
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Electric Load Forecasting(ELF) System

Team #28

AO ZHAO

AOZHAO2@ILLINOIS.EDU

LIYANG QIAN

LIYANGQ2@ILLINOIS.EDU

YIHONG JIN

YIHONGJ3@ILLINOIS.EDU

ZIWEN WANG

ZIWENW5@ILLINOIS.EDU

Sponsor: Ruisheng Diao
TA: Xiaoyue Li

May 23, 2023

Abstract

Electric load forecasting (ELF) is vital for predicting electricity demand, but current man-
ual techniques lack accuracy for fine-grained predictions. To address this, our project
uses Raspberry Pi 4B to develop an ELF system that provides easy access and visual-
ization of load usage predictions. By combining weather data and historical electricity
usage, our device generates hourly predictions displayed through line graphs. The goal
is an accurate, reliable, and user-friendly solution for efficient decision-making in elec-
tricity management. The system ensures scalability, reliability, and ease of use. It consists
of interconnected subsystems for data collection, storage, training, and prediction. The
Raspberry Pi serves as an edge device, importing the forecast model and obtaining power
demand forecasts. Despite challenges in accurate data measurement and uneven weather
conditions, alternative sources ensure reliable results.

The system empowers utility companies and users by enabling efficient planning and op-
timization. It emphasizes scalability to handle large data volumes and provide forecasts
for numerous customers. With an intuitive interface and customization options for differ-
ent buildings, the system facilitates informed decision-making. Through interconnecting
subsystems, data is collected, stored, and processed to improve accuracy and reliability.
The Raspberry Pi acts as a reliable edge device, supporting forecast import and power
demand prediction. Alternative data sources compensate for measurement challenges,
ensuring dependable results. Overall, the ELF system aims to revolutionize electricity
management by providing accurate, scalable, and user-friendly load forecasts.

Key words: Electric load forecasting (ELF) Raspberry Pi 4B Accurate load forecasts

ii

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Functionality . 1

1.2.1 Accuracy . 1
1.2.2 Scalability . 1
1.2.3 Reliability . 2
1.2.4 Ease of Use . 2

1.3 Subsystem Overview . 2
1.3.1 Data Measuring Subsystem . 2
1.3.2 Data Collection Script . 2
1.3.3 Data Storage Subsystem . 2
1.3.4 Central Server Subsystem . 3
1.3.5 Edge Forecasting Subsystem . 3

1.4 Physical Design . 3
1.5 Block-level changes . 3

1.5.1 Electricity Load Measurement System 3
1.5.2 Weather Condition Measurement System 4

2 Design 6
2.1 Design Alternatives . 6

2.1.1 Data Storage Subsystem . 6
2.1.2 Central Server Subsystem . 6
2.1.3 Edge Forecasting Subsystem . 7

2.2 Design Details . 8
2.2.1 Encapsulation & Fan Cooling Subsystem 8
2.2.2 Data Collection Subsystem . 11
2.2.3 Data Storage Subsystem . 12
2.2.4 Central Server Subsystem . 13
2.2.5 Edge Forecasting Subsystem . 14

3 Verification 16
3.1 Hardware module . 16

3.1.1 Enclosure, Raspberry Pi and display screen 16
3.1.2 Fan control . 16

3.2 Data Collection Subsystem . 17
3.3 Central Server Subsystem . 17
3.4 Edge Forecasting Subsystem . 18

4 Cost 19
4.1 Cost Analysis . 19

4.1.1 Labor . 19
4.1.2 Mechanical Parts . 19
4.1.3 Sum of costs into a grand total . 19

iii

4.2 Schedule . 19
4.2.1 Schedule of Ao Zhao . 19
4.2.2 Schedule of Yihong Jin . 20
4.2.3 Schedule of Liyang Qian . 21
4.2.4 Schedule of Ziwen Wang . 21

5 Conclusions 22
5.1 Accomplishments . 22
5.2 Uncertainties . 22
5.3 Future Work . 22
5.4 Ethical Considerations . 22

5.4.1 Privacy and Security . 22
5.4.2 Impact on Vulnerable Populations . 23
5.4.3 Bias . 23

References 24

Appendix A Example Appendix 25
A.1 Subsystem Verification Sheet . 25

iv

1 Introduction

1.1 Purpose

Electric load forecasting (ELF) is a vital method that incorporates various unpredictable
elements, including weather conditions and electricity prices, in order to predict the de-
mand for electricity in the upcoming week. While many utility companies currently de-
pend on manual forecasting techniques that rely solely on specific historical electricity us-
age data, these methods often fall short in terms of accuracy when it comes to fine-grained
time predictions, such as forecasting electricity usage on an hourly basis for the following
day. In order to achieve precise predictions for electricity expenditure and develop robust
infrastructures capable of handling specific electrical loads, utility companies must adopt
more sophisticated and dependable forecasting approaches.

In line with the need for advanced and reliable forecasting methods, our project aims
to develop an electric load forecasting system using the Raspberry Pi 4B as a powerful
tool. This system will enable customers to effortlessly access and visualize predicted elec-
tric load usage, offering valuable insights for planning and optimization purposes. Our
primary goal is to create an accurate, effective, reliable, and user-friendly solution that
provides a comprehensive approach to electric load forecasting. To achieve this, we will
collect weather conditions data and combine it with historical electricity usage, which will
then be processed by our device to generate hourly electricity usage predictions. These
predictions will be displayed on the device, allowing users to observe the trend through
informative line graphs. By offering a convenient and informative forecasting solution,
our project aims to empower utility companies and users with the necessary tools for
efficient and informed decision-making in the realm of electricity management.

1.2 Functionality

1.2.1 Accuracy

The system will generate accurate predictions of future electric load usage. The accuracy
of the predictions will be high enough to enable effective planning and optimization of
electric power usage. The MAPE, mean absolute percentage error, will be less than 0.4
for most cases. The MAE, mean absolute error, will be less than 50 for general work
buildings.

1.2.2 Scalability

The system will be capable of handling large volumes of data and generating predictions
for a large number of electric load customers. The system will be able to scale up or down
as the demand for electric power changes. At the very least, it can process all the data
of ZJUI buildings 1A to 1E as well as buildings 2A to 2E, generating forecasts for them
respectively. For each prediction request of a specific date, the memory space token by
the subsystem is around 10MB.

