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Abstract 
This report presents a remote car control system utilizing an RGBD camera, a low-power 
platform (Raspberry Pi), a 3D reconstruction algorithm, and an image compression 
transfer protocol. The system addresses two main challenges in current car control 
systems. Firstly, by employing 3D reconstruction, it provides comprehensive information 
and real-time modeling of the car’s surroundings, eliminating the need for frequent 
manual inspection. Secondly, the system enables small, lightweight, and low-power-
consuming car platforms by offloading computation-intensive tasks to a remote server. 
The network reception capability is enhanced, and an image compression transfer 
protocol is designed to optimize bandwidth usage. Besides, the system uses McNamee 
wheels and PID control to achieve omnidirectional motion and allows remote car control 
via a joystick. Users can also get a third-person view of the car and its surroundings. The 
findings demonstrate the effectiveness of the system in achieving safe, fast, and robust 
car control in complex environments. 

Keywords: remote car control system, 3D reconstruction, image compression, McNamee 
wheels, PID control.  
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1. Introduction 
1.1 Problem and Solution Overview 
Nowadays, there is an intensive need for remote vehicle control systems such as robotic control, 
car control, and drone control. And the requirements for those systems are no longer limited to 
“being able to work” but extend to a safe, fast, low-latency, and robust control system in complex 
environments. When exploring the danger or dedicated environments, robots have their own 
advantages like standing in the extreme environment. Their experience will be useful for humans. 
However, the current design of such systems poses the following challenges:  

 The lack of comprehensive information about the surroundings: For those vehicles that 
only have one camera showing the image, they lack information and memory about the 
surroundings in other directions, and even there are some solutions utilizing multiple 
cameras to sense the environment, they have drawbacks like dead zones, high costs, and 
large space usage for installment. Also, without the memory, their pre-exploration will be 
difficult for humans to reuse. 

 Excessive size and high-power consumption:  for some use cases such as disaster area 
detection, and historical sites detection, the vehicle platform should usually be small and 
with low power consumption to meet the endurance requirements, while any Image 
processing modules usually require a large amount of computation and thus need a large on-
vehicle energy and computation module.   

The existing remote-control systems utilized in applications such as robotics and drones 
encounter difficulties when operating in complex environments, resulting in inadequate control 
over the machine. Moreover, for remote control, operators usually lack a comprehensive view of 
their surroundings, thereby increasing the likelihood of accidents. Therefore, it is essential to 
design a remote-control system that enables the user to effectively maneuver the car in intricate 
surroundings, while providing a comprehensive view of the environment, even when the vehicle 
is beyond the range of visual perception. 

1.2 Solution 
In our project, we aim to address the challenges mentioned above using an RGBD camera, a low-
power platform (Raspberry Pi), and a 3D reconstruction algorithm [3]  running on a remote server 
with the support for an image compression transfer protocol.  

We consider 3D reconstruction a solution for the first difficulty mentioned above, as the 3D 
reconstruction module record and build a model for the surrounding in real time [2], which means 
the vehicle and the user could have memory for every scene it saw and an integrated 3D model 
instead of only one scene. Users can have a sense of what’s around the vehicle at any time and 
don’t have to turn around the vehicle to check the environment frequently. Also, information on 
the surroundings would be accumulated as the vehicle keeps digesting the images of the 
environment.  

As for the second difficulty, we decided to only use a Raspberry Pi on the vehicle and not handle 
those calculation-intensive jobs on the vehicle but on a remote server so the vehicle can be small, 
light, and low power-consuming, however, network bandwidth becomes a bottleneck for the 
performance. We tackled this from two directions, one is to enhance the network reception 
capability, and the other is to design an image compression transfer protocol that saved the 
bandwidth usage for each image.  

With our product, users will be able to control the robot car remotely via a joystick while also 
viewing the car and its surroundings from a third-person perspective [1]. The perspective can be 



easily shifted to allow for a better understanding of the car’s surroundings. 

1.3 Visual Aid 
The figure on the left shows a car being navigated around a location. The figure on the right 
shows a user inspecting the environment by viewing reconstructed images of the surroundings 
and maneuvering the car using a joystick. 

 
Figure 1 Pictorial Representation of Our Solution 

 
Figure 2 Implemented User Interface and Robot Car 

Figure 1 is generated by Power Point and figure 2 is the screen shot of our implemented project. 
They should provide a good illustration of our solution. A more detailed design of our project is 
revealed in next section. 



