | subsystems; Test
and debug the and debug the and debug the and debug the
whole system. whole system. whole system. whole system.

21

5/1 Prepare mock Prepare mock Prepare mock Prepare mock
demo; Write final | demo; Write final | demo; Write final | demo; Write final
report draft. report draft. report draft. report draft.
5/15 Fix the broken Fix the broken Fix the broken Fix the broken
part part part part
5/22 | Work on the final | Work on the final | Work on the final | Work on the final
report. report. report. report.
Table 2: Weekly Schedule
4 Requirements and Verification
4.1 Virtual Reality (VR) Software
Requirements Verification Results
1. The demo should run | Usebenchmarking tools, such as Ocu- | The demo
smoothly and consistently with | lus Tray Tool or SteamVR Performance | run at
at least 90 Hz frames per sec- | Test, to measure the frame rate of the | 85 HZ
ond(FPS) to provide visually | VR demo while it is running. Frames
comfortable and immersive ex- per sec-
periences to users. ond(FPS).
2. The software must be de- | Ensure that the design is compatible | Achieved.
signed to work seamlessly with | with Oculus’ software development
the latest lineups of Oculus vir- | kits(SDKs) and tools to guarantee that
tual reality (VR) devices. the software is optimized for Oculus
devices and takes advantage of their
features and capabilities.
3. The demo needs to include | The demo should offer at least 3 dif- | We create
adequate examples to be consid- | ferent scenes/objects, such as a bak- | 265 objects
ered a comprehensive and gen- | ery or a bouquet of roses, to incorpo- | in total.
eral implementation of incorpo- | rate different scents for the users to in-
rating scent into virtual reality | teract with and experience.
(VR) systems.
4.2 Scent Simulation Software
Requirements Verification Results

22

1060 or AMD Radeon RX 480
graphics card, an Intel i5-4590
or AMD Ryzen 5 1500X or later
CPU, and at least 8GB of RAM
for the personal computer (PC).

erties and go to the Computer Prop-
erties Tab. We can see the basic
CPU and memory configurations in
the Properties TAB. For more details,
we can click Device Manager on the
left of the selection. Check these con-
tigurations to ensure they satisfy the
requirements.

1. The simulator should be | Through careful experiment and re- | Achieved.
able to calculate the appropri- | ferring to the Odor Detection Thresh- | See 2.2.3
ate intensity and duration of the | old (ODT) which is the minimum con- | for quan-
scents emitting based on the dif- | centration of an odorant that can be | titative
fusion equation. detected by humans, and Oder Inten- | results.
sity Standard Curves, we can make
sure that the scents can be emitted
within an acceptable and comfortable
range.
2. The real-time result should be | Use ~Arduino’s Universal Serial | Achieved.
delivered correctly to the emit- | Asynchronous Receiver Transmit- | Correct
ter. ter(USART) protocol to transmit | and com-
real-time signals to the PC for debug- | plete
ging. message.
4.3 Virtual Reality (VR) Hardware
Requirements Verification Results
1. The virtual reality (VR) hard- | Check whether the personal com- | Achieved.
ware should be equipped with | puter (PC) is equipped with a Dis-
a wireless or wired connection | playPort adaptor. Note that if the
with a personal computer (PC) | connection only supports HDMI per-
to enable model rendering. sonal computers (PCS), Oculus does
not guarantee compatibility. So make
sure they have a DisplayPort or Mini
DisplayPort and a USB 3.0 port.
2. Use at least an Nvidia GTX | First, right-click on Computer — Prop- | Achieved.

4.4 Scent Emitter

23

Requirements

Verification

Results

1. The emitter should be
driven by an inexpensive, effi-
cient, and user-friendly micro-
controller (MCU), enabling easy
setup and operation.

The emitter will be streamed by
an Arduino Uno R3 as the micro-
controller board based on the AT-
mega328P.