1

1.2.3 Reliability

The system will be designed to be highly reliable and available. It will be able to handle
failures gracefully and recover quickly from any disruptions in service. The electricity
usage data collector will be called per 30 minutes and the weather condition data will be
called each day to keep track of the latest data. During the process of calling, both of these
programs will check the data integrity in the previous one month.

1.2.4 Ease of Use

The system will be designed to be easy to use and accessible to a wide range of customers.
The query API will be easy to understand and use, and the web page interface will be in-
tuitive and user-friendly. At least people can easily understand and use our user interface,
such as choosing 1, 3 or 7 day power load forecasts. People can choose to make different
predictions for different buildings.

1.3 Subsystem Overview

Figure 1 is the block diagram of the ELF system. The system described consists of several
interconnected subsystems responsible for data collection, aggregation, storage, training,
and prediction.

1.3.1 Data Measuring Subsystem

The Data Measuring Subsystem comprises two monitor modules: one for electricity us-
age and another for weather conditions. The electricity consumption usage module is
managed by the IT department on campus. Its purpose is to retrieve hourly electricity
consumption data for each of the ZJUI buildings, ranging from 1A to 1E and from 2A to
2E. The module collects and records energy usage information and stores it efficiently in a
Cassandra database. On the other hand, the weather monitoring module is a publicly ac-
cessible weather website. It offers services for recording and forecasting hourly weather
conditions, such as temperature, humidity, pressure, dew point, and more.

1.3.2 Data Collection Script

The Data Collection Script, Process 1, has the responsibility of gathering and aggregating
raw data from two sources: the Cassandra database, which provides hourly electricity
consumption data, and the Data Measuring Subsystem, which offers hourly weather con-
dition data. Once the collection and aggregation tasks are completed, the script proceeds
to transmit the data to the Data Storage Subsystem.

1.3.3 Data Storage Subsystem

The Data Storage Subsystem receives the aggregated data from the Data Collection Script
and performs data cleaning tasks. This includes handling missing data and replacing
any corrupted or dirty data. The pre-processed aggregated data is then written to the

2

permanent storage within the Data Storage Subsystem. The Central Server Subsystem
accesses this stored data on a daily basis, treating it as a training set for further processing
and analysis.

1.3.4 Central Server Subsystem

The Central Server Subsystem is responsible for daily calling the Data Collection Script
to fetch the latest electricity consumption and weather condition data. It then generates
a training set by combining and processing the collected data. The subsystem performs
training tasks on the training set, optimizing the model’s parameters and capturing pat-
terns. The results of the training task are recorded for evaluation and future analysis. It
plays a vital role in the continuous improvement of the predictive model.

1.3.5 Edge Forecasting Subsystem

The Edge Forecasting Subsystem within the project architecture receives user requests
for electricity usage forecasting, offering two modes: forecasting future electricity usage
and forecasting historical electricity usage. In the future mode, it combines future and
historical weather data with historical electricity usage data to provide comprehensive
predictions. In the historical mode, the subsystem fetches historical weather and electric-
ity data, generating prediction curves and displaying them alongside the original curves,
as well as the associated error.

1.4 Physical Design

Figure 2 shows the whole view of the ELF edge device. The ZJUI campus power main-
tain department is responsible for measuring the electricity load data and transmit With
the measured historical electricity usage data and the weather forecast data we have ob-
tained, a Raspberry Pi or its updated version will serve as an edge forecasting device to
import our trained forecast model from the central server and finally obtain a forecast of
the power demand of the ZJUI buildings.

1.5 Block-level changes

At the outset of the semester, we had formulated a plan to collect electricity data and
weather conditions independently. This endeavor was essential for us as the related data
were crucial to our training model and algorithm. Nonetheless, as we commenced with
the implementation phase, we were confronted with several obstacles that impeded our
progress and hindered us from completing the project successfully.

1.5.1 Electricity Load Measurement System

The first challenge we faced was the lack of proper equipment to measure the electricity
data. We had planned to use a multimeter to measure voltage and current, but we realized
that we did not have access to one. We tried to improvise by using a regular voltmeter

3

Figure 1: Block Diagram

and ammeter, but this did not give us accurate results. This led us to waste a lot of time
trying to figure out how to measure the electricity data accurately.

We stumbled upon a system on our campus that could measure the electricity load. While
it was a promising discovery, we quickly realized that the data provided was not entirely
reliable. Despite this setback, we decided to move forward with the data anyway. We felt
that although the readings were not precise, they would still be useful for our research.
To ensure that our results were as accurate as possible, we took additional steps such as
comparing the data with other sources, analyzing trends over time, and double-checking
the data with other measurements. Overall, we learned the importance of being flexible
and creative when conducting research, and the significance of thoroughly evaluating
data sources before rejecting them.

1.5.2 Weather Condition Measurement System

We were confronted with a challenge related to the weather conditions. We had planned
to measure the temperature, humidity, and wind speed using a weather station, but we
discovered that the weather conditions were not distributed evenly across the area we
were measuring. Unfortunately, we were only measuring a single position, which made
it difficult to obtain accurate and representative data.

4

Figure 2: Physical Design

We were fortunate enough to discover a website that provided us with up-to-date infor-
mation on the weather conditions in our city. This was a significant advantage for us as it
allowed us to gather accurate data without having to purchase expensive equipment or
perform time-consuming measurements ourselves.

5

2 Design

2.1 Design Alternatives

2.1.1 Data Storage Subsystem

In the data storage subsystem, we have chosen to employ CSV files instead of MySQL
due to the need for extracting the entire dataset for machine learning model training.
While there are alternative approaches available, such as using a relational database like
MySQL, CSV files offer several desirable advantages.

The primary reason for choosing CSV files is the ease of extracting the complete dataset.
With CSV files being plain text files, reading the data and loading it into memory for
training a machine learning model becomes a straightforward process. This eliminates
the complexity of using SQL queries or interacting with a database.

CSV files also provide portability and compatibility advantages. They are widely sup-
ported across different platforms and programming languages. This means that CSV
files can be easily read and processed using common programming tools and libraries,
ensuring flexibility and compatibility with various machine learning frameworks and li-
braries.

