
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Robot for Gym Exercise Guidance

Team #34

DALEI JIANG (daleij2@illinois.edu)

ZIFEI HAN (zifeih2@illinois.edu)

KUNLE LI (kunleli2@illinois.edu)

CHANG LIU(changl12@illinois.edu)

TA: Yiqun Niu

Sponsor: Prof. Gaoang Wang

May 21, 2023

Abstract

In the modern rapid life pace, doing exercise to burn off excess calories from daily
intake has become a normal need for many people who wish to keep fitness. When
doing sports, many people will choose to receive guidance in multiple ways to make
sure they are doing correct movements. Among all those choices, hiring a gym coach
is a quite common method.

However, most of the people who wants to get guidance cannot afford the cost of a
gym coach. Besides, it can also be a hassle to schedule a time and place to meet the
coach. Our team believe that one gym exercise guidance robot can offer more cheap
and convenient service. It can be used in the gymnasiums or at home. You can use the
robot to get feedback for your exercise at any time you want.

Our robot is equipped with human tracking function based on ROS, and the user can
activate this function so that the robot will follow behind the user until the user reaches
the location suitable for doing sports and turned off the tracking function.

We have designed user-friendly GUI, and the user can select the type of the exercise
he or she wants to do. When the user is doing sports in front of the camera, the robot
will do the counting for the periodic exercise type, such as squats and push-ups, and
use yellow bar to point out any incorrect movements.

After completing doing exercise, the user can generate a report to show the exercise
record. It will show you the report of your latest exercise. It will give you suggestions
such as ”Hip angle is too large”, and show your postures not meet the standard.

Keywords: Human tracking, Pose evaluation, Graphical user interface

ii

Contents

1 Introduction 1
1.1 Project Purpose . 1
1.2 High Level Requirements . 1
1.3 Block Diagram . 2

2 Hardware setting 2
2.1 Hardware Structure . 2
2.2 Hardware Components . 2

2.2.1 Cameras . 2
2.2.2 Raspberry Pi 4B . 3
2.2.3 STM32F103RCT6 control board . 3
2.2.4 Motors, wheels and battery . 3
2.2.5 Display screen . 4
2.2.6 Wireless mouse and keyboard . 4
2.2.7 Schematics with components . 4

3 Human tracking system 5
3.1 System introduction and requirements . 5
3.2 Challenges . 5
3.3 Algorithm choices . 5

3.3.1 Faster R-CNN . 5
3.3.2 Kernel Correlation Filter tracking algorithm 6
3.3.3 Central depth sampling method 6

3.4 Principle of Central depth sampling method 6
3.4.1 Outline . 6
3.4.2 Ratio matrix . 7
3.4.3 Interested box and distance range 9
3.4.4 Navigation publishing . 10

3.5 Improvement by range reduction . 10
3.6 Drawbacks and flaws . 10

4 Pose evaluation system 11
4.1 Overview . 11
4.2 Components . 11

5 GUI system and report generation 15
5.1 Introduction and requirements . 15
5.2 Methodology . 15

iii

5.3 Results and discussion . 17

6 Verification 17
6.1 Tracking system . 17

6.1.1 Verification procedure . 17
6.1.2 Verification results . 18

6.2 GUI system . 18
6.2.1 Verification procedure . 18
6.2.2 Verification Results . 18

6.3 Pose Evaluation System . 18
6.3.1 Verification procedure . 18
6.3.2 Verification Results . 19

7 Cost and schedule 19
7.1 Cost Analysis . 19

7.1.1 Labor . 19
7.1.2 Parts . 20
7.1.3 Total . 20

7.2 Schedule . 21

8 Ethical considerations 22
8.1 Privacy protection . 22
8.2 Avoid discrimination . 22
8.3 Avoid physical and mental harm . 22