Use Ar-
duino,
met

quire-
ments.

re-

2. Five ceramic ultrasonic os-
cillators should all function well
when given an appropriate trig-
ger signal.

The range switch of the multimeter
should first shift to 2.5V DC volt-
age, and let the red pen connect to
the metal sheet, let the black pen be
placed horizontally on the ceramic
surface, and slight pressure the left
hand, and then loosen so that two
voltage signals of opposite polarity
are generated on the piezoelectric ce-
ramic sheet.

With 5V
voltage
input

and 0.3A
current,
function
normally.

3. The emitter consists of 5 small
scent cartridges with scent car-
tridges installed.

To ensure accurate delivery of scents,
we plan to use simulator software to
capture the density. If possible, we
would like to use specialized equip-
ment, such as gas chromatography-
mass spectrometry (GC-MS), to verify
the precise chemicals being emitted at
each time st.

Achieved.

4. Real-time cues from the API
through the OpenXR should be
delivered to the Arduino using
Web Serial to trigger scents.

Utilize Arduino’s USART protocol to
send real-time signals to the PC, al-
lowing for comparison with signals
received through the APL

Achieved.

5. The power supply must pro-
vide a voltage in the range of
4.5-5.5V.

Measure the output voltage using an
os- cilloscope, ensuring that the out-
put volt- age stays within the range of
4.5-5.5v.

We use a
5V battery.

4.5 External Perception Subsystem

24

Requirements Verification Results
1. The wind sensor should | Send write instructions to the wire- | Achieved.
transmit wind direction and | less device that has completed pair- | See 2.4.3
speed to the computer smoothly | ing, and record the current times- | for quan-
with a speed of at least 100Kbps. | tamp. Calculate the writing time | titative
based on the current system time and | results.
the first timestamp.
2. The wind sensor must be | Design and conduct extensive tests of | Can de-
able to detect wind speed in the | different wind speeds to make sure | tect wind
range of 1m/s to 60m/s for the | the sensor works in these wind con- | speed in
resolution ratio to be lower than | ditions. Conduct experiments espe- | 0.75m/s-
0.2m/s to fit our requirements. | cially on low wind speed and high | 68.5m/s.
wind speed to ensure the property. With res-
olution
0.18m/s.
3. The power supply must pro- | Measure the output voltage using an | We use a
vide a voltage in the range of | oscilloscope, ensuring that the output | 5V battery.
4.5-5.5V for a current load up to | voltage stays within the range of 4.5-
20mA. 5.5v.

5 Conclusion

5.1 Accomplishments

In our senior design project, we successfully augment virtual reality with smell and met
all high-level requirements proposed at the beginning of this semester.

Virtual Reality (VR) Software and Hardware Deliver a smooth and immersive virtual
reality world. Incorporate diverse scenarios to showcase the integration of olfactory ele-
ments in VR scenes.

Scent Simulator Software Employ suitable physical models for scent simulation, incor-
porating valid modifications and assumptions. Accurately map the relationship between
distance and scent intensity for a seamless and natural user experience.

Scent Emitter Select distinct and appealing scents for differentiation. Combinations of
different scents should be available. The scent emission device is lightweight, comfort-
able, and aesthetically pleasing.

External Perception Module he wind speed should affect the virtual scenarios. The wind
sensor should transmit wind speed to the computer smoothly with a speed of at least
100Kbps.

Communication between Components Maintain sufficient bandwidth for real-time inter-

25

component communication. Ensure communication doesn’t obstruct user movement or
interaction with VR scenes.

5.2 Uncertainties

First, for portability, although our device is designed to be light, and did satisfy our
high-level requirement of weight, leakage problem still happens sometimes. We require
our device to be put on the table or on the ground horizontally, which keeps the liquid
from leaking out. By testing, we found that when the angle between the cartridge and the
ground is larger than 50 degrees, there is a high possibility for leakage to happen.

Second, for latency, although it is safe to think the overall latency satisfies the high-level
requirement, there are still glitches that happen. Among 10000 tests for each data trans-
mission experiment, 0.86% failure rate for transmission between software, 0.38% failure
rate for wireless modules, and 0.78% failure rate for transmission between wind sensor
and personal computer (PC).