Another benefit of using CSV files is the simplicity and efficiency they offer. Unlike setting
up and maintaining a relational database, working with CSV files requires less configu-
ration and overhead. This simplicity can be advantageous for smaller-scale projects or
situations where a lightweight storage solution is preferred.

CSV files also lend themselves well to version control. They can be easily tracked using
tools like Git, allowing changes to the dataset to be monitored over time. This feature
facilitates collaboration and reproducibility in machine learning experiments.

Furthermore, CSV files enable straightforward data exploration and analysis. They can
be easily opened in spreadsheet software or data analysis tools, enabling quick data in-
spection, cleaning, visualization, and analysis by non-technical stakeholders.

In summary, the decision to utilize CSV files for the data storage subsystem offers a range
of desirable features. These include the ease of extracting the entire data set, portability
and compatibility across platforms, simplicity and efficiency, version control capabilities,
and the facilitation of data exploration and analysis. By considering these factors, the
choice of CSV files over MySQL proves to be a suitable and advantageous design deci-
sion.

2.1.2 Central Server Subsystem

When designing the prediction model for the electricity usage algorithm, there was an
alternative approaches available, the Autoregressive Moving Average (ARMA) [1] algo-
rithm. However, the decision was made to choose the DeepAR algorithm [2] over ARMA
for several reasons.

6

One reason is that the ARMA algorithm requires the training set to exhibit stationary
properties. In the case of electricity usage for ZJUI buildings, the stationary property
is not satisfied for most parts of the data. This means that the assumptions underlying
ARMA may not hold, making it less suitable for accurate predictions in this context. In
contrast, the DeepAR algorithm does not rely on strict stationary assumptions and can
handle non-stationary data more effectively.

Another reason for selecting the DeepAR algorithm is its utilization of the roll-back pre-
diction concept, where the predicted value becomes part of the input for subsequent
predictions. This approach is particularly advantageous for longer prediction lengths,
such as seven days, as it eliminates the need for manual implementation of the roll-back
process. Leveraging recurrent neural networks (RNNs), DeepAR expedites the roll-back
prediction process, resulting in faster predictions compared to manually incorporating
roll-back functionality. However, when performing a 7-day prediction task with a pre-
diction length of 24 hours, running the algorithm for seven iterations takes more time
than setting the prediction length directly as 168 hours. This discrepancy is due to the
increased compilation process time for the program, in contrast to the time occupied by
the growing decoder size.

2.1.3 Edge Forecasting Subsystem

The Edge Forecasting Subsystem is a critical component of the overall design, and in our
approach, we made the design decision to employ front-end and back-end separation
instead of using the singleton pattern.

Alternative approaches to this design decision could include using the singleton pattern,
where a single instance of the subsystem is created and shared across the application.
However, we chose to employ front-end and back-end separation to enhance modularity
and maintainability. This approach allows for better separation of concerns, making it
easier to update or replace specific components without impacting the entire subsystem.
It also promotes a more flexible and scalable architecture, as different front-end compo-
nents can interact with the back-end independently.

Additionally, when it comes to the User Interface (UI) for the Edge Forecasting Subsys-
tem, we decided to employ the Electron Framework instead of developing a native appli-
cation.

There are alternative approaches to consider, such as building a native application using
platform-specific technologies like Java for Android or Swift for iOS. However, we opted
for the Electron Framework due to its cross-platform compatibility and ease of develop-
ment. Electron allows us to leverage web technologies (HTML, CSS, and JavaScript) to
create desktop applications that can run on multiple operating systems without signifi-
cant modifications.

Using Electron provides several advantages. Firstly, it reduces development efforts by
utilizing existing web development skills and resources. Secondly, it enables faster itera-
tion and deployment since changes to the UI can be made without rebuilding the entire

7

application. Lastly, Electron offers a consistent user experience across different platforms,
ensuring a seamless interface for users.

In summary, our design decisions for the Edge Forecasting Subsystem include employing
front-end and back-end separation to enhance modularity and employing the Electron
Framework for the UI to achieve cross-platform compatibility and ease of development.
These choices were made to improve maintainability, scalability, and the user experience
of the system.

2.2 Design Details

2.2.1 Encapsulation & Fan Cooling Subsystem

At the outset, we initiated the enclosure design based on the concept depicted in Figure 3.
Initially, this design showcased promising results, demonstrating its efficacy in housing
the ELF components effectively. However, upon closer inspection, we encountered cer-
tain limitations that necessitated a reconsideration of the enclosure’s configuration.

Figure 3: Initial Enclosure Figure 4: Electron Architercture

One significant drawback we identified was the incomplete closure of the enclosure. Al-
though we incorporated certain protective measures, it became evident that the precise
internal components remained exposed to external elements and potential hazards. This
vulnerability posed a considerable risk to the functionality and longevity of the ELF com-
ponents, prompting us to explore alternative design options.

Additionally, the choice of using an acrylic plate as the primary material for the enclo-
sure presented further challenges. Acrylic, while visually appealing, fell short in terms
of heat dissipation and hardness, both of which are crucial aspects for maintaining opti-
mal performance and safeguarding the components from external stresses. Recognizing
these limitations, we recognized the need to reevaluate the shell’s material composition
to ensure improved heat dissipation capabilities and overall durability.

With these considerations in mind, we embarked on a comprehensive redesign of the en-
closure. Leveraging the power and versatility of CAD software Creo, we delved into the
design process once again, as shown in Figure 5, Figure 6. By harnessing the software’s

8

capabilities, we could visualize and iterate on the enclosure design, making adjustments
and enhancements to address the previously identified shortcomings.

Figure 5: Enclosure, Part1 Figure 6: Enclosure, Part2

To validate our design ideas, we utilized a 3D printer to fabricate a physical prototype.
This tangible representation allowed us to assess the design’s practicality, identify any
potential flaws, and devise effective solutions. Through a series of modifications and
refinements, we fine-tuned crucial elements such as the enclosure’s closure mechanisms
and the allocation of space for optimized heat dissipation.