9 Conclusion 22
9.1 Accomplishments . 22
9.2 Uncertainties . 23
9.3 Future work and alternatives . 23

iv

1 Introduction

1.1 Project Purpose

Doing exercise to keep fitness is a common need for most of people. However, non-
standard movements cannot help the athletes to achieve the desired effects. Further-
more, improper movements in exercising may cause harm and damage to human bod-
ies. According to a study published in the Journal of Strength and Conditioning Re-
search, ”improper weightlifting technique is one of the most common causes of injury
in weightlifting”. [7]

Obviously, one solution is to hire a professional gymnasium coach to offer the guid-
ance. However, hiring an instructor will be too expansive and inconvenient for most of
the exercisers. Asking for coach’s help cost much money and need to make schedule
every time. Besides, if you cannot afford a personal coach, you cannot get personal
guidance based on the process of your recent exercise and improvements since the
coach needs to work for many exercisers.

1.2 High Level Requirements

1. The robot should be able to track and follow the user’s location within a certain
distance (0.5m - 0.9m), using depth camera to get the environment information.
The robot was able to keep its tracking object in the center of its field of vision.

2. The robot should be able to recognize body key points and skeleton binding, and
can do the counting of the exercise for at least two types (squarts and push-ups).

3. The robot can check whether the person is doing correctly in the exercise based
on the body angles and the exercise standard. The robot should be able to give
comments, and store those evaluation results in the folder, and show those result
in a report.

4. The user can use the robot to do the exercise evaluation function purely through
the GUI platform without using keyboard to enter commands.

1

1.3 Block Diagram

Figure 1: Block Diagram

2 Hardware setting

2.1 Hardware Structure

Our robot structure is shown below, and the hand-drawing draft shows all the com-
ponents of the hardware system. The robot is equipped by two cameras, one is an
HD camera which is use for movement recognition, and another one is an ROS depth
camera used in human tracking.

The structure of the hardware has underwent many changes. Fig. 2 above shows our
final version.

2.2 Hardware Components

2.2.1 Cameras

On the top of the robot, there are two cameras. The smaller one is a normal camera
which returns 640*480 video signal. The bigger camera is a ”Astra Pro” ROS depth

2

(a) Hardware Structure (b) Photo

Figure 2: Overview of Robot

camera, which is able to return the depth image. The reason of using two cameras will
be elaborated in the next section.

2.2.2 Raspberry Pi 4B

Two cameras will transport the signal to the main board. For the main board, we
have chosen Raspberry Pi 4B based on the budget of our team. A board with high
computational efficiency is important for our project, and Raspberry Pi 4B is the best
choice we can make.

2.2.3 STM32F103RCT6 control board

After we get the location information of the human, the information need to be pub-
lished and sent to the motors. We have used a PID control board (Model number
STM32F103RCT6) which can control the angular velocity of the motors to control the
wheels. At the same time, the PID control can do the work of stabilize the voltage on
5 volts, which is necessary for other components.

2.2.4 Motors, wheels and battery

Motors are selected to be DC brushed motors with 360 wire AB code. For the coding
convenience, the wheels are selected to be Mecanum wheels. Battery is an 8400mA
rechargeable lithium battery.

3

Figure 3: Schematics with components

2.2.5 Display screen

As we need to build GUI system, display screen is chosen to have touching signal
transporting ability. The size of the display is 7 inches. Two wires are connected to
the back of the display screen, and one is micro HDMI wire, and another one is the
touching signal wire.

2.2.6 Wireless mouse and keyboard

For the convenience in building the system and further maintenance, we have add
Bluetooth mouse and keyboard to the robot. A Bluetooth receiver is attached on the
USB port.

2.2.7 Schematics with components

In Fig. 3, we have shown the schematics of the system.

4

3 Human tracking system

3.1 System introduction and requirements

When the user need to use the robot, we require the robot to track behind the user and
follow the people until the user reach the location he/she wants. Thus, we need to
design a human tracking function.

Our requirements of human tracking function includes:

1. The robot can follow the user who is walking with normal speed in straight line,
and keep the distance with certain range.

2. The robot can keep the user in the center of the scenery. (From 1/4 to 3/4 of the
screen horizontally).

3. The robot can avoid being influenced by the surrounding items it passes by, and
keep following the desired target person.