2. Design 
2.1 Block Diagram 

 
Figure 3 Block Diagram of our Solution 

As shown in figure 3, our solution is divided into three subsystems framed with dotted lines, 

1. a Remote Server Subsystem which will handle the visualization and the 3D-
reconstruction tasks for users to observe the surroundings, 

2. a Communication Subsystem which works as a communication bridge between the 
remote server and robot car for data and commands transfer, and 

3. a Robot Car Subsystem which is a car platform that supports omnidirectional movement 
holds a RGBD camera to gather information and can be controlled by a joystick. 

Each subsystem contains several modules that work together to achieve specific features. 

2.2 Remote Server Subsystem 
The remote server subsystem is a powerful computer that works as a terminal between the car and 
the user. It receives the control signals from the joysticks and sends them to the car while 
processing the images from the camera through the Raspberry Pi then output the map. Thanks to 
the light computation algorithm, the quality of the output map mainly depends on the resolution 
and the rate of the images. The 3d reconstruction result is presented in a point cloud and it can be 
viewed from different perspectives. Also, we write the joystick control function by ourselves to 
achieve timely and accurate control of the car.   

As the brain of our project, it is critical that our server connects with other subsystems well. All 
the communication is built through the Ros system and the remote server is the master node. 
Nonetheless, we set up a fully functional user interface to aid the user with the map created 
concurrently. The user interface enables the user not only to look at what is in front of the car but 
also to have a clear view that where it is. The surrounding environment is presented as well. 

2.2.1 3D reconstruction Module 

A 3D reconstruction module processes RGBD camera images with OpenCV and performs 3D 
reconstruction using algorithms such as SLAM (simultaneous localization and mapping) or a 
structure from motion. As the user gradually moves the car around the environment, the 3D 
reconstruction module should be working simultaneously to keep building up the surrounding 



environment’s model. We would use a Ubuntu system on the server to carry the ROS together 
with the RTAB-Map (Real-Time Appearance-Based Mapping) algorithm. 

The whole process would be real-time which means the calculation time for each frame should be 
short (a small delay) and the reconstructed model should be smooth and continuous, namely even 
if the photos have gaps when we try to combine the continuous ones, the model should be able to 
fix the gap and make a consistent output. 

The main reconstruction process is as below: 

• Image Denoising with Mean Filter: The initial step involved the utilization of a mean filter to 
denoise the images received from the Raspberry Pi. This filter computed each pixel’s value as the 
mean of its eight neighboring pixel values, thereby effectively reducing the noise and enhancing 
the quality of images. 

• Image Sampling: In this stage, we calculated the color gradient of the images and established 
sample points based on a pre-determined threshold. This ensured a more detailed and precise 
representation of the image’s features, leading to a more accurate reconstruction. 

• Feature Matching: Feature matching was conducted to correlate sample points between 
consecutive images, thereby bridging the gap between them. This essential step enabled the 
continuity of the 3D reconstruction and improved the overall accuracy.  

• Trajectory Calculation: Utilizing visual odometry, we calculated the trajectory of the camera, 
enabling us to stitch together continuous images seamlessly. This provided us with a detailed 
view of the robot car’s path and facilitated a comprehensive spatial understanding. 

• Closure Detection: The system was designed to record the features of each image for future 
closure detection. If the similarity measure between two images exceeded a set threshold, the 
algorithm identified that the camera has revisited a previous location, thereby detecting a loop 
closure. 

• Calibration: Upon confirmation of a closure detection, the map underwent refinement. This 
process involved adjusting the height and relative location of the objects to better align with real-
world measurements, enhancing the overall fidelity of the 3D reconstruction. 

• Post-Processing: The final stage involved the refinement of the rudimentary map through post-
processing. This involved verifying the location of each point against its k nearest neighbors and 
filtering the points within a certain radius to reduce overlap, thus further improving the accuracy 
and clarity of the final 3D model. 

Here, we have implemented two strategies,   

• The first one is image drop. Since our camera can provide up to 30fps images, we drop two 
images from every three inputs to reduce the redundant images. 

• The other is we set up the closure detection rate to be relatively strict, i.e., 5 times for each 
image. Since our resolution of images is not high, a high resolution will be helpful to generate a 
consistent map.  

Our user interface’s reconstruction result is real-time with accurate location and size. Since our 
goal is not to recognize the objects, the texture of the objects will not be detailed. After the 
scanning, a final map will be represented in the point cloud, and the user can view it like a car 
inside the map to move around. 

In our implementation, the image resolution is 640*480 while the rate is around 10fps, and the 
algorithm is remembering 10s images. So we need  

 



Based on this implementation, our final output will have the same resolution and the maximum 
points within the image size will be 50000. And due to the bandwidth of communication being 
80Mb/s, the reconstruction rate is up to  

 

But the channel has to transmit the signal of joysticks, so the rate of reconstruction is always 
lower than expected. 