By opting for metal as the primary material, we aimed to address the limitations encoun-
tered with acrylic. Metals offer superior heat dissipation properties and greater hardness,
thus mitigating potential issues related to overheating and physical vulnerabilities. This
deliberate choice sought to enhance the overall performance and durability of the ELF
component shell.

Having gained confidence in the success of the redesigned enclosure, we sought the as-
sistance of a skilled merchant on Taobao to facilitate its production using metal materials.
Collaborating closely with the merchant, we provided detailed specifications and com-
municated our exact requirements to ensure the accurate translation of our design into a
robust and reliable shell, and the real enclosure is shown in Figure 7.

Figure 7: Assembled Enclosure Figure 8: Cooling Subsystem

9

In our pursuit of maintaining optimal temperatures within the ELF system to ensure its
protection, we introduced a sophisticated fan system to provide active cooling specifically
for the Raspberry Pi. This strategic addition aimed to prevent overheating and ensure the
stable operation of the critical components.

To further enhance energy efficiency, we devised an intelligent and electrically controlled
system that effectively regulated the temperature of the Raspberry Pi, targeting an ideal
range of around 40 degrees Celsius. This temperature threshold was determined through
extensive research and analysis, considering both the performance requirements of the
Raspberry Pi and the limitations associated with excessive heat.

The Figure 9 shows a cooling fan suitable for Raspberry Pi. The Raspberry Pi radiator
uses a horizontal structure, 5mm copper pipes, multiple fins, and 7 blades, all of which
combine to create the Raspberry Pi radiator.

By implementing this intelligent electronic control system, we achieved a balanced ap-
proach to temperature management. The system dynamically responded to temperature
fluctuations, ensuring the Raspberry Pi’s temperature remained within the optimal range
while minimizing energy consumption. This approach not only protected the ELF system
from potential heat-related issues but also promoted energy efficiency, aligning with our
commitment to sustainable and reliable operation. Figure 8 visually represents the con-
figuration and components of this sophisticated temperature control system, providing a
clear illustration of its integration within the overall design.

Figure 9: New Cooling Fan

We incorporated a fan that supports PWM (Pulse-Width Modulation) signal control, mak-
ing it an ideal choice for DIY enthusiasts. In the context of Raspberry Pi integration,
we focused on utilizing the GPIO (General Purpose Input/Output) pin labeled GPIO 14,
commonly referred to as the ”blue pin,” to achieve precise control over the fan’s speed
through PWM signaling.

To facilitate this integration, we recognized the need to adapt our approach due to the
usage of the Ubuntu operating system, which differs from the Raspberry Pi OS. Conse-

10

quently, we developed a dedicated program to fulfill the task of controlling the fan speed
based on the CPU’s temperature.

In this custom program, we established specific parameters to govern the fan’s behavior
in relation to the CPU’s temperature. As per our stipulation, the fan would initiate op-
eration if the CPU temperature surpassed 40°C, aiming to ensure that the Raspberry Pi
remained within a safe operating range. Conversely, the fan would cease functioning once
the temperature fell below the designated threshold, contributing to energy efficiency and
reducing unnecessary fan noise.

Given that the functionality of the fan control apps native to the Raspberry Pi OS was not
directly accessible in our Ubuntu environment, we took the initiative to create a program
tailored to our specific needs. This program integrated temperature monitoring and fan
control logic, enabling us to maintain optimal operating conditions for the Raspberry
Pi.

Through this procedure, we achieved a robust fan control mechanism that dynamically
responded to changes in CPU temperature, ensuring the Raspberry Pi’s temperature
stayed within the safe range. By implementing this program, we prioritized both the
protection of the Raspberry Pi’s components and the overall user experience in a DIY
environment.

2.2.2 Data Collection Subsystem

The Data Collection Subsystem consists of two main components: a server with RESTful
APIs based on Spring Boot framework and a script that reads from a Cassandra database.
The server with RESTful APIs is deployed on-premise and allows for the uploading of
new electric load data. The script reads from the Cassandra database and makes API
calls to the server. This subsystem is essential for data collection and ensures that our
machine learning models are trained on accurate and reliable data.

The design process for the Data Collection Subsystem was an iterative and collaborative
effort that involved multiple teams and stakeholders. Initially, we aimed to build our own
hardware to measure electric load and use it as the data source for our machine learning
model. However, after consulting with the IT team of the campus, we learned that we
were not allowed to install our devices directly to the campus’ power system due to legal
and security issues.

Given this constraint, we had to come up with a different solution. Fortunately, the IT
team was maintaining their own electric load measurement system and hosting a Cas-
sandra Database that recorded detailed electric load data from most of the buildings on
the campus. We saw this as an opportunity to use the existing infrastructure and leverage
their data collection capabilities.

To collect the data, as stated in Figure 10, we built a script that read from the Cassandra
Database and transferred the aggregated data to our own Data Storage Subsystem. To
enable communication between the script and the Data Storage Subsystem, I designed a

11

classic server-client architecture consisting of a server and a client in the form of a Python
script that communicated with HTTP requests.

Figure 10: Data Collection Flow

This approach not only allowed us to collect data effectively but also ensured that the data
we collected was reliable and accurate. Throughout the design process, I worked closely
with the IT team and other stakeholders to ensure that our solution was compliant with
campus policies and regulations.

By leveraging existing infrastructure and collaborating with other teams, we were able to
overcome obstacles and build a robust and effective solution for collecting electric load
data.

2.2.3 Data Storage Subsystem

The Data Storage Subsystem is also deployed on-premise and is responsible for storing
and managing the data collected by the Data Collection Subsystem. This subsystem pre-
pares the data for machine learning model training and ensures that it is ready to be used
by our data scientists. This subsystem is critical for our solution and ensures that the data
collected is easily accessible and usable.

Initially, we designed the Data Storage Subsystem based on AWS S3, which is a scal-
able and highly available object storage service offered by Amazon Web Services. The
main advantage of using AWS S3 is that it provides reliable and durable storage for large
amounts of data at a low cost. Moreover, it offers a wide range of security and compli-
ance features, such as access control, encryption, and auditing, which help ensure the
confidentiality, integrity, and availability of our data.