4. The function can be launched and shut down easily.

3.2 Challenges

Firstly, our main board does not have quite high processing speed, which means that
too complex algorithm cannot be adopted.

Secondly, our robot is only 34 cm tall, and it means that if the distance between robot
and human is too small, only human’s legs and feet will be included in robot’s view,
which will loss much features for recognizing human’s position. However, if the track-
ing distance is large enough to include most of human body in eyes, more confounding
items will also appears in robot’s view.

Thirdly, the environment light condition is not determined, which means that we need
the robot to be able to get rid of the dependence on color recognition, and also be able
to work on different light condition.

3.3 Algorithm choices

After reading many papers and materials, we have chosen three kinds of algorithms
and methods which is frequently used in object tracking.

3.3.1 Faster R-CNN

Faster R-CNN is a kind of classic neural network used in computer vision [9]. It can
do the image segmentation and classification. Also, it can determine the region box

5

of the human-beings and get the location information. The region box generated by
Faster R-CNN can help us to do the human tracking.

However, the disadvantage is that, it needs quite fast processing speed to catch up
with the camera’s rate. In Raspberry Pi, it costs 20 seconds to process one single image.
This processing speed is not acceptable in tracking. This is the decisive flaw let us
abandon this method.

3.3.2 Kernel Correlation Filter tracking algorithm

Kernel Correlation is also a quite important algorithm which is often used in object
tracking. We choose this algorithm as the backup because this algorithm is in low-
complexity and the requirements of hardware can be satisfied easily. When we are
using this algorithm to track the object, we firstly need to determine the object we
want to track, and then, the algorithm will extract the features from the box, and build
the relation with filter models. Use the old features extracted to train the filters, and
predict the possible location in new image, and add new features to the filter model
[5].

This algorithm is abandoned because in this algorithm, we cannot get the distance in-
formation. The only information returned is the bounding area of the human. Without
the distance, the robot is not able to know when to start and when to stop.

3.3.3 Central depth sampling method

Central depth sampling method is published on Github by Turtlebot, which is a great
algorithm designed of ROS robot to do the tracking. This algorithm is quite simple but
has great performance if the parameters are chosen properly.

The advantage of this algorithm is that, we can get both x, y, z-coordinate value of
the predicted location. Then, we can adjust the robot’s linear and angular velocity to
realize the tracking. Finally, we choose this algorithm. The details will be introduced
in the next section.

3.4 Principle of Central depth sampling method

3.4.1 Outline

Central depth sampling method is raised by ROS wiki officials as a suggested method
to achieve the tracking on a ROS based robot [8]. The advantage of this method is that
it only take use of the information transported from depth camera. Those data will be
processed with basic mathematical calculation without the neuron network to get the

6

Figure 4: Trigonometric in scenery

target. Therefore, the processing speed is quite fast and we can set the rate higher to
get better performance. The main board of our robot is Raspberry Pi 4B which does
not have quite high processing speed. Central depth sampling method will be a quite
good choice.

This algorithm has close relationship with the hardware parameters. It need to take
use of the resolution and scenery angles of the camera. Before the image is imported,
we need to get the trigonometric array of the robot view.

In Fig. 4, we show the scenery of the robot. Our depth image has a vertical field angle
of 45.8◦, and a horizontal angle of 58.4◦. We need to generate a trigonometric array
with the size 640× 480× 2.

The scenery of the robot will be a tetragonal pyramid whose cross sections are rectan-
gles. Any items in this tetragonal pyramid can be captured by the camera theoretically.
When the depth data for one pixel is determined, and the pixel location is determined,
then we can determine the rectangle pixel locates. Therefore, the x, y-coordinate val-
ues are in direct proportional to the depth of the location. Thus, we can build a 2-D
metric containing the parameters for each proportion. In the robot, the image resolu-
tion is 640× 480. For x and y coordinate, we need two set of the ratios. Thus, we need
to build a 640× 480× 2 matrix.