2.2.2 Joystick Module 

The Joystick Module receives signals from the joystick’s sticks, triggers, and buttons. Then 
converts them into   as the output data, which is the target movement of the robot 
car. The control signal is transmitted to the Raspberry Pi on the robot car via the communication 
subsystem, and then the control module takes further control of the car's movement.  The detailed 
joystick function map is attached as Table 1. 

Name Function Name Function 

Left Stick X-axis Move Left/Right Left Stick Y-axis Move Forward/Backward 

Left Trigger Turn Left Right Trigger Turn Right 

Left Button Decrease Max 
Turning Speed Right Button Increase Max Moving 

Speed 

Start Button Emits a beep Back Button Stop Moving 

The sticks can give a value range from  and triggers can give a value range from . 
So, to better control the movement of robot car, we can first define a maximum moving speed 

 and maximum turning speed . They can be adjusted by left and right button. 
Then map the value of left sticks into  and value of riggers into 

 so the car can move under a large range of speed. In the actual test and demo session, 
the user experience of the joystick control of the car movement is very good. 

2.3 Communication Subsystem 
We rely heavily on WIFI to transmit the data between the car and the remote server. The 
transmitted data includes the RGB image and depth image captured from the camera, which will 
be sent from the car to the remote server so that we can perform 3D reconstruction based on these 
input images. Another transmitted data is the movement command sent from the server to the car 
so that we can control the movement of our car remotely. 

2.3.1 Image Transmission and Compression 

Accurate 3D reconstruction requires high-resolution RGBD images with low latency [4]. The 
RGBD camera is connected to the Raspberry Pi on the car, and once the image is captured, the 
Raspberry Pi will send the image back to the server through a WIFI connection. If the image is 
received with large latency, usually packet dropping will occur, and the reconstruction algorithm 
will be confused and won’t be able to perform reconstruction well. We empirically find that a 
resolution of 640x480 and a frame rate of 10FPS or above are required to achieve a good 3D 
reconstruction result[5]. Suppose we can use 4 bytes to represent a single RGBD pixel (one byte 
for R, G, B, and depth channel respectively), the required bandwidth to transmit the original 
bitmap image with a frame rate of 10 FPS would be: 



 

This is a very high requirement for a WIFI connection, and from our connection test, we find that 
if we transmit the original image, usually only 5 FPS or even lower can be achieved, depending 
on the WIFI quality. It is important to take some actions to reduce the image transmission latency 
and ease the packet-dropping issue due to the high latency. 

As a result, we propose to use two techniques: image compression and data throttle. Image 
compression can greatly reduce the transmitting image size and thus reduce the required 
bandwidth, and data throttle can restrict the frame rate to a certain number so that the 
transmission process and the data input can be smoother. 

First, to reduce the required bandwidth, we use a JPEG image compression algorithm to compress 
the image before sending it, and then decompress the compressed one when received on the 
server side. JPEG (Joint Photographic Experts Group) is a widely used image compression 
algorithm that effectively reduces the size of digital images while preserving reasonable image 
quality. The JPEG compression algorithm works by exploiting the limitations of human visual 
perception and the statistical properties of natural images. It consists of several steps: 

1. Color space conversion: The algorithm begins by converting the RGB color space of the 
original image into the YCbCr color space. The luminance (Y) component represents the 
brightness information, while the chrominance (Cb and Cr) components capture color 
differences. 

2. Downsampling: Since human vision is more sensitive to changes in brightness than color, 
the chrominance components (Cb and Cr) are subsampled to reduce their resolution. This 
downsampling step reduces the amount of data required to represent the image while 
maintaining reasonable color accuracy. 

3. Block-based Discrete Cosine Transform (DCT): The image is divided into 8x8 pixel 
blocks, and for each block, a Discrete Cosine Transform (DCT) is applied separately to the Y, 
Cb, and Cr components. The DCT converts each block from the spatial domain to the 
frequency domain, representing the image's content in terms of different frequency 
components. 

4. Quantization: In this step, the DCT coefficients are divided by a set of quantization tables 
specific to the compression level chosen by the user. The quantization process eliminates 
high-frequency information that is less noticeable to the human eye. By quantizing more 
aggressively, higher compression ratios can be achieved at the cost of reduced image quality. 

5. Entropy coding: The quantized DCT coefficients are then compressed using lossless entropy 
coding techniques, specifically the Huffman coding algorithm [9]. Huffman coding assigns 
shorter codes to frequently occurring values and longer codes to less frequent values, 
resulting in further compression. 