However, after contacting the IT team of our campus, we learned that maintenance data
could not be uploaded to overseas cooperation’s database due to compliance and security
concerns. Therefore, we had to come up with a different solution that would allow us to
store and manage the data locally.

To address this challenge, we decided to deploy the Data Storage Subsystem on the server
of the lab of Professor Ruisheng Diao. This solution allowed us to have full control and
ownership over the data, while also complying with the policies and regulations of our
campus.

Throughout the design process, we worked closely with the IT team and other stakehold-
ers to ensure that the Data Storage Subsystem met their requirements and expectations.

12

Specifically, we focused on designing a system that was scalable, reliable, and easy to
manage, while also providing the necessary security and compliance features.

Overall, the design process for the Data Storage Subsystem was a valuable learning ex-
perience that required us to be flexible, creative, and collaborative. By leveraging the
strengths of local resources and working closely with other teams, we were able to over-
come challenges and build a robust and effective solution for managing our data.

2.2.4 Central Server Subsystem

Figure 11: Model Training and Prediction Flow

The software module of our project includes a block with a green background, which rep-
resents the model training and prediction flow. The weather crawler, which is called daily,
parses the HTML file from the wunderground website to capture the table of weather
condition data and transmit it to the Data Storage Subsystem.

When a train request is received, the pre-process module handles the daily weather con-
dition data and electricity usage data. This includes removing units, aligning timestamps,
and generating the data set for each building.

In the training process, the model is trained for each building. We chooses the likelihood
equation, which is the object we want the distribution of the model, in equation 1, to
reach. That is, for a time series i, we want the distribution for the prediction of values
from t0 to T equals to the joint distribution of each time point between t0 and T .

QΘ (zi,t0:T | zi,1:t0−1,xi,1:T) =
T∏

t=t0

QΘ (zi,t | zi,1:t−1,xi,1:T) =
T∏

t=t0

ℓ (zi,t | θ (hi,t,Θ)) (1)

hi,t = h (hi,t−1, zi,t−1,xi,t,Θ) (2)

13

Figure 12: DeepAR Working Flow

zi,t0:T indicates the prediction output from t0 to T for series i . zi,t0−1 indicates the context
values. Xi,1:T indicates the covariates for series i, from the beginning time point 1 to T .
The covariate values in the feature are known when doing prediction. hi,t is the hidden
value of the LSTM cell’s output. Then the hidden value is used to calculate the mean and
variance for a Gaussian distribution because the value of electricity usage is continuous.
Thus in reality, the distribution of the electricity consumption is closed to a Gaussian
distribution.

The left part of Figure 12 shows the training process. At each time step t, the inputs to the
network consist of the covariates xi,t, the target value at the previous time step zi,t−1, and
the previous network output hi,t−1. The network output hi,t is then utilized to calculate the
parameters θi,t = θ(hi,t,Θ) of the likelihood function l(z|θ). These likelihood parameters
are subsequently employed to train the model parameters, enabling the network to learn
and improve its predictions over time. The covariates for the project is in Table 1.

Table 1: Feature table for training set

Column Name Meaning Unit

Temperature Air temperature F

Humidity Air humidity %

Condition Text light description -

val Electricity usage kWh

Building Text building ID -

time idx Time index H

is weekend holiday Weather time index is in a rest day Boolean

2.2.5 Edge Forecasting Subsystem

We have developed a user-friendly application for electric load forecasting, implemented
using the Electron Framework. This application enables users to select a particular build-

14

ing and specify the desired time period for prediction. The interface design is intuitive
and easy to navigate, ensuring a seamless user experience.

To initiate the prediction process, users simply need to make their selections and click the
appropriate button. Subsequently, the application sends an HTTP request to a RESTful
API, which in turn triggers the inference process. This approach ensures efficient and
timely retrieval of the forecasted load data.

When a prediction request is received from a client, the prediction module calls the weather
crawler to obtain the forecast weather data, in Figure 11. Then, similar to the training pro-
cess, the pre-process module is called again to generate the input data set for the trained
module. The forecast result is saved in a file called ”prediction.log”, which is used to
display the curve of electricity usage in the future. The right part of Figure 12 shows the
prediction process. In the DeepAR algorithm, the historical time series data zi,t is used as
input for time steps t less than a certain threshold t0. For time steps t greater than or equal
to t0 (the prediction range), a sample value ẑi,t is drawn from the likelihood distribution
ẑi,t ∼ l(·|θi,t) and fed back as input for the next time step. This process is repeated until
the end of the prediction range t = t0 + T , generating a single sample trace. By repeating
this prediction process multiple times, a collection of traces is obtained, representing the
joint predicted distribution of the time series data.

Once the prediction results are received, the application utilizes the Google Charts li-
brary to dynamically generate and display a line chart. This chart provides a visual rep-
resentation of the predicted load, allowing users to gain insights and understand the pre-
dicted load patterns. The integration of the Google Charts library enhances the overall
user experience by offering interactive and visually appealing data visualization capabil-
ities.

By employing the Electron Framework, which is explained in Figure 4, our UI application
achieves platform independence, enabling it to run seamlessly on various operating sys-
tems. This enhances the accessibility and usability of the application, making it accessible
to a wider range of users. Furthermore, the RESTful API integration ensures scalabil-
ity and robustness, enabling the application to handle large-scale load forecasting tasks
efficiently.

In conclusion, our UI application for electric load forecasting combines a user-friendly
interface, efficient data retrieval through HTTP requests, and dynamic visualization using
the Google Charts library. The incorporation of these technologies and design principles
contributes to an intuitive and effective tool for load forecasting analysis.

15

3 Verification

3.1 Hardware module

3.1.1 Enclosure, Raspberry Pi and display screen

There are three requirements of the Enclosure, Raspberry Pi and display screen:

1) The physical model can be properly encapsulated with Raspberry Pi.
2) After the data is entered, the final prediction needs to be presented.

The verification of this part is as follows:

1) The length and width are 930mm and 645mm respectively, and the height is 500mm.
It’s big enough to hold a raspberry PI and a fan.
2) We chose a full-view monitor with an HDMI input. Can be plugged directly into all
versions of Raspberry Pi motherboards. This will ensure that we have a good representa-
tion of the results on Raspberry Pi

3.1.2 Fan control

There are three requirements of the Fan control: 1) It can monitor the Raspberry Pi CPU
temperature in real time.
2) The Raspberry Pi needs to be kept at a safe temperature and avoid damage to the
device.
3) The options are as follows: Stop the fan all the time; Real-time fan control according to
temperature; Turn the fan on all the time.