3.4.2 Ratio matrix

When building the ratio matrix, central depth sampling method makes use of param-
eters: X pixel amount, Y pixel amount, horizontal field angle, vertical field angle. With
these information, we can get the relative location of the pixel in the image, as shown
in Fig. 5.

Therefore, we can build the Ratio matrix:

7

Figure 5: Ratio matrix

Ratio[X, Y, 0] = sin((X −W/2.0) ∗ (Wangle/180/W ∗ π) (1)

Ratio[X, Y, 1] = sin((H/2.0− Y) ∗ (Hangle/180/H ∗ π) (2)

Wangle = 58.4◦ (3)

Hangle = 45.8◦ (4)

W = 640 (5)

H = 480 (6)

In this matrix, it uses some approximation to make the calculation easier. For exam-
ple, the angle is assumed to be in direct proportional to the relative pixel location.
That means the item scale is set to be much smaller than the distance. This makes
the processing speed much faster, but does not influence the performance of the func-
tion.

However, we found that the scale item cannot be assumed to be much smaller than
the distance. But this kind of the assumption does not change the performance of the
function greatly.

To get better results, we have tested a more accurate ratio matrix:

Ratio2[X, Y, 0] =
tan(0.5∗Hangle)∗2∗(X−W

2
))√

(tan(0.5∗Hangle)2∗4∗(X−W
2
)2+

tan(0.5∗Wangle)
2∗4∗(H2 −Y)2∗W2

H2 +1

(7)

Ratio2[X, Y, 1] =
tan(0.5∗Wangle)∗2∗(H2 −Y))√

tan(0.5∗Hangle)
2∗4∗(X−W

2)2∗H2

W2 +tan(0.5∗Wangle)2∗4∗(H2 −Y)2+1

(8)

8

This ratio matrix can get more accurate result of the x, y-coordinate value of the object.
However, it costs more time. In tracking function, the processing time for one image
is quite important. Therefore, after testing on the robot, we found that two matrices
do not have great performance. Furthermore, the processing speed limits the perfor-
mance of matrix 2 in complex environment. In this calculation, the precise location off-
set is not very meaningful, and an inaccurate offset with correct direction can achieve
great performance. We decide to use matrix 1 finally with some approximation made
to increase the calculation speed.

After getting the ratio matrix, we can get the physical coordinate value of the pixel
(X,Y) by:

Xdis = Ratio[X, Y, 0] ∗ depth[X, Y] (9)

Ydis = Ratio[X, Y, 1] ∗ depth[X, Y] (10)

After that, we can determine the location of the pixel (Xdis, Ydis, depth).

3.4.3 Interested box and distance range

Figure 6: Interested box

After another location matrix of the pixels is determined with size 640 × 480 × 3, we
need to set an interested box on the image, as shown in Fig. 6. Only the pixels in the
box will draw our attention. We need to determine a range of the distance we want to
observe. If one pixel is in the interesting box, and its depth is in the set range, it will
be added into the array ”sampled points”. After collecting all the sampled points, we
will calculate the geometric center of those sampled points and get Xtarget and Ytarget.
Among are the points, we select the minimum depth and set it to be Ztarget. Then,
(Xtarget, Ytarget, Ztarget) will be the robot’s target. The robot movement velocity will
be:

Ωangular = −Xtarget ∗ xscale (11)

9

Vlinear = (Ztarget − zgoal) ∗ zscale (12)

3.4.4 Navigation publishing

After getting the linear and angular speed of the robot, we use the following com-
mands to publish the velocity data on topic ”geometry msgs”.

geometry msgs :: TwistP trcmd(newgeometry msgs :: Twist());

cmd− > linear.x = (z − goal z) ∗ z scale ;
cmd− > angular.z = −x ∗ x scale ;

cmdpub .publish(cmd);

3.5 Improvement by range reduction

In this algorithm, we have check the sampling points in several images. One impor-
tant failure is that when there are multiple objects locating in the range of the target
distance. This case often happens when there is a close item behind the user with quite
low distance.