 
Figure 4 Reconstruction Result of Lab 



To reconstruct the image, the compressed data is reversed. The inverse of the entropy coding and 
quantization steps are applied, followed by the inverse DCT. The resulting YCbCr components 
are unsampled (in case of down sampling in the initial step) and converted back to the RGB color 
space. We find that up to a 5x compression ratio can be achieved using the JPEG image 
compression algorithm in our case [6]. 

Second, to ease the packet-dropping issue and stabilize the frame rate, we apply data throttle. To 
be specific, for every X sequential image data, we drop the last Y images among them, so that we 
can restrict the frame rate to (X-Y)/X of the original rate. For example, the original frame rate is 
30 FPS for our camera. Since we want to achieve a stable 10 FPS frame rate for our 3D 
reconstruction algorithm to run smoothly, we can drop 2 images among 3 sequential images.  

As shown in figure 4, our reconstruction result of the lab clearly shows the wall and the 3d 
printers. The angle of the wall and the connections are not awkward. 

2.3.2 Control Command Transmission 

Our car can be controlled remotely using a joystick connected to the server. The joystick control 
signal will be handled by the server and the server will send the corresponding high level control 
signal to the Raspberry Pi through Wi-Fi. The control signal packet has the following format: 

1. For set_car_run command: 

{"command": "set_car_run", "state": state, "speed": speed, "adjust": adjust} 

2. For set_car_motion command: 

{"command": "set_car_motion", "v_x": v_x, "v_y": v_y, "v_z": v_z} 

3. For set_beep command: 

{"command": "set_beep", "on_time": on_time} 

The packet will be padded to the same size to avoid the sticky TCP packet issue. After receiving, 
the Raspberry Pi will parse the control command and control the STM32 board accordingly. 

2.4 Car Subsystem 
The car subsystem is a movable robot car platform, including a car platform, wheels, motors, and 
a STM32 based control module integrated with an energy module. The main functionality of the 
car subsystem is that it can accept movement commands  to perform actions such as 
moving and turning and provide an expandable platform for various devices placement such as 
Raspberry Pi and RGBD camera. 

As an essential platform and carrier for our project realization, the robot car subsystem is closely 
connected and interacted with other subsystems and modules. For example, it needs to first 
interact with the communication module (car side), read the control signals coming from the 
remote server, and then adjust the movement of the car according to the control signals. 

2.4.1 McNamee Wheels and Motors 

To enhance the ability of robot car to move freely in complex environments, the McNamee 
wheels were selected to support omnidirectional movement. The McNamee wheel is a classical 
mechanic for omnidirectional movement. However, the adoption of the McNamee wheel requires 
the control module to have individual control over each wheel and motor. The configuration and 
simple kinetic analysis of the McNamee wheel is shown in figure 5. 



 
Figure 5 Configuration and Simple Kinetic Analysis of McNamee Wheels 

Given the configuration, the forward and inverse kinematics of a robot car with four McNamee 
wheels gives the following relationship between the target robot car movement speed  
and the speed of each wheel . Equation 4 to 7 give the forward kinematics and 
equation 8 to 10 give the backward kinematics [7]. 

 

 

 

 

 

 

 

The motor needs to provide sufficient power for the movement of the robot car system and 
guarantee a reasonable running speed under a limited weight load. We choose to use the 
MD520Z30 12V motor with AM2857 Power Driver to satisfy our requirement. 

As measured in our robot car platform, half of the sum of the chassis motor spacing: 
 mm. Then, given the target , the target speed of each McNamee Wheels 

 an be quickly calculated by forward kinematic. 

2.4.2 Control Module 

Inside the robot car subsystem, the control module receives the robot car’s motion 
command  and generate the PWM signals  to drive the motors to 
achieve the required movement. We use an STM32-based control board to control the four 
McNamee motors individually. STM32 is a widely used low-energy microcontroller that can 
easily communicate with Raspberry Pi and PC via serial communication. Besides, STM32’s 
advanced timer can facilize PWM signal generation for the motor driver chips and calculate 
motor speed through encoders.  

 



Although one can directly control the motion of the car by calculating the PWM value of each 
wheel given its target speed explicitly, the car as a whole is likely to fail to reach or maintain the 
target speed when facing obstacles or working on rough road surfaces. In this case, PID 
algorithms are widely used to provide stable control and implemented as follows.  

1. First, the car’s true speed of wheel  is calculated using encoders. The encoder can count 
the number of motor rotations . Then the control module can use the change in number of 
rotations  multiplied by the length of wheel , divided by the time interval  , which 
gives the speed of the wheel . The calculation is given by equation 11. 