The verification of this part is as follows:

1) Raspberry Pi 4B can provide its own CPU temperature, but we didn’t use Raspberry
Pi. Therefore, we wrote a program to obtain PWM temperature data of Raspberry Pi
temperature from Raspberry Pi GPIO 14 interface and read it out to ensure its real-time
performance and accuracy.
2) The program we wrote above is based on the real-time temperature of the Raspberry
Pi CPU. Once the temperature exceeds 40 degrees, the fan will turn on. The highest
temperature test we’ve done, for a long period of time, without a fan, Raspberry Pi can
reach 80 degrees, but our fan can still bring it down to 40 degrees.
3) The program we wrote provides three options for fan control. One part can always
turn off the fan, one part can always turn on the fan, and the other part can control the
temperature to a safe and stable state by adjusting the speed of the fan.

In Figure 13, it can be verified that the fan control part can work normally and the tem-
perature can be controlled stably at 40 degrees. Real-time temperatures are also available
on the screen.

16

Figure 13: Prediction Process

3.2 Data Collection Subsystem

There are two requirements for the Data Collection Subsystem:

1) The Python script should read data from the Cassandra database and make API calls
to the server.
2) The subsystem should handle a high volume of data without errors or performance
degradation.

The verification is as follows:

1) A test environment was set up to simulate the live data reading from the Cassandra
database. The script was executed, and the successful retrieval of data and subsequent
API calls to the server were verified. Also, the Data Collection Subsystem has been suc-
cessfully deployed and operational for over one month, demonstrating its robustness and
reliability. Throughout this period, the subsystem has performed flawlessly, meeting all
functional requirements and ensuring accurate and consistent data collection. The server
with RESTful APIs based on the Spring Boot framework has seamlessly accepted new
electric load data, while the Python script has consistently read data from the Cassandra
database and made API calls without any errors. This extended period of uninterrupted
operation confirms the effectiveness and stability of the Data Collection Subsystem in
providing accurate and reliable data for the training of machine learning models.
2) A pressure test was conducted by simulating a large-scale data transfer scenario, gen-
erating a high volume of data to be processed by the subsystem. The script was executed
with an increased load, and its performance was measured, including response times
and resource utilization. The system successfully handled the increased load without
any errors or noticeable performance degradation. The average latency is lower than
20ms.

3.3 Central Server Subsystem

There is one requirements for the Central Server Subsystem:

17

1) The Central Server Subsystem is required to have a low prediction error, less than 25%
for most buildings on 24 hours prediction.

The verification is as follows:

1) After the training process finished with training set from 2021-01-10 to 2023-05-01,
test the model’s performance on testing set from 2020-08-01 to 2020-09-01, 720 prediction
value, for each ZJUI building. Recording the total prediction error for each building.

3.4 Edge Forecasting Subsystem

The Edge Forecasting Subsystem is a critical component of our project, responsible for
providing accurate predictions based on incoming requests. To ensure its reliability and
performance, we need to conduct thorough verification procedures that are detailed, re-
producible, and quantitative for all requirements. This will involve testing both the back-
end and frontend aspects of the subsystem, including functional and pressure tests.

There are four requirements for the Edge Forecasting Subsystem:

1) The frontend should receive the predicted result from the backend and render a line
chart based on the data.
2) The backend should successfully trigger the inference function upon receiving a pre-
diction request.
3) The frontend should be able to handle a high volume of prediction requests and render
line charts within acceptable time limits.
4) The backend should be able to handle a high volume of prediction requests and process
them within acceptable time limits.

The verification is as follows:

1) Send a prediction request to the backend part of the Edge Forecasting Subsystem and
verify that the frontend receives the predicted result. Inspect the rendered line chart to
ensure it accurately reflects the predicted result received from the backend. The frontend
successfully receives the predicted result and renders a line chart based on the data.
2) Send a prediction request to the backend part of the Edge Forecasting Subsystem. Ver-
ify that the backend accurately invokes the inference function and collects the necessary
data for prediction. The backend successfully triggers the inference function and collects
the data for prediction. The maximum Queries Per Second is 3000.
3) Simulate a large number of prediction requests and measure the response time of the
frontend while rendering line charts under various pressure scenarios. The frontend ren-
ders line charts within the specified time limits, even under high load conditions.
4) Simulate a large number of prediction requests to the backend part of the subsystem.
Measure the response time of the backend under various pressure scenarios. The backend
processes the prediction requests within the specified time limits, even under high load
conditions. The average latency for cached prediction is less than 20 milliseconds and the
average latency for new prediction is around 3 seconds.

18

4 Cost

4.1 Cost Analysis

4.1.1 Labor

Our fixed development cost is estimated at 40 yuan per hour for four people working 8
hours per week. We considered about 60% of the final design during this semester (14
weeks)
One member: (40 yuan/hour) x (8 hours/week) x (14 weeks x 0.6) x 2.5 = 6720 yuan
Total labor: 4 x 6720 yuan = 26880 yuan

4.1.2 Mechanical Parts

The cost statistics is shown in Table 2 and Table 3.

Table 2: Mechanical Parts

Part Name Manufacturer Quantity Cost(yuan)

Raspberry Pi4 4B 8GB Premier Farnell PLC 1 Offered by sponsor

Black Metal Shell Designed by ourselves 1 189.0

Display Screen Shenzhen
Shengchengwei
Technology Co., LTD

1 121.0

Fan Shenzhen
Shengchengwei
Technology Co., LTD

1 11.5

Shell Board and Screws
(old)

Shenzhen
Shengchengwei
Technology Co., LTD

1 12.5

4.1.3 Sum of costs into a grand total

Our labor cost is 26,880 yuan, adding 334 yuan for different parts, the total comes to 27,214
yuan. If we add a whole smart meter component, the total is 28,076 yuan.