To avoid adding multiple items into geometric center calculation, we have added a
clustering module to avoid the influence of the object behind the target user. We set
the closest distance to be Z. When the closest point is detected with the distance Z, the
function will ignore the points with the distance larger than Z + r. Usually, the edge
of the human will not be 20 centimeters far away from the front part. Therefore, we
set ”r” to be 0.2. In this way, our program can avoid the influence of the walls or other
objects in the range.

After adding the range reduction, the robot is much less attracted to other objects.

3.6 Drawbacks and flaws

The GUI of tracking fail to be put in practical use. When we use the GUI on display to
launch the tracking function, the display will be turned off when the control board is
building the connection with Raspberry Pi. We have observed that the battery output
voltage dropped greatly. The standard output voltage is 12.0 volts, and when camera,
control board and display is working together, the output voltage will drop to 7.5
volts.

We have replaced the display, increased the battery voltage and replace the voltage
stabilizer module. However, the problem cannot be solved. Finally, we have used
a 24-inch display with independent power supply. This time, all the functions work

10

Read the
camera input

Y N

Is the camera on?

Read from a
local video file

Joint extraction
from each frame

A variety of joints
Is a push-up/squat done?Start the program

via GUI

N

Go to the next frame

ankle

shoulder

elbow
(coordinates)

Is it standard?
Y

Log

NAngle Analysis

elbow-shoulder-hip

ankle-knee-hip

...

False Positive Reduction

Low confidence filtering

Out-of-box check

Joint coordinates check

Y

counter++

Save screenshots
with comments

Figure 7: The overview of the pose evaluation pipeline

well. Nevertheless, the display should be connected will wire, and the robot cannot
move in free.

4 Pose evaluation system

4.1 Overview

The design procedure for the Pose Evaluation module encompassed several stages,
which were meticulously executed using the robust Mediapipe framework. Each stage
played a vital role in accurately analyzing the movements of individuals performing
push-ups or squats in the gym. This section provides a concise overview of the key
stages involved in the design process, highlighting the extraction of joints, false pos-
itive reduction, angle analysis for identifying exercise start and end points, and the
feedback generation. For reference, an overview of the designed pipeline is depicted
in Figure 7. We have also open sourced the code for this part1.

4.2 Components

The Pose Evaluation module is implemented in Python, utilizing the Mediapipe frame-
work, and is mainly composed of the following components: the counting mechanism
and the feedback generation. The implementation was thoughtfully organized in a
modular manner, providing users with the flexibility to switch between different com-
ponents seamlessly. For instance, users have the option to select either the camera or a

1https://github.com/unw9527/AI-Gym-Robot

11

https://github.com/unw9527/AI-Gym-Robot

Figure 8: Coordinates and confidence of each joint collected using the Mediapipe
framework

local video file as the input source, as well as the choice between the push-up counter
or the squat counter. More importantly, the Pose Evaluation module can be completely
detached from the robot, allowing users to use on any platforms including Windows,
MacOS and Linux.

The Counting Mechanism The development of the counting mechanism involves
meticulous implementation of Python scripts that leverage the capabilities of the Me-
diapipe framework. These scripts capitalize on the framework’s existing components,
such as the joint recognition model, which were customized to cater to the specific
requirements of the counting mechanism.

Furthermore, the design of the scripts prioritized their easy integration with the robot,
facilitating the robot’s utilization of the counting mechanism to accurately tally the
number of push-ups and squats performed by the user. This seamless integration en-
hances the overall functionality and usefulness of the robot as an exercise guide.

One of the primary challenges encountered in developing the counting mechanism
was determining the correct execution of a push-up or squat. Existing methods often
rely on simplistic patterns, such as monitoring the angles of the elbows and shoulders.
However, these methods lack robustness when confronted with variations in users’
movements.