 

2. Second, based on the error  between target speed, the correct PWM signal for the four 
motors are generated according to the incremental PID control algorithm. Digital 
implementation of the PID controller [8] gives the following equations, 

 

  

where in equation 12,  is derived with a digital PID algorithm.  is the difference 
between the target value and the current value at time . We use , , and 

 as our PID algorithm parameters. In equation 13,  is the actual value at time 
 calculated by adding last time unit output value   with an incremental part . 

3. Then, four DC motor driving chips are used to receive the PWM signals and drive the motor 
accordingly.  

The following Pseudocode in figure 6 clearly illustrates the workflow of Robot Car control via 
PID control algorithm, from receiving control signal  from Joystick Module. 

 
Figure 6: Pseudocode of Robot Car Control 

2.4.3 Astra Pro Camera and Car Platform Placement 

In our design, an RGBD camera (Astra Pro) will be placed on the robot car. The camera is 
connected to and powered by Raspberry Pi through USB. The camera could provide live 
information of color and depth with precision in millimeters. The images captured by the camera 
will be sent to a remote server via a communication module for further processing. To provide 
stable image signals for 3D reconstruction, the horizontal movement speed  and the rotational 
speed  of the robot car need to be limited. The suitable maximum speed of  is 

.  

An expandable car platform is the base of our car subsystem, with wheels, motors, a control 
module, communication module (car side), and an RGBD camera to be assembled and fixed on it. 



We use pre-punched metal plates combined with copper columns to construct the Car Platform 
that provides sufficient space and rich mounting positions for device placement. The Car 
Platform also guarantees the structural integrity and stability of the equipment placement when 
working under the vibration of the motors and bumps during movement. Besides, the robot car 
platform can be facilitated for assembling and disassembling devices such as motors, Raspberry 
Pi, and RGBD cameras.  

2.4.4 Mechanical Structure 

 
Figure 7 A Structure that Helps the Camera to Adjust the Pitch Angle 

During the above testing process, we discovered that due to the limited height of the car and the 
limited field of view of the camera, incomplete modeling could occur. For example, there could 
be missing floor or ceiling areas, and objects at higher positions were often difficult to capture by 
the camera. To address this issue, we designed a mechanical structure for automatically adjusting 
the camera's pitch angle. 

We utilized a small Linear Actuator-driven rod, with one end fixed to the rear of the car and the 
other end fixed behind the camera. The extension and retraction of the rod would cause changes 
in the camera's pitch angle. The motion direction of the Linear Actuator was determined by the 
polarity of the engaging electrodes. To control its periodic variation, a customized PCB was 
developed to achieve alternating polarity of the power supply. As a result, this device can now 
automatically and periodically rotate the camera up and down, effectively solving the problem of 
occasionally missing the ceiling or floor during capture. 

  



3. Design Verification 
3.1 Remote Server Subsystem 
A 3D reconstruction module processes RGBD camera images with OpenCV and performs 3D 
reconstruction using algorithms such as SLAM (simultaneous localization and mapping) or a 
structure from motion. As the user gradually moves the car around the environment, the 3D 
reconstruction module should be working simultaneously to keep building up the surrounding 
environment’s model. We would use an Ubuntu system on the server to carry the ROS together 
with the RTAB-Map (Real-Time Appearance-Based Mapping) algorithm. 

The whole process would be real-time which means the calculation time for each frame should be 
short (a small delay) and the reconstructed model should be smooth and continuous, namely even 
if the photos have gaps when we try to combine the continuous ones, the model should be able to 
fix the gap and make a consistent output. Detailed requirements and verification would be 
illustrated in the chart. 

3.1.1 R&V of 3D Reconstruction and Visualization 

Requirement Verification 

1. Reconstruct the frame with 10fps and the 
output will be not less than 0.05m 
resolution 

1. The reconstruction and resolution will be 
shown on the user interface. And it can 
be verified with grid size.  

2. The whole reconstruction should be done 
within 10% of scanning time and the 
processing delay should be less than 0.5s. 

2. The delay can be check with rostopic 
/rtabmap/cloud_map/, and the concurrent 
reconstruction result will be shown on 
the user-interface. 

3. The User should be able to see clear 
icons for mode switching 

3. We provide two user interfaces, both of 
them including mode switching icons. 

4. The error of the final result should be 
limited under 10%. For example, the 
length and height of objects should be in 
range 90% to 110% with respect to the 
real one.  

4. There are measurement tools to check to 
value of the object height and length 
inside the point-cloud. 

R&V of 3D Reconstruction and Visualization

3.1.2 R&V of Joystick Module  

Requirement Verification 

1. Joystick Module can monitor and read the 
joystick signal correctly. 

2. Joystick Module can phrase the joystick 
signal to the control command for Control 
Module 

1. Connect the joystick to the remote server 
and run the script, the correct joystick 
signal value should be shown. 

2. The user’s control action should be 
phrased correctly and generated in a 
predefined format. 

R&V of Joystick Module

  



3.2 Communication Subsystem 
3.2.1 R&V of Communication Subsystem 

Requirement Verification 

1. RGB and depth images with a resolution 
of at least 240x320, optimally 480x640, 
will be sent from the Raspberry Pi to the 
remote server at a speed of 5-10 FPS. 

1. The RTABMAP should be able to 
receive the RGBD signal from the 
camera and launch the reconstruction 
process on the remote server properly. 

2. The image is compressed during 
transmission to save bandwidth. 

2. Compare the image data size prior to 
sending and after receiving to determine 
whether the compression works. 

3. Control commands can be delivered 
smoothly to Raspberry Pi from the 
remote server. 

3. The final demo will be a live presentation 
with the output on the user interface. And 
the resolution details should show on the 
screen. 

R&V of Communication Subsystem 

3.2.2 Image Transmission and Compression 

For image transmission, the requirement is that both RGB and depth images should have a 
resolution of at least 320x240, optimally 640x480 and the transmission speed from the Raspberry 
Pi to the server should be 5-10 FPS. We verify the image resolution by making sure that the 
output image resolution from the camera is the desired resolution and verify the frame rate from 
RTAB-map UI. 

 
Figure  Camera Information 

From the camera information output shown in figure 8, we can see that the RGB and depth image 
are both in a resolution of 640x480. Although the camera FPS is 30 as shown in the figure, the 
frame rate we observe from the RTAB-map UI is fluctuating between 3 – 12 FPS depending on 
the software running condition and the distance between the car and the WIFI router.  

For image compression, the transmitted image is required to be compressed, and the bandwidth 
should be reduced compared to the uncompressed image. We verify reduced bandwidth using the 
rostopic bw command. 



As shown in the figure 9 below, we can achieve a compression rate of 0.12 using the JPEG image 
compression algorithm. Consequently, shown in figure 10, the required bandwidth is dropped to 
nearly 10% of the original bandwidth. It shows the necessity and importance of the image 
compression algorithm if we want to use our car with limited bandwidth. 

 
Figure  Image Compression Rate 

 
Figure  Bandwidth w/wo Image Compression 

3.2.3 Control Command Transmission 

For control command transmission, the requirement is that the command signal can be sent 
successfully from the server to the car and the car can handle the command signal correctly. We 
verify this by checking the actual movement of the car after receiving the control signal. Through 
our testing, the car responds fast and moves smoothly, meaning that the control command can 
reach the car without delay. 

  



3.3 Car Subsystem 
3.3.1 R&V of Car Subsystem  

Requirement Verification 

Structural Integrity of Car Platform 

1. The car platform is light, with the strong 
structural integrity of a 3-4 kg loading.  

2. No equipment loose or drop during long 
working periods. 

1. Load testing of the robot car platform 
with 3-4 kg of weight. 

2. Perform a movement test on bumpy 
roads, and do acceleration, deceleration, 
and turning operations. 

3. Record the car condition among the tests 
as the results. 

Control Module 

1. The target motor speed can be calculated 
by forward kinetic of McNamee wheels to 
achieve high-level movement command 

.  
2. The current motor speed can be calculated 

using motor encoder.  
3. The motor speed can be controlled 

accurately using PWM calculated by 
incremental PID algorithm. 

4. Robot car can turn at a speed of about 25 
degrees/second according to the 
command. 

5. Robot car can move omnidirectionally 
and turn simultaneously based on the 
commands. 

1. Perform a moving test with custom 
movement commands sent from 
Raspberry Pi, i.e., left and right panning, 
forward and backward, rotation, and a 
combination of these movements. 

2.  Evaluate the performance of these 
movements, i.e., how well they meet the 
user’s expectations. 

3.  Write down a reference table for the data 
interface of the control module. 

4.  Record and evaluate the performance of 
the average time delay between a given 
input and the output. 

Motor and Wheels 

1. Robot car can move freely in complex 
environments and achieve 
omnidirectional movement. 

2. The motor and wheels can provide the 
appropriate and adjustable speed, i.e., 
moving omnidirectionally at a maximum 
speed of 0.5-1 m/s, turning 180 degrees in 
2s. 

3. The motor needs to provide sufficient 
power to enable the robot car to run at a 
normal speed of 0.5-1m/s when forward 
and backward under a reasonable weight 
load 2 kg. 

1. Perform a moving test with predefined 
movement to cover an omnidirectional 
movement set, i.e., left and right panning, 
forward and backward, rotation, and a 
combination of these movements. 

2. Perform a forward and backward 
movement test under a 2 kg weight load, 
the speed is within 0.5-1m/s. 

3. Perform a movement test on bumpy 
roads, and do acceleration, deceleration, 
and turning operations. 

4. Take a video for the omnidirectional 
movement test, and record the speed and 
rotation performance in a table. 

R&V of Car Subsystem 

  



The verification of the car subsystem mainly focuses on the structural integrity of the car 
platform, the operability of the control module, and the quick response of the motor and wheels. 
Testing the operability of the car subsystem is more important than testing individual modules of 
it and can give a clearer reflection of the performance of a robot car. Therefore, the verification of 
the car subsystem is combined with the test of the Joystick module. 

In the actual test, the car is very flexible, and can move omnidirectionally and turn 
simultaneously. When moving on a more frictional carpet, the robot car moves at a reduced 
speed, but can still maintain normal movement speed by increasing power. However, when 
moving in an environment where the ground is slightly unstable, the car may get trapped. The 
solution is to stop the car and then start again. 

 
Figure 11 Movement Speed vs. Time 

The rotation speed of each wheel can be calculated by recording the motor speed through the 
encoder, and the overall speed of the car can be further calculated based on the backward kinetic. 
The above figure 11 shows that the car can reach the set speed of 1m/s in about 0.8s for both 
horizontal movement and rotation, where 1m/s is the maximum running speed of the car. Besides, 
it can also stop the motion within 0.2s.  

 

  



4. Costs 
4.1 Parts 

Part Manufacturer Retail Cost 
($) 

Bulk 
Purchase 
Cost ($) 

Actual Cost 
($) 

Cooling Fan RPi Club 5.6 / 5.6 

Linear Actuator ShaoTeng 18.8 / 18.8 

PCB ShaoTeng 11.9 / 11.9 

12V Li Battery YahBoom 12.7 / 12.7 

STM32 Board YahBoom 54.2 / 54.2 

12.6V Li Battery 
& Charger 

YahBoom 12.6 / 12.6 

Car Platform YahBoom 61.3 / 61.3 

Astra Pro Camera YahBoom 150.0 / 150.0 

Joysticks Microsoft 50.0 / 50.0 

Raspberry Pi WAVE ELEC- 
TRONICS 

75.4 / 75.4 

Total  452.5 / 452.5 
 

4.2 Labor 
Labor for each partner:  

4.3 Total 
The sum of costs into a grand total  

  



5. Conclusion 
5.1 Accomplishments 
We conducted tests of our system in various scenarios. The system successfully reconstructed the 
indoor environment, including rooms, furniture, and walls. The accuracy of location and size 
measurements in the reconstructed model was high. The texture details of objects were 
adequately captured, providing a realistic representation of the environment. 

 
Figure 12 A Reconstructed Model Built in The Dormitory Unit Area 

 
Figure 13 A Reconstructed Model Built in The Electronic Innovation Laboratory 

In this project, we developed a remote vehicle control system that addresses the challenges 
associated with operating vehicles in complex environments. The system focuses on providing a 
safe, fast, low-latency, and robust control system by incorporating comprehensive information 
about the surroundings and optimizing size and power consumption. 

To overcome the lack of comprehensive information about the surroundings, we utilized the 
Simultaneous Localization and Mapping (SLAM) technique. SLAM enables the vehicle to 
estimate its pose and construct a real-time map of the environment. We specifically implemented 
the RTAB-Map algorithm, which combines visual appearance-based mapping with loop closure 
detection and global optimization techniques. This algorithm allows for accurate localization and 



mapping by integrating data from multiple sensors, such as cameras, LIDAR sensors, and RGB-D 
sensors. 

To handle the issue of excessive size and high power consumption, we proposed offloading the 
computational tasks to a remote server. The vehicle captures camera images and transmits them 
to the server for processing, visualization, and 3D reconstruction. This distributed processing 
approach optimizes energy and computation usage on the vehicle platform, making it more 
suitable for low-power and endurance-focused applications. 

The communication subsystem bridges the remote server and the robot car, enabling the transfer 
of data and commands. A reliable Wi-Fi connection is established for efficient and dependable 
communication. To mitigate latency and bandwidth limitations, we introduced image 
compression techniques and data throttling to optimize the transmission of high-resolution RGBD 
images. 

For the design of remote robot car control, we chose to use the McNamee wheel to achieve 
omnidirectional movement and programmed the PID control algorithm in the control system for 
stable motion control. Besides, to provide a better operating experience, we designed various 
operations in the joystick module based on the actual operating requirements, so that the user can 
easily control the robot car's movement, such as omnidirectional movement, turning, and 
adjusting the maximum moving speed. 

Furthermore, we enhanced the field of view for the vehicle's camera by incorporating a 
mechanical structure that controls the camera's tilt angle. This improvement enables the camera to 
capture a broader perspective, leading to more accurate 3D reconstruction results. 

The results of our system demonstrate its effectiveness in reconstructing indoor environments 
with high accuracy in location, size measurements, and texture details. The system successfully 
addressed the challenges posed by complex environments and achieved the objectives of safe, 
fast, and robust vehicle control. 

5.2 Uncertainties 
While our system has demonstrated successful 3D reconstruction capabilities during our 
demonstrations and rigorous verification processes, it is important to acknowledge the presence 
of certain uncertainties and limitations. These include: 

Environmental Factors: The accuracy and quality of 3D reconstruction heavily depend on the 
environmental conditions in which the robot car operates. Factors such as lighting conditions, 
texture variations, and reflective surfaces can potentially impact the reliability of the 
reconstruction. During our testing, we empirically find that if the environment is too simple and 
lacks color changing, it is likely that the visual odometry and close loop detection used during the 
3D reconstruction process will fail because there are not enough visual key points.  It is crucial to 
consider these factors and understand that the system's performance may vary in different 
environments. 

Latency and Network Stability: Remote control and real-time transmission rely on network 
connectivity and stability. Although we have proposed several techniques including image 
compression and data throttle to ease any potential network bandwidth issues, the presence of 
latency in the network communication may still introduce delays in the control inputs and the 
delivery of images to the remote server. Moreover, fluctuations in network stability can affect the 
system's performance, leading to potential disruptions in the control and reconstruction processes. 

Computational Resources: The complexity of real-time 3D reconstruction requires substantial 
computational resources. While our system is designed to perform reconstruction on a remote 
server, the processing power and capabilities of the server can impose limitations. Moreover, the 



Raspberry Pi is also responsible for some computation-heavy tasks such as compressing images 
and aligning depth and RGB images, and we have observed performance bottleneck on image 
compression which in turn affects the final frame rate. 

While our system has achieved significant advancements in remote robot car control and 3D 
reconstruction, it is essential to recognize and address these uncertainties and limitations. 
Continued research, development, and collaboration with experts in the field will help us further 
refine and improve the system's capabilities, enabling more robust and accurate 3D 
reconstructions in diverse scenarios. 

5.3 Ethical Considerations 
In addition to technical aspects, addressing the ethical considerations associated with this project 
is crucial. The following contents are listed to highlight the key ethical concerns: 

Privacy and Data Protection: As the system captures and transmits images from the robot car's 
RGBD camera, the protection of privacy and data becomes a significant ethical consideration. It 
is essential to ensure that the system adheres to strict privacy policies and regulations, particularly 
when operating in public or sensitive areas. Measures such as anonymization of data, secure 
transmission protocols, and user consent frameworks should be in place to safeguard privacy and 
protect the personal information of individuals captured in the images. 

Consent and Awareness: Obtaining appropriate consent is crucial when utilizing the system in 
environments involving human subjects. Broadcasting notification should be established to 
inform individuals about the presence and purpose of the robot car and the collection of visual 
data. Raising awareness about the system's capabilities and potential impact on privacy and 
allowing individuals to opt-out or request restrictions on data collection are essential ethical 
considerations. 

Responsible Use and Impact: The development and deployment of the system should adhere to 
responsible use practices, considering the potential impact on individuals, communities, and the 
environment. It is essential to conduct thorough risk assessments to identify and mitigate 
potential negative consequences. Proactive measures should be taken to address any unintended 
harm, promote transparency, and ensure the system's overall benefits outweigh its potential risks. 

By addressing these ethical considerations, and adhering to relevant legal and ethical guidelines, 
we can strive to develop and deploy a remote robot car control system that respects privacy, 
promotes fairness, and upholds ethical values while harnessing the potential benefits of advanced 
3D reconstruction technology. 

5.4 Future Work 
The figure 14 below is a result of the reconstruction of my room. It is evident that a portion of the 
wall behind the objects on the upper shelf lacks any point cloud data. This is due to occlusion, 
where the walls below the extended lines connecting the camera and the outer edges of the 
objects are not captured by the camera. Even adjusting the camera's pitch angle, this issue 
remains challenging to resolve. Future research may involve exploring adjustments to the overall 
camera height to capture the occluded parts effectively. 



 
Figure 14 A Reconstructed Model Build of Students’ Room 
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