4.2 Schedule

4.2.1 Schedule of Ao Zhao

2/17/23: Understand and determine the power load history and how to obtain weather
data
2/24/23: Get campus data with team members

19

Table 3: Mechanical Parts (cont)

Part Name Manufacturer Quantity Cost(yuan)

4G gateway, 220V AC
power supply

Shandong People
Network Co., LTD

1 168 (optional)

Current Transformer
Buckle

Shandong People
Network Co., LTD

1 56 (optional)

4G Wireless
Multi-functional Meter

Changsha Shewei Meter
Information Technology
Co., LTD

1 638 (optional)

Total - - 334 (1196 optional)

3/03/23: Contact the school staff (Jiang) to seek access to the data
3/10/23: The available historical power load data of ZJUI campus was successfully ob-
tained
3/17/23: Field study to see if we can add meters to get real-time power load data, and buy
a transformer, electric meter, gateway
3/24/23: Design reasonable hardware to ensure the normal operation of Raspberry Pi, and
purchased Raspberry Pi, fan, shell, etc
3/31/23: Assemble hand Raspberry Pi, fan, case, screws, monitor, etc.
4/07/23: Write the code to store the load data from the two buildings that we pulled from
the school’s master database
4/14/23: Solve any problems existing in the overall hardware device
4/21/23: Try to combine the real-time data in the above library with the algorithm part, to
achieve input and output
4/28/23: Connecting the whole system, putting it together
5/05/23: Test the system and make improvements
5/08/23: Mock demo
5/12/23: Prepare final report draft
5/23/23: Complete the final report and functionality demonstration video

4.2.2 Schedule of Yihong Jin

2/17/23: Understand and determine the data flow and hardware platform
2/24/23: Get campus data with team members
3/03/23: Write script to replicate power load data from ZJUI campus
3/10/23: Setup data storage subsystem
3/17/23: Setup and design the HCI functionality of the edge forecasting subsystem
3/24/23: Write the script to deploy the model to the edge forecasting subsystem
3/31/23: Test the Raspberry Pi with designed HCI functionalities
4/07/23: Train the model to get best performance
4/14/23: Train the model to get best performance

20

4/21/23: Build load and predict API
4/28/23: Embedding model
5/05/23: Test integrated system
5/08/23: Mock demo
5/12/23: Prepare final report draft
5/23/23: Complete the final report and functionality demonstration video

4.2.3 Schedule of Liyang Qian

2/17/23: Choose ML algorithm
2/24/23: Get campus data with team members
3/03/23: Crawl weather data from website
3/10/23: Organize weather data from Wunderground weather website [11]
3/17/23: Find the packet code for algorithm
3/24/23: Run the deepAR notebook with example data
3/31/23: Use the custom Data
4/07/23: Train the model to get best performance
4/14/23: Train the model to get best performance
4/21/23: Build load and predict API
4/28/23: Embedding model
5/05/23: Test integrated system
5/08/23: Mock demo
5/12/23: Prepare draft
5/23/23: Complete the final report and functionality demonstration video

4.2.4 Schedule of Ziwen Wang

2/17/23: Get familiar with campus measurement and data storage system
2/24/23: Get clear about what kinds of data we desire to have as input of machine learning
model
3/03/23: Reach out to campus staff (Jiang) in charge to have deeper information
3/10/23: Align with Jiang about data structure and authentication of data
3/17/23: Develop code to select targetted data and get the historical data from Jiang
3/24/23: Try to have the access to real time data from campus measurement system (fail)
3/31/23: Align with Jiang about what and which extend of access can we have
4/07/23: Develop codes based on the access we can have to select data in best effort
4/14/23: Design enclosure system of main calculation system (Raspberry Pi)
4/21/23: Manufacture the enclosure system and test its usability
4/28/23: Assemble the overall system together
5/05/23: Test and improve performance of the system
5/08/23: Mock demo
5/12/23: Prepare final report draft
5/23/23: Complete the final report and functionality demonstration video

21

5 Conclusions

5.1 Accomplishments

The Electricity Load Forecasting system that accurately predicted future electricity de-
mand on our campus was successfully built. Our system incorporated both hardware
and software components, which were crucial in gathering and analyzing data to gener-
ate accurate forecasts.

The hardware system that we implemented consisted of specialized sensors and meters
to measure the electricity load in real-time, and store the data in a centralized database.
Additionally, we incorporated a weather station to collect meteorological data, which was
a key factor in predicting future electricity demand accurately.

The software component of our system was designed to process the collected data and
make accurate predictions about future electricity demand. We utilized to machine learn-
ing model from aws (amazon web service) to analyze the data and generate forecasts.
The accuracy rate of our forecasts is high enough, which exceeded 90 percent. We were
confident in the reliability of our predictions and believed that our system could guide
people in dealing with electricity load situations efficiently.

5.2 Uncertainties

While our Electricity Load Forecasting system had an overall high-performance rate, we
encountered a troubling issue where the model performed poorly during certain times.
The cause of this issue was unclear and required further investigation. However, we were
unable to determine the exact cause of the problem, so the issue was impacting its overall
effectiveness.

We acknowledged the importance of finding a solution to this issue and recognized that
it could significantly impact the overall effectiveness of the system. We decided to con-
tinue our research and development efforts, working towards a resolution to this prob-
lem.

5.3 Future Work

In the future, we plan to continue exploring different algorithms, models, and input data
to identify any potential issues that may be causing the model’s poor performance during
certain times. We will also perform more rigorous testing and evaluation of our system to
ensure that it performs consistently and reliably under a variety of circumstances.

5.4 Ethical Considerations

5.4.1 Privacy and Security

ELF systems collect data on energy consumption patterns, weather data, and other per-
sonal information. Developers must ensure that the system complies with data protection

22

regulations such as the General Data Protection Regulation (GDPR) [3] and the California
Consumer Privacy Act (CCPA) [4].

Additionally, developers must ensure that the data collected is not misused, abused, or
sold to third parties without the users’ consent. The ACM Code of Ethics [5] states that
developers will respect privacy and protect confidential information, and the IEEE Code
of Ethics [6] states that engineers should respect the privacy of others and protect the
confidentiality of data.