To overcome this limitation, a more robust method was developed to accurately detect
the start and end points of each push-up or squat. This method is based on the logical
reasoning that the user’s position should adhere to certain principles. For example, a
person cannot do a squat while he is laying down. Additionally, the method incorpo-
rates a comprehensive analysis of various angles, evaluating whether they fall within
a range predefined by extensive experiments. By extensively investigating into Medi-
apipe, we found that Mediapipe provides a convenient way to set limit on the variance
in coordinates, as the coordinates of each joint, as well as a confidence value, are re-
turned by the framework, as shown in Fig 8. Based on this information, the method

12

Figure 9: The visualization of the interface

determines the completion of a full push-up or squat.

By adopting this approach, the counting mechanism becomes more adept at accurately
identifying the completion of each exercise repetition, accommodating variations in
users’ movements.

To enable the robot to better interact with the user, we also developed a visualiza-
tion tool to help users see themselves during the exercise and the number of push-
ups/squats recorded by the counter. The tool is implemented using the OpenCV li-
brary and shows the video feed from the camera with the counter overlaid on the
video. Fig.9 is an example view of the interface where we used an online video2 for
the demonstration purpose.

This interface serves as a specification outlining the input/output requirements of
the counting mechanism, ensuring compatibility and smooth communication with the
other modules.

The Feedback Generation The feedback generation module is implemented using
the logging library as well as the OpenCV library in Python. The logging library (i.e.
logger) explicitly records the timestamp and the number of repetitions performed by
the user, which can be used for further analysis. The logger also records which rep-
etition is performed incorrectly, assisting in generating feedback for the user. Fig. 12
shows an example of the logger output.

The feedback generation module also utilizes the OpenCV library to capture the screen-
shot of the frame when the user performs an incorrect movement. The screenshot is
then saved to the local disk, and the body part that is not in the correct position is

2https://www.youtube.com/watch?v=xqvCmoLULNY. Note that we can also use the camera to
capture live video.

13

https://www.youtube.com/watch?v=xqvCmoLULNY

Figure 10: Illustration of the feedback collected from extensive experiments.

pointed out by using the OpenCV library to leave a comment on the screenshot.

In scenarios where the majority of the angles fall within the desired range while a few
deviate from it, the system has been designed to capture a screenshot of the frame and
emphasize the incorrect angles. We have conducted extensive experiments and the
result can be found at Fig. 10

On the other hand, if the majority of angles detected are outside the predefined range,
indicating a significant deviation from the expected exercise movements, the system
identifies the movement as a random or unrelated action. In such cases, the system
refrains from counting it as a valid exercise repetition to ensure accurate tracking and
recording of the user’s performance.

By employing these mechanisms, the system effectively distinguishes between cor-
rect exercise executions and random movements, promoting precision and reliability
in counting the number of completed repetitions. This approach encourages users
to maintain proper form and technique, facilitating effective exercise guidance and
progress tracking.

14

5 GUI system and report generation

5.1 Introduction and requirements

As our system is required to be user friendly, we decided to integrate all funcitons into
one GUI and also after the user finish exercising, the report could be displayed in a
streightforward way. We designed a GUI where the user could enter and exit every
function by pressing buttons, and the basic info of exercise could be displayed in a
local webpage.

Our requirements of GUI and Feedback Webpage includes:

1. The buttons should be big, clear and user friendly.

2. The buttons should be responsive and run the correct program or direct to the
correct page when pressed.

3. The report should be straightforward and includes the basic info of exercise.

4. The report should display examples of incorrect gesture if there is any.

5.2 Methodology

The Graphical User Interface (GUI) for the Exercise Counter application is imple-
mented using the tkinter library in Python. The GUI consists of a main window with
various components, including labels and buttons. When the GUI is initialized, the
welcome message is displayed using a label. The start button is provided to initiate the
exercise counting process. Upon clicking the start button, additional buttons for ex-
ercise counting and report generation are displayed, while the start button is hidden.
The exercise counting buttons allow users to count squats and pushups by running
specific programs using the run program 1 and run program 2 methods, respectively.
The GUI also includes buttons to generate HTML reports, which are opened in the
default web browser using the open local html method.