5.3 Future Work

First, we can upgrade the wind sensor to incorporate wind direction, and specify wind
effect in the scent simulator. Second, as now our device has a large size, we can reduce
the size of the scent emitter to make it more portable. For example, we can reduce the size
of the bottle which holds perfume. Third, we can import more kinds of odors to enable
some more complex virtual reality scenarios. Finally, nowadays, ChatGPT becomes more
and more popular. We can let ChatGPT suggests the scent in the VR game. Now we
pre-defined the scents for the scenes, but we can let the machine infer that directly. In the
tuture, it can even automatically generate scents based on basic chemical components,
which means that chemical reactions could happen inside the scent emitter. However,
this definitely includes some more complex and uncertain things related to chemistry,
as we know that chemical reaction happens with some condition and will also generate
some other signals like heat, which are what wearable devices try hard to avoid.

5.4 Ethical Considerations

Our project has a few potential ethical concerns that must be considered during the design
and implementation process. The subsystem and connection schemes involve the danger
of leaking private data and ruining the operating system. Concerning the IEEE Code
of Ethics, term 1, “to hold paramount the safety, health, and welfare of the public, to
strive to comply with ethical design and sustainable development practices, to protect the
privacy of others, and to disclose promptly factors that might endanger the public or the
environment” [7], we are careful about potential security bugs for the plug-in that directly
connects to the computer, and ensure the attackers cannot steal users’ private information
via our device. Besides, our proposed device will emit gases, which involve cultural
sensitivity. Different cultures have different attitudes towards the scent, and certain scents
may be considered offensive or inappropriate in some cultures. Concerning the IEEE

26

Code of Ethics, term 3, “to avoid real or perceived conflicts of interest whenever possible,
and to disclose them to affected parties when they do exist” [7], we are mindful of these
cultural differences and ensure that scent cues are not offensive or inappropriate.

In addition to the above, we pledge to follow the IEEE Ethics guidelines [7] and the ACM
Ethics guidelines [8] as closely as possible.

27

References

[1]
2]
[3]
[4]
[5]

[6]

[7]
[8]

[9]
[10]

D. B. Turner, Workbook of atmospheric dispersion estimates: an introduction to dispersion
modeling. CRC Press, 1994.

E. Pasquill, “The estimation of the dispersion of windborne material,” Meteorological
Magazine, vol. 90, no. 1063, pp. 3349, 1961.

E. A. Gifford, “Use of routine meteorological observations for estimating atmo-
spheric dispersion,” Nuclear Safety, vol. 2, no. 4, pp. 47-57, 1961.

Arduino. “”Serial”.” (2023), [Online]. Available: https:/ /www.arduino.cc/reference/
en/language/functions/communication/serial/ (visited on 04/05/2023).
Microsoft. “”SerialPort Class”.” (2023), [Online]. Available: https:/ /learn.microsoft.
com /en-us /dotnet / api/ system.io. ports.serialport ? redirectedfrom = MSDN &
view=dotnet-plat-ext-7.0 (visited on 04/05/2023).

Unity. “”Using the Transport Layer API”.” (2020), [Online]. Available: https:/ /
docs.unity3d.com /2020.1 / Documentation / Manual / UNetUsingTransport. html
(visited on 04/04/2023).

IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7-8.html (visited on 02/08/2020).

ACM. “”ACM Code of Ethics and Professional Conduct”.” (2018), [Online]. Avail-
able: https:/ /www.acm.org/code-of-ethics (visited on 03/07/2023).

J. Crank, “The mathematics of diffusion,” Oxford University Press, 1975.

R. Phillips, Aph162, Website, Course Materials, 2006. [Online]. Available: http:/ /
rpdata.caltech.edu/courses/aph162/2006 /Protocols/diffusion.pdf.

28

https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://learn.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?redirectedfrom=MSDN&view=dotnet-plat-ext-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?redirectedfrom=MSDN&view=dotnet-plat-ext-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?redirectedfrom=MSDN&view=dotnet-plat-ext-7.0
https://docs.unity3d.com/2020.1/Documentation/Manual/UNetUsingTransport.html
https://docs.unity3d.com/2020.1/Documentation/Manual/UNetUsingTransport.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics
http://rpdata.caltech.edu/courses/aph162/2006/Protocols/diffusion.pdf
http://rpdata.caltech.edu/courses/aph162/2006/Protocols/diffusion.pdf

Appendix A Code of Scent Simulator

I import numpy as np
> import matplotlib.pyplot as plt
3
4+ def gaussian_plume_model (Q, x, vy, z, U, H, sigma_y, sigma_z):
5 C=(Q / (2 * np.pi » sigma_y * sigma_z * U)) = \
6 np.exp (-y**2 / (2 % sigma_y=**2)) % \
(np.exp(—(z — H)**2 / (2 x sigma_z**2)) + np.exp(—(z + H)**2 / (2 «*
sigma_z**2)))
8 return C

~

10 def dispersion_coefficients(stability_class, x):

11 coefficients = {
12 "A’: (213, 0.91, 122, 0.77),
13 "B’”: (156, 0.92, 90.6, 0.73),

14 "c’: (104, 0.92, 61.0, 0.70

()
()
15 "D’: (68.0, 0.94, 49.¢, S
(4
(0

01,65,
16 "E’: (50.5, 0.95, 34.0, 0.64),
17 "F’: (34.0, 0.96, 15.9, 0.60)
18 }
19
20 a_y, by, a z, b_z = coefficients[stability class]
21 eps = le-6 # Small constant to prevent divide by zero error
2 sigma_y = a_y * ((x + eps) ** b_y)
23 sigma_z = a_z x ((x + eps) ** b_z)
24 return sigma_y, sigma_z

Input parameters
Q = 1.0 # Scent particle emission rate
8 U = 5.0 # Wind speed
H = 25 # Height of the pollutant source
z = 2 # Vertical distance (fixed)
31 stability_class = ’'C’

3 # Create a grid of x and y values

34 Xx_vals = np.linspace(0, 2, 100) # Downwind distance values

35 y_vals = np.linspace(-50, 50, 100) # Crosswind distance values
3% X, Y = np.meshgrid(x_vals, y_vals)

38 # Calculate scent concentration for each point in the grid

39 C = np.zeros_like (X)

40 for i in range (X.shape[0]):

41 for j in range (X.shape[l]):

42 sigma_y, sigma_z = dispersion_coefficients(stability_class, XI[i, Jjl)

43 Cli, j] = gaussian_plume_model (Q, XI[i, 3jI1, YI[i, 3jl, z, U, H, sigma_y,
sigma_z)

45 # Create a contour plot of the scent concentration distribution

46 plt.contourf (X, Y, C)

47 plt.colorbar (label="Scent Concentration")

48 plt.xlabel ("Downwind Distance (x)")

49 plt.ylabel ("Crosswind Distance (y)")

50 plt.title (f£"Scent Concentration Distribution in the x-y Plane (Stability Class

29

{stability_class})")
51 plt.savefig("gaussian_plume.png")

Appendix B Diffusion Equation

By solving the 3D diffusion equation, it becomes possible to simulate the dispersion and
spread of scents within the VR environment, allowing for a more realistic representation
of smell and enabling the creation of immersive olfactory experiences. The 3D diffusion
equation presented in [9] is shown below:

@_D 32u+82u+82u
ot ox? Oy*> 022

3)
In this equation, u is the concentration of the diffusing substance, ¢ is time, z, y, and z are

the spatial dimensions, and D is the diffusion coefficient.

Solving this differential equation requires numerous tricks and efforts. Utilizing the
method mentioned in [10], we arrive at the following result:

u(r,t) = L . e_%t 4)

(47TDt)%

where:

u(r, t) is the scent particle concentration at distance r from source at time ¢.

() is the scent particle emission rate.

D is the diffusion coefficient.

r is the distance from the scent-emitting source.

Appendix C Alternative Data Transmission Design

For software data transmission, Based on the official document provided by Unity [6], my
alternative considered solution is to use Unity-provided lower-level networking APL. This
can establish connections, communicate using a variety of “quality of services”, enable
flow control (like TCP), and do basic statistics. First, we need to set the maximum packet
size and the thread timeout limit, and then initialize the network transport layer using
NetworkTransport.Init();.

As we only need to send data from virtual reality (VR) software to scent simulator soft-
ware, we think adding one channel is enough. After configuring the channel, we can
initialize the host topology and set the maximum connection number. Then, we can bind
this network topology with our host IP addresses and an available port. For virtual reality
(VR) software, it needs to connect to the scent simulator with the correct IP address and

30

port number, and then send data using provided interface NetworkTransport.Send(). For
scent simulator software, it receives data by NetworkTransport. Receive(). Finally, after
communication, we can shut down the connection using NetworkTransport. Disconnect().
The overall pseudo-code with flowchart is shown below.

Initialize the Network
Transport Layer

U

Configure the network
topology

Start communicating

Shutdown library after
use

GlobalConfig gConfig = new GlobalConfig():
gConfig.MaxPacketSize % Maximum Packet Size;

NetworkTransport.Init (gConfig)

ConnectionConfig config new ConnectionConfig();
int Channelld - config.AddChannel (QosType.Reliable);
HostTopology topology = new HostTopology(config, % Max Connection #);

int hostld = NetworkTransport.AddHost (topology, port):

For virtual reality (VR) software:
connectionTd = NetworkTransporl.Connect (hostTd, host, pert):
NetworkTransport.Send (hostld, connectionld, Channelld, buffer, length);

For scent simulator software:

NetworkEventType recData = NetworkTransport.Receive(ocut recHostld, out
connectionld, out channelld, recBuffer, bufferSize, out dataSize, out
error);

NetworkTransport.Disconnect (hostld, connectionld); I

Figure 31: Pseudo-code with flow-chart for data transmission protocol based on Unity

provided packages

31

Appendix D Circuit Schematics of Atomization Unit

DCBU to DC1sU

N o1

C7 L

|71 3etezenzs

14 FIa1617
1 &

1 L

3

.
HuH

18@nF /188y

Uz

1 cz
L 18uF1Z8Y . obur s2au 5 A Re =
1epuFr2euT D2 L. . 4R
ucc ol IN | 228K/1% 2R 24 ::f‘.
2 =) @
NC o @3 t
10K I
3 enl >
g
100F e
2,44/
g.
o
S
VE‘E \c%j
o B4 BAK/AY
NCE3487R =
fap! U3 NEB5S
5 >
[vcc_sy 0t uCC T ?
I20110833 11 9 RES ﬁ(f
02_ pla— zaxdiyng QuT 2 <PuH
] Soc ,
9 . CON 1’
<l GND
C5
s 16
'Fuaw AGND
. mE
i JUNPER=ZP-SHOR

GHO_Sio

Figure 32: Circuit schematics of Atomization Unit

32

32e118@439

	Introduction
	Purpose
	Functionality
	Subsystem Overview

	Design
	Virtual Reality (VR) Subsystem
	Design Description
	Design Justification

	Scent Simulator Software
	Design Description
	Alternative Design
	Design Justification

	Scent Emitter
	Design Description
	Alternative Design
	Design Justification

	External Perception
	Design Description
	Alternative Design
	Design Justification

	Between Subsystems: Data Transmission
	Design Description
	Design Alternative
	Design Justification

	Cost and Schedule
	Cost Analysis
	Labor
	Parts

	Schedule

	Requirements and Verification
	Virtual Reality (VR) Software
	Scent Simulation Software
	Virtual Reality (VR) Hardware
	Scent Emitter
	External Perception Subsystem

	Conclusion
	Accomplishments
	Uncertainties
	Future Work
	Ethical Considerations

	References
	Appendix Code of Scent Simulator
	Appendix Diffusion Equation
	Appendix Alternative Data Transmission Design
	Appendix Circuit Schematics of Atomization Unit