5.4.2 Impact on Vulnerable Populations

ELF systems’ predictions may lead to price hikes, making electricity more expensive for
low-income households. The IEEE Code of Ethics [6] states that engineers should con-
sider the social and environmental impact of their work and seek to minimize any nega-
tive consequences. Developers must prioritize the well-being of all stakeholders, includ-
ing vulnerable populations.

5.4.3 Bias

ELF systems’ algorithms can be influenced by underlying biases, leading to inaccurate
predictions. Developers must ensure that the system’s algorithms are designed to mini-
mize any bias that may impact the accuracy of the system. The ACM Code of Ethics [5]
states that developers should not discriminate against individuals or groups and should
ensure that their work is free from bias.

23

References

[1] S. Radha and T. M., “Forecasting short term interest rates using arma, arma-garch
and arma-egarch models,” SSRN Electronic Journal, 2006. DOI: 10.2139/ssrn.876556.

[2] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “Deepar: Probabilistic fore-
casting with autoregressive recurrent networks,” International Journal of Forecasting,
vol. 36, no. 3, pp. 1181–1191, 2020. DOI: 10.1016/j.ijforecast.2019.07.001.

[3] P. Voigt and A. von dem Bussche, The EU general data protection regulation (GDPR),
2017. DOI: 10.1007/978-3-319-57959-7.

[4] P. BUKATY, The California Consumer Privacy Act (CCPA), 2019. DOI: 10.2307/j.ctvjghvnn.
[5] D. Gotterbarn, A. Bruckman, C. Flick, K. Miller, and M. J. Wolf, “Acm code of ethics,”

Communications of the ACM, vol. 61, no. 1, pp. 121–128, 2017. DOI: 10.1145/3173016.
[6] IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available: https://www.ieee.org/

about/corporate/governance/p7-8.html (visited on 02/08/2020).

24

https://doi.org/10.2139/ssrn.876556
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.1007/978-3-319-57959-7
https://doi.org/10.2307/j.ctvjghvnn
https://doi.org/10.1145/3173016
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html

Appendix A Example Appendix

A.1 Subsystem Verification Sheet

Table 4: Hardware Module Verification Sheet

Subsystem Name Requirement Verification Check (Y/N)

Enclosure, Raspberry
PI and display screen

The physical model
can be properly
encapsulated with
Raspberry PI.

The length and width
are 930mm and
645mm respectively.
The height is 500mm.

Y

- After the data is
entered, the final
prediction needs to be
presented

We chose a full-view
monitor with an
HDMI input that can
be plugged directly
into all versions of
Raspberry PI
motherboards.

Y

Fan control It can monitor the
Raspberry PI CPU
temperature in real
time.

A program to obtain
PWM temperature
data of Raspberry PI
temperature from
Raspberry PI GPIO 14
interface, and read it
out to ensure its
real-time
performance and
accuracy.

Y

- The Raspberry PI
needs to be kept at a
safe temperature and
avoid damage to the
device.

Stop the fan for a few
minutes. Then open
the program to cool
down the CPU.

Y

25

Table 5: Data Communication and Model Training Verification Sheet

Subsystem Name Requirement Verification Check (Y/N)

Data Collection
Subsystem

The Python script
should read data
from the Cassandra
database and make
API calls to the server.

A test environment
was set up to
simulate the live data
reading from the
Cassandra database

Y

- The subsystem
should handle a high
volume of data
without errors or
performance
degradation.

A pressure test was
conducted by
simulating a
large-scale data
transfer scenario,
generating a high
volume of data to be
processed by the
subsystem.

Y

Central Server
Subsystem

The Central Server
Subsystem is required
to have a low
prediction error, less
than 25% for most
buildings on 24 hours
prediction.

Test the model’s
performance on a
testing set from
2020-08-01 to
2020-09-01 for each
ZJUI building,
comprising 720
prediction values,
after completing the
training process with
a training set ranging
from 2021-01-10 to
2023-05-01.

Y

26

Table 6: Edeg Forecasting Subsystem Verification Sheet

Subsystem Name Requirement Verification Check (Y/N)

Edge Forecasting
Subsystem

The frontend should
receive the predicted
result from the
backend and render a
line chart based on
the data.

Request prediction
from backend, verify
frontend reception of
result, and inspect
line chart accuracy.

Y

- The backend should
successfully trigger
the inference function
upon receiving a
prediction request.

Verify backend’s
accurate invocation of
inference function
and data collection
for prediction in Edge
Forecasting
Subsystem.

Y

- The frontend should
be able to handle a
high volume of
prediction requests
and render line charts
within acceptable
time limits.

Simulate numerous
prediction requests,
measure frontend’s
response time during
line chart rendering
under different
pressure scenarios.

Y

- The backend should
be able to handle a
high volume of
prediction requests
and process them
within acceptable
time limits.

Simulate numerous
prediction requests,
measure backend’s
response time under
different pressure
scenarios in the
subsystem.

Y

27

	Introduction
	Purpose
	Functionality
	Accuracy
	Scalability
	Reliability
	Ease of Use

	Subsystem Overview
	Data Measuring Subsystem
	Data Collection Script
	Data Storage Subsystem
	Central Server Subsystem
	Edge Forecasting Subsystem

	Physical Design
	Block-level changes
	Electricity Load Measurement System
	Weather Condition Measurement System

	Design
	Design Alternatives
	Data Storage Subsystem
	Central Server Subsystem
	Edge Forecasting Subsystem

	Design Details
	Encapsulation & Fan Cooling Subsystem
	Data Collection Subsystem
	Data Storage Subsystem
	Central Server Subsystem
	Edge Forecasting Subsystem

	Verification
	Hardware module
	Enclosure, Raspberry Pi and display screen
	Fan control

	Data Collection Subsystem
	Central Server Subsystem
	Edge Forecasting Subsystem

	Cost
	Cost Analysis
	Labor
	Mechanical Parts
	Sum of costs into a grand total

	Schedule
	Schedule of Ao Zhao
	Schedule of Yihong Jin
	Schedule of Liyang Qian
	Schedule of Ziwen Wang

	Conclusions
	Accomplishments
	Uncertainties
	Future Work
	Ethical Considerations
	Privacy and Security
	Impact on Vulnerable Populations
	Bias

	References
	Appendix Example Appendix
	Subsystem Verification Sheet