The GUI provides a user-friendly interface for interacting with the Exercise Counter
functionalities. Users can easily navigate through the GUI by clicking the appropriate
buttons to initiate exercises, generate reports, and track objects. The GUI structure and
functionality can be extended to incorporate additional features as needed. Overall,
the Exercise Counter GUI enhances the usability of the application and simplifies the
exercise counting process for users.

The screenshots of the GUI are shown below.

15

Figure 11: Graphical User Interface

The exercise report generation code extracts information from a log file generated dur-
ing an exercise session and uses it to create an HTML report. The report includes
exercise-specific details such as the exercise type, total counts, and time taken. A
screenshot of the log file is shown below.

Figure 12: Log File

The report also displays screenshots of any improper gestures detected during the ex-
ercise. The code parses the log file, selects a random subset of images from a directory,
and inserts them into the HTML template along with the extracted information. The
generated report is then saved as an HTML file. Overall, the code combines log file
parsing, HTML template population, and image selection to produce a comprehensive
and visually appealing report summarizing the exercise session and highlighting any
areas of improvement. A screenshot of the report webpage is shown below.

16

Figure 13: Exercise Report

5.3 Results and discussion

All the bottoms are responsive and friendly to amateur users and report generation
is smooth and clear as well. However, there is plenty of room for us to improve,
for example, we could add videos of guidance and GIF of proper movements to our
report, and we could also create a mobile app so that the user could now view their
exercise results on a mobile phone.

6 Verification

6.1 Tracking system

6.1.1 Verification procedure

1. When the human is walking in speed under 1m/s on the flat ground without
any confounding items, check whether robot is able to focus on the human, and
keep the tracking.

2. When the robot is doing the tracking, measure the distance between robot and
human which should be kept in the range of 0.5m to 0.9m. When the robot
finishes tracking, the distance should be 0.7m with error smaller than 0.1m.

3. The human changes the direction, the robot should be able to turn the head to
keep the person in the center of its view, and -0.35m to 0.35m in scale.

4. Test the tracking function under different light conditions

17

5. When the robot is doing tracking, check if the scenery of the robot is displayed
on the screen.

6.1.2 Verification results

1. The robot can do the tracking smoothly in flat ground and the environment with-
out the obstacles.When people is walking under the speed of 1m/s, the robot can
keep the tracking.

2. The distance can be kept in 0.5m and 0.9m for most of the time. The maximum
distance is 0.94m and the lowest distance is 0.47m. The robot will only do the
distance adjustment when the distance is out of range, so little overflow occurs
in the peaks and ebbs, which is acceptable. When the robot reaches stable point,
the distance is always in the range.

3. The robot’s linear speed and angular speed allows the robot to keep the distance
and make the user in the center of its view (-0.35m - 0.35m).

4. The ROS depth camera is equipped with thermographic camera. It can adapt
different kinds of the light condition.

5. When the tracking function is running, the display can show the view of the
robot.

6.2 GUI system

6.2.1 Verification procedure

We have invited five people who does not have any background information to use
our robot. We need to determine have many of them can use all of our functions
without extra guidance except for the instruction on the GUI.

6.2.2 Verification Results

Four people can understand the function of robot and take use of the movement recog-
nition system and movement evaluation system. One people need some extra help to
understand the logic of GUI.

6.3 Pose Evaluation System

6.3.1 Verification procedure

We have invited two different testers to do the squats and two testers to do the push-
ups in different side views(left, right) and light conditions(normal, against the light).

18

The total number for one set of test is ten, and we will count the number of standard
results, non-standard results and missing results to get the accuracy.

6.3.2 Verification Results

Test of Squats

Conditions
Results

(S=standard, N=non-standard, M=missing)

Tester Side View Light 1 2 3 4 5 6 7 8 9 10 Accuracy

Dalei Jiang Left Normal S N S S S S N S S S 100%

Dalei Jiang Right Normal S S N S S S S S M S 90%

Zifei Han Left Normal N S S S N S S S S S 100%

Zifei Han Right Normal S S S S N S N S S N 100%

Zifei Han Left Against the Light S S S N S M S N S S 90%

Total Accuracy: