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Abstract

Our project enables semantic communication on an unmanned aerial vehicle(UAV). Our
UAV takes video using its camera and sends it to the Raspberry Pi on it. Raspberry Pi
then extracts the semantic information of the video, and the semantic information will be
sent to the computer to achieve communication. The goal of our semantic extraction is
to get what the basketball player is doing at this point in the video. Finally, our semantic
communication accuracy can reach more than 85%. It can be said that the main signifi-
cance of our project is to prove that the emerging concept of semantic communication can
be achieved.
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1 Introduction

1.1 Purpose

Existing communication systems are mainly based on Shannon’s information theory, and
they are mostly developed to maximize data-oriented performance indicators, such as
communication data rate, while ignoring content-related information [1]. In this case,
people start to think about semantic communication. Semantic communication breaks
through the traditional theoretical framework of Shannon’s information theory improv-
ing transmission rate and accuracy, and transforming the content of communication into
the meaning of information more valuable to human beings, thus fundamentally trans-
forming the existing communication architecture into a more universal intelligent and
human-oriented system [2].

The unmanned aerial vehicles (UAV) currently on the market can only fly and take pic-
tures, and transmit the pictures or videos to the receiver using traditional means of com-
munication [3]. But in many cases, the direct transmission of images from UAV is a huge
waste of power and transmission. So, our goal is to develop a UAV technology that allows
the UAV to transmit images and videos using semantic communication. More specifically,
our UAV can build on the capabilities of existing UAV to process a sample of the image
taken, extract specific semantics, and convey its symbolic representation to the target re-
ceiver. In this way, all we need to transmit is a sentence instead of a whole video. We hope
this technique will be much faster than transmitting each complete image directly.

Figure 1: System Block Diagram
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And the Block Diagram of our project is shown in Fig. 1.

1.2 Functionality

Our high-level project functionality includes:

• The UAV must be able to carry camera and the Raspberry Pi to move around. The
UAV can hover up to at least 5 meters in the air and take videos with a resolution
of 1920 by 1080. Through this, we can use UAV to achieve the basketball court
recording.

• The Raspberry Pi must understand the videos from camera and extract useful se-
mantic information. In our case this means what the basketball player is doing. The
UAV should be able to predict the types of actions with over 70% accuracy. Through
this, we can extract video semantic information. This will pave the way for the sub-
sequent transmission of semantic information. Besides, the process time should be
less than 8s for one video.

• The WIFI chip will must transmit semantic information to the receiver successfully.
The computer will show the finally semantic information. The faster transmission
speed than the traditional communication method and stronger anti-interference
ability is highly appreciated. The time required to transfer each semantic informa-
tion should be less than 1s.

1.3 Subsystem Overview

Figure 2 is the top-level diagram of our project.

Figure 2: Top-level Diagram
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1.3.1 UAV mechanical, balance and dynamic Subsystem (UAVS)

The UAV mechanical, balance and dynamic Subsystem includes a power module, a con-
troller module, and a camera. The power module, which includes a distributor board
and a lithium battery, is to supply stable voltage for every device and other subsystems
on UAV. The controller module, PIXHAWK, will receive signal and control the four pro-
pellers, which are used to control the UAV’s movement. The camera will take images,
which will be used as input data for lighting semantic extraction subsystems (LSES).

1.3.2 Lighting Semantic Extraction Subsystem (LSES)

Given the video from camera of UAVS as input, LSES are designed to extract semantic
information of the video and generate a descriptive sentence about basketball actions in
the video. LSES uses Raspberry Pi on the UAV to extract and transmit semantic infor-
mation. LSES could utilize advanced computer vision algorithms and machine learning
techniques to accurately detect and identify the people and their actions in the video, pro-
viding valuable insights for a range of applications. Our project will focus on basketball
game at the gym. The semantic information extracted by LSES will serve as the input of
the mutual communication subsystem (MCS).

1.3.3 Mutual Communication Subsystem (MCS)

MCS accepts the text information extracted from images by LSES. This subsystem con-
verts text into a bits signal and transmits it to another smart device over a physical chan-
nel. MCS consists of two separate parts: the transmitter on UAV and the receivers on
smart devices, for example a computer, which are connected by the physical channel.
The subsystem includes a encoder and a decoder. And finally, the text information will
be displayed on a screen. The text has similar semantic information. Communication
should be quick and without losing semantic information.
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2 Design

2.1 Design Procedure

2.1.1 UAV mechanical, balance and dynamic Subsystem (UAVS)

Figure 3: Structure of UAV

After considering the cost and project requirements, we decided to add the accessories
shown in the Fig. 3: Firstly, we chose to use the 4G version of the Raspberry Pi board for
the on-board computer because the 2G version could not meet the memory requirements
of our entire model and the 8G version was too expensive (120% of the price of the 4G
version and 150% of the 8G version based on the price of the 2G version). In comparison,
the 4G version of the Raspberry Pi was able to meet the memory requirements of our
model and was within our budget, so we chose this version of the Raspberry Pi as our
on-board computer.

For the flight control we chose Pixhawk version 2.4.8. One of the reasons was that our
UAV is a miniature UAV and Pixhawk was sufficient for the attitude control of the UAV
and there were open source websites available to guide the assembly of the UAV, so we
chose this flight control.

For the camera module, after testing the weight capacity of the drone and the input pixels
of the project model, we finally chose a smaller monocular camera with up to 1080p pixels
as our video capture tool. Again the cost was acceptable. For the battery, we decided to
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use a stable and fast charging and discharging lithium battery, which is small enough to
power the drone, as the endurance should not be shorter than fifteen minutes and the
weight should not be too heavy.

2.1.2 Lighting Semantic Extraction Subsystems (LSES)

Since the design document, under the suggestion of the course instructor, we change our
application scenario. We will choose a single kind of sport, basketball, and recognize
some specific action in the game, for example, passing, laying up, shooting. This change
makes our project much more challenging, since we need to analysis video instead of
image to understand semantic meaning. We need to change our network. The network
architecture we envisioned at the beginning was YOLO [4], but the YOLO network was
not suitable for video motion detection.

Then we need to choose the appropriate semantic extraction network. Before I can do
that, I need to prove the feasibility of semantic communication. The semantic channel
capacity of a discrete memoryless channel [5] is expressed as

Cs = sup
p(Z|X)

{
I(X;V )−H(Z | X) +HS(V )

}
(1)

For Eq. 1, I(X;V ) is the mutual information between the source, X , and the transmis-
sion task, V . Here p(Z|X) is the conditional probabilistic distribution that refers to a
semantic coding strategy with the source, X , encoded into its semantic representation,
Z, and H(Z|X) means the semantic ambiguity of the coding. HS(V ) is the average log-
ical information of the received messages for the task V . Then here we can see that if
we could make HS(V ) be bigger than H(Z|X), the semantic channel capacity could be
always bigger than 0. That means the receiver can handle the semantic ambiguity. For
our design, this is easy to accomplish. As long as the accuracy of semantic information
extraction model reaches more than 50%, it can be realized.

The network we need needs to have the following characteristics. First, the network needs
to be suitable for motion detection. This is the key need to accomplish our semantic
extraction. Secondly, the complexity of this network needs to be as small as possible.
This is because eventually we need to do the target detection work on the Raspberry Pi.
The CPU and GPU capabilities of the Raspberry Pi are relatively poor to complete the
computing process for large models.

After searching the Internet and reading several related papers, I found two networks that
meet the above requirements, namely 3D Convolutional Network[6] (C3D) and 2D Con-
volutional network [7]. The final semantic extraction model I choose is 3D Convolutional
Networks. The 3D Convolutional Networks is better than 2D convolutional network be-
cause that whether 2D convolution is applied to a single image or multiple images, the
output is a two-dimensional result, so the time series information will be lost when used
for video recognition; 3D convolution solves this problem well, it preserves both temporal
and spatial information [6].
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In general, the advantage of this model is that it can extract information from the time
sequence, so it performs well in the face of action recognition. And this model architecture
is relatively simple, which is suitable to run on Raspberry Pi. And the running time of the
model is relatively small.

In addition, I have done simulation validation experiments of this model on the com-
puter. I ran the 3D Convolutional Network on a public dataset UCF-101 [8] and see if
the accuracy of the model reaches a high level after multiple epochs. UCF101 is a motion
recognition dataset of realistic action videos, providing 13,320 videos from 101 action cat-
egories.

Figure. 4 is the simulation result of 3D Convolutional Network. This shows the accuracy
of the trained model in the training set and verification set. It can be found that after
training several epochs, our model can reach 70% accuracy, which indicates that the 3D
Convolutional Network is very suitable for action recognition.

Figure 4: The result of LSES

More importantly, we cannot any suitable dataset. Since we are shooting basketball
videos on the UAV, any basketball videos not shot from the top view or non-basketball
videos shot from the top view cannot be used as our dataset. Thus, we need to collect
and label the dataset by ourselves, which has huge amount of work. The details of the
recording of dataset will be discussed in Section 2.2.2.

2.1.3 Mutual Communication Subsystem (MCS)

Driven by deep learning, natural language processing (NLP) has achieved great success
in analyzing and understanding large volumes of linguistic text. We also try to use a
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new perspective for the communication system from the semantic level, and proposes a
semantic transmission system based on a deep learning network, which is called deep
learning enabled semantic communication systems (DeepSC) [9], for text transmission.
On the basis of transformer, the goal of DeepSC is to minimize semantic errors, restore
sentence meaning, not traditional bit or symbol error communication. The advantage of
DeepSC compared to other NLP model is that its architecture is not so complex and you
can run it on Raspberry Pi.

2.2 Design Details

2.2.1 UAV mechanical, balance and dynamic Subsystem (UAVS)

Figure 5: Initial UAVS
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Figure 6: Modified UAVS

I will describe how the drone was assembled from its initial state of just motors and
electrical speed controller on the Fig. 5 into a drone that meets the requirements of our
project on the Fig. 6. As described in the alternative, we chose the right components for
the project, taking into account cost and requirements. During the assembly process, we
solved several problems: Firstly, the allocation of component positions. In accordance
with the 445 battery safety specification document (plus references), we separated the
battery from the on-board computer and flight controls as far as possible to ensure elec-
trical safety. In addition, by consulting open source tutorials, we were able to correctly
install the flight controls so that they could accurately control the attitude of our quadro-
tor drone. We have also installed a cooling fan on the Raspberry Pi to ensure that the
on-board computer does not overheat and cause accidents. The second is the balance
calibration. As the weight of the drone is not balanced in all directions, it is necessary
to adjust the output of each motor by controlling the flight control through the remote
control’s trim button to enable the drone to fly in a balanced manner. The third issue is
the camera lens angle. Through continuous test flights and test shots, the camera’s pitch
angle at 5m flight height was determined and fixed. Once the above major problems
were solved, the UAV was created to meet the requirements of the project as shown in the
diagram on the right.
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2.2.2 Lighting Semantic Extraction Subsystems (LSES)

In this part, I will describe the design description and justification of LSES from two
aspects: dataset and model.

Just like what I said above, we shot the dataset by ourselves. While one student takes
pictures with a 3m high selfie stick, another student and I shoot, lay up and pass the bas-
ketball on the basketball court. And Fig. 7 is one frame of the dataset that we shot.

Figure 7: One frame from the dataset

We ended up taking more than 800 videos from different angles. Then we labeled the
dataset into three categories: ”Shoot”, ”Lay Up” and ”Pass”. Also, as shown in Fig. 7, we
shot the data set with someone else playing ball in the background. I think this can be
interpreted by the model as noise from the data set, which helps to make our model more
robust.

The architecture of 3D Convolutional Network is like this:

Figure 8: 3D Convolutional Network architecture[6]

From Fig. 8 we can see that the network takes the edited video clips as input, and the
resolution of all videos is adjusted to 128*171. The video is also split into 16 frames that do
not overlap each other and are used as network input. The network has 5 convolutional
layers and 5 pooling layers, two fully connected layers and a softmax loss function layer
to predict action labels. The number of filters in the five convolutional layers is 64, 128,
256, 256, 256, respectively. All convolutional layers have suitable padding and stride
to ensure that the input to output of convolutional layers does not change in size. The
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pooling layer is processed by 2*2*2 kernels to reduce the output by a factor of 8. The two
fully connected layers have 1024 outputs, and then we train the network from scratch,
here using the least gradient algorithm with a starting learning rate of 0.003.

For our project, I modified the fully connected layers output slim to the number of our
labels. To be specific, that is 3. Besides, I changed the probability of the dropout from 0.5
to 0.3 to make the fitting of the model better. Since we would run the code on Raspberry
Pi, we want to minimize the model size and computational time. Therefore, here I delete
two layers of convolutional networks that do not change the output dimension. The rea-
son is that the network accuracy will not decrease much after deleting, but the operation
time can be greatly reduced. Here I did the testing, using both the modified network and
the pre-modified network on the UCF-101 dataset [8]. The result is that after 20 epochs,
the modified network accuracy rate is 76.5%, and the average running time per epoch
is 10 minutes and 26 seconds; the pre-modified network accuracy rate is 80.2%, and the
average running time per epoch is 13 minutes and 35 seconds. As you can see, although
the accuracy doesn’t decrease much, the computation time decreases a lot.

2.2.3 Mutual Communication Subsystem (MCS)

MCS accepts the text information extracted from images by LSES. MCS consists of two
separate parts: the transmitter on UAV and the receivers on smart devices, which are
connected by the physical channel.

The structure of DeepSC is shown in Fig. 9. The transmitter consists of two parts, a seman-
tic encoder and a channel encoder, to extract semantic information from it and guarantee
the successful transmission of semantic information on the physical channel. The receiver
has corresponding decoders.

In the process of training, we uses two loss function parts, as shown in Eq. 2, the first part
is cross-entropy loss to minimize the semantic difference between the input sentence and
the output sentence by training the entire system. The second part is a loss function for
mutual information, which maximizes the obtained data rate. A parameter λ (0≤ λ ≤1)
is also be added as the related weight for both parts.

Ltotal = LCE(s, ŝ) + λLMI (2)
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Figure 9: Structure of DeepSC network [9]

Additionally, we designed a graphical user interface (GUI) to serve as the endpoint for
Mutual Communication System (MCS). The main interface is shown on Fig. 10.

Figure 10: GUI Start Window

Our GUI is able to:

1. Display the current frame shot by the camera sensor embedded on the UAV mechan-
ical, balance and dynamic Subsystem (UAVS). This enables real-time monitoring of the
signal strength of our MCS as well as helping UAV manipulator adjust the orientation of
our drone.

2. Asynchronously send “Start Recording” instruction to the Raspberry Pi on LSES. When
LSES receives the instruction, it will start collecting the frames from the camera sensor

11



and further assemble them to form a 3s video clip. This video clip will be fed to our C3D
model in LSES to inference the action of the player(s) on the basketball court.

3. Besides forming the video clip, LSES will also asynchronously send collected frames
to the GUI, which enables our GUI to replay the recorded videos. This feature is helpful
in verifying the performance of our model in LSES as well as the communication part of
our MCS.

4. After inferencing, the action as well as its probability will be sent to our GUI, which
will be properly formatted and displayed on the GUI console, as is shown in Fig. 11. If
the confidence score is lower than a preset threshold, a warning will be fired to notify the
user.

Figure 11: GUI Running Window

Our GUI is designed with the best practice of multi-process programming in mind. Specif-
ically, we assigned one process for each independent task and constructed pipes for bidi-
rectional message passing and dataflow. The event loop in GUI main process is responsi-
ble for launching all child processes, receiving messages and data from LSES and UAVs
and handling requests from user. This parallelism can significantly improve user experi-
ence by providing minimal latency between user action and visual feedback.
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3 Requirements and Verification

3.1 UAV mechanical, balance and dynamic Subsystem (UAVS)

3.1.1 Completeness of Requirements

Our power supply module can power both the drone motors and the on-board computer,
the Raspberry Pi, and allows both parts to work properly at the same time. After as-
sembly, the UAV can perform a series of flight manoeuvres such as take-off and landing,
hovering and cruising, and fly in a smooth attitude, with all flight manoeuvres in 3D
space. The camera can be used to shoot video at the specified altitude 5m, and the video
is clear and shake-free. The athlete’s movements can be recognised in the footage.

3.1.2 Appropriate Verification Procedures

The output voltage of the lithium battery was first measured using a meter at 11.8V, which
was in line with the battery calibration voltage. Afterwards, the voltage supplied to the
Raspberry Pi after ultra battery elimination circuit (UBEC) was measured to be 5V, again
in accordance with the UBEC instructions, and the whole power supply module function
was verified.

When testing the flight function of the UAV, the UAV was first made to take off normally
and rise to a specified height and then adjust the throttle to hover. The hovering time of
one minute did not reveal any obvious imbalance such as tilting of the UAV body, and
the results did not change after several test flights. Afterwards, the UAV was flown in
different directions in the horizontal and vertical planes respectively, and the aircraft was
in a manoeuvrable state and the remote control response was timely. When landing, the
aircraft could also be steered to land at the designated location. This verified that the UAV
was in good flying condition.

The recorded video was put into the LSES and the system was able to recognise the move-
ments made by the athlete in the video taken by the UAV.

3.1.3 Quantitative Results

For quantitative results, the voltage supplied to the Raspberry Pi after UBEC is 5V. The
video shot by camera on the UAV was recorded at 30 fps in 1080p. The UAV can fly to
an altitude of 5m and hover. All of these quantitative results are in line with our require-
ments.

3.2 Lighting Semantic Extraction Subsystems (LSES)

3.2.1 Completeness of Requirements

TThe requirements for LSES are that it could identify the actions of players on the bas-
ketball court with an accuracy of more than 80%. Besides, the running time of the model
should also be small enough. Our expectation is to process one video in about 1 second on
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computer and 8 seconds on Raspberry Pi. Finally, the LSES can fulfill these requirements
well. More detailed requirements can be found in Appendix B.

3.2.2 Appropriate Verification Procedures

First, I did the training model part on the computer. The model divides the dataset taken
by us into three parts: training set, test set and verification set. At this stage, I tried our
best to adjust the model parameters to make the accuracy of the model on the training set
as high as possible and pay attention to the accuracy of the model on the test dataset and
the verification dataset.

Our initial design is that in addition to correctly identifying the three basketball actions,
the LSES should also be able to determine whether the video is about basketball or not.
In order to do this, in addition to the initial three labels: ”shoot”, ”lay up” and ”pass”, I
added a label called ”Nothing”. The videos of this label means that no basketball-related
actions are included.

During the model training phase, I added some non-basketball-related videos for train-
ing and marked them as ”Nothing”. After about 200 epochs of training, the accuracy of
the model reached its highest value, and the accuracy of the model on the training and
validation sets is shown in Fig. 12.
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Figure 12: 4 labels C3D Model Training Result

It can be seen that the model achieves an accuracy of over 90% on both the training and
validation sets. I then used the model for some tests, for example, I transmitted a video of
a baseball to the model and the model output was ”Nothing”. This shows that our model
works very well with videos that are not about basketball. However, during the testing
phase I discovered a problem with our existing model, which is that some basketball-
related videos are identified as ”Nothing” when the video is captured by our UAV. I think
that is because of the angle problem and UAV shaking when the video is filming, the video
captured by the UAV differs so much from the dataset that the predictions would become
inaccurate.

To solve this problem, we decided to remove the 4th label and use only the basketball
dataset we shot for training. We then retrained our model, and this time the accuracy of
the model improved further. After 200 epochs, the result of the model on the data set is
shown in Fig. 13.
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Figure 13: 3 labels C3D Model Training Result

From Fig. 13 you can see that the accuracy of our C3D network can reach 100% on the
training set, and more than 90% on the verification set and test set. Subsequently, I wrote
the inference script to test the validity of the new model. First I tried it on my own com-
puter. The inference script could use our trained model to extract the semantic informa-
tion from the video and recognize the types of basketball actions of the video.

Then I put the script on Raspberry Pi and used the UAV to shoot video for motion recog-
nition. And I record the accuracy of our predictions. On Raspberry Pi, the prediction
accuracy of the model is roughly the same as that of the computer, at more than 85%, as
long as the UAV does not shake badly due to air currents, causing the picture to shake or
be unclear.

3.2.3 Quantitative Results

First of all, Fig. 14 shows the change of the accuracy of our model in the training stage.
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Figure 14: The Training Process of C3D Model

As can be seen from Fig. 14, at around 200 epochs, the prediction accuracy of our model
gradually increases from 30% to 100%. This proves that our model performs very well in
the training stage and the accuracy of the model can be maintained at a very high level in
the end.

Figure 15 shows the accuracy of our model on the UAV when processing video from the
UAV’s camera.
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Figure 15: The test result on UAV

As can be seen from Fig. 15, for the two types of videos ”Shoot” and ”Lay up”, the
prediction accuracy of the model can reach more than 90%; for the videos of ”Pass”, the
prediction accuracy of the model can reach more than 80%; in general, the prediction
accuracy of the model can reach more than 85%. This accuracy rate is higher than our
accuracy requirement 80%.

On the NVIDIA GeForce RTX 3090 graphics card, our model running time was about 0.5
second per video. This processing speed is capable of processing videos from UAV in real
time and predicting results. However, the Raspberry Pi GPU model is VideoCore VI. Due
to the limited hardware conditions of Raspberry Pi, it takes about 7.5 seconds to run a
script file on Raspberry Pi. This result is very much in line with our initial expectations
and it meets our requirements.
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3.3 Mutual Communication Subsystem (MCS)

3.3.1 Completeness of Requirements

The requirements for MCS are that it could transmit the text output of the LSES accu-
rately and efficiently. For our finished subsystem, the transmission time is less than 0.5
second, and the semantic information during the transmission process does not change
significantly. We use bilingual evaluation understudy score (BLEU), defined as Eq. 3, to
evaluate the performance of our network. The result is very good.

logBLEU = min(1− ls/lŝ, 0) +
N∑

n=0

unlogpn (3)

In Eq. 3, ls, lŝ are the length of input and output sentences. un is the weights of n-grams
and pn is the n-grams score.

3.3.2 Appropriate Verification Procedures

For network verification, we divide the dataset into three parts: training set, test set and
verification set. In our test, we will use our test data, which will not be used in our
training, to test the model’s performance under different epoch. Meanwhile, I will test
some sentences used in basketball games, for example, the player shoots the ball to test it
on Raspberry Pi. The criteria is the value of the BLEU.

The GUI can verify the functionality of all our subsystems in a visual way. For UAVs,
we can test the functionally of the hardware sensors and control system by looking at the
frames on the GUI main window. If there exists no glitch between adjacent frames and
frames shot by our camera sensor include players and basketball stand in the center, then
the UAVs works as desired. For LSES, we can compare the inferenced result displaying
on the GUI console with the recorded video clip to assert the accuracy of our C3D model.
If the accuracy for each action is greater than 0.9, then we can assert the functioning of
LSES.

For MCS, we can verify the efficiency of data transmission by measuring the latencies
during transmissions. Firstly, we measure the time difference between a user clicks “start”
and the inferenced result displaying on the GUI console (denoted as L), which can be
done by an accurate timer. The time difference should be less than 5s. Secondly, we
measure the time difference between MCS sending a “start” instruction and LSES receives
it (denoted as Lsend). This can be measured by taking the difference between the frame id
of the first frame in the recorded video clip and the recorded frame id when user presses
the start button, and then multiplying by 1/fps, where fps is the frame rate of the video.
We do several experiments and take the average among these calculated numbers.

3.3.3 Quantitative Results

The final result of this subsystem is not bad. After training, the BLEU of our DeepSC net-
work can reach 90% on the test dataset. The result for our test under different signal noise
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ratios (SNR) is shown in Fig. 16. We noticed that the BLEU score increases as the SNR
increases and the noise decreases, and it exceeds 90% when the SNR reaches 18dB. This is
already a noisy environment in communication, compared to 70dB under normal condi-
tions, but our network still has a good performance. The result we reproduced has certain
differences between this in paper [9], but the difference is not large. The reproduction is
successful.

Figure 16: DeepSC performance

And using GUI, we measure the latency between LSES sending the result and MCS re-
ceives it (denoted as Lrecv), which could be calculated by the Eq. 4:

Lrecv = L− Lsend − Linf (4)

In Eq. 4, Linf is the inference time on LSES and could be accurately measured by using the
‘time‘ module in python library. After calculation, our latency is 0.42s, which is less than
0.5s. It is a desirable latency for transmitting one sentence with about 10 words.
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4 Cost and Schedule

4.1 Cost

First, for our labor cost, we assume everybody’s hourly wage is ¥100/hour, and we need
to work for 10 hours/week for all four people. And we need to do this for the following
10 weeks this semester. So for this part, our fixed development cost is :

4 · 20CNY

hr
· 10hr
wk

· 10wks · 2.5 = 20000CNY

Then, since only one person is needed to operate the drone, we don’t need a lot of bulk.
For the parts and manufacturing prototype costs, it is estimated as ¥2946 which is shown
in Tab. 1:

Table 1: Cost Table

Part Vendor Cost
(prototype)(unit:¥)

Cost (bulk)(unit:¥)

Professional aerial
photography UAV
(CK10pro)

Taobao 1888 50

8GB Raspberry Pi
(4B; generic)

Taobao 728 20

200W pixels
Monocular Camera
(Reshi Technology)

Taobao 150 20

WiFi module (Small
R Technology;
MT7620)

Taobao 50 40

Total Taobao 2816 130

Then we add two parts together, our total development cost should be ¥20000+¥2946=¥22946.

4.2 Schedule

Figure 17 shows the schedule of the work done throughout the semester by our four
teammates.
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Figure 17: Schedule for teammates
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5 Conclusion

5.1 Accomplishments

In the end, our project successfully fulfilled all of the high level requirements. Our UAV
was successfully equipped with a camera and Raspberry Pi, and still maintained its bal-
ance and could fly up to 5m in the air for video recording. The Raspberry Pi on the UAV
can extract semantics from basketball videos captured by cameras and identify the move-
ment categories of basketball players in the videos. Semantic extraction process takes less
than 8 seconds. And the recognition accuracy rate is more than 85%. In addition, UAV
can transmit semantic information to the computer and deliver it to the user through
our well-designed GUI interface. The complete transmission time is controlled within 1
second.

5.2 Uncertainties

From Section 3.2.3 we can see that although the training accuracy of our model is almost
100%, the final accuracy on UAV is only about 85%. I think this is because only a few of
our teammates participated in the shooting of our dataset, and the diversity and number
of the data set was insufficient. In addition, video from a mobile phone is still different
from video shooting by a UAV in the air. This equates to a lack of training set and the fact
that the training set and the test set are not the same, so it is not unusual for the model to
be less effective on the test set than on the training set.

As for the reason why the prediction accuracy of ”Pass” category is only 81.5%, which is
slightly lower than that of the other two categories, I think that is because in the training
stage, the number of videos labeled as ”Pass” is lower than that of the other two cate-
gories of videos, which leads to worse prediction results of the model in this category.
This problem can be solved by photographing more ”Pass” data sets and training the
model.

5.3 Future Work

• Dataset. Our dataset is mostly shot by our teammates playing ball, so the diversity
of the dataset is not good enough. If we can hire more people to take part in the
shooting of our dataset, the effect of our model will be better.

• GPU. The GPU of Raspberry Pi is VideoCore VI. If we can change it to a stronger
GPU, the computing speed will be improved.

• Algorithm model. We were limited by the Raspberry Pi hardware and the size of
the model had to go small. If we have a better GPU on Raspberry Pi then we can
use a bigger model and a better algorithm.
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5.4 Ethical Considerations

A number of potential ethical and safety issues had to be considered in our project. First
of all, both the UAV and the Raspberry Pi board need to be powered by batteries, which
cannot be replaced by other power sources. So the stability and safety of the batteries are
an important part of ensuring the success of the project. According to the ECE445 bat-
tery safety document [10], we will understand the battery specifications before installing
the battery, test the battery circuit packaging, charging and discharging, and the oper-
ating temperature, and pay attention to the isolation from other work areas such as the
transmission module and the Raspberry Pi board to avoid impact.

In addition to the manipulation method, when choosing the flight area and time period,
we also need to ensure that the drone will not cause threats and interference, and avoid
flying in densely populated areas and flight-restricted areas. When flying, we need to
comply with local regulations and rules to ensure that my project is operating within legal
limits. Because our tests and demonstrations are conducted on the campus of Zhejiang
University, according to the school’s guidelines [11], we need to apply to the school in
advance before the drone flight.

According to the Institute of Electrical and Electronics Engineers(IEEE) Code of Ethics 1
“to protect the privacy of others, and to disclose promptly factors that might endanger
the public or the environment” [12], we promise that the data set used in the project will
seek the permission of the owner, and the collected images will also be cleared after use
in order to protect information security. The final result of the project cannot be used in
any scenario that infringes on public information and privacy.
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Appendix A Standard Abbreviations
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Appendix B Requirements & Verification Table

Below is the Requirements & Verification Table for our project.
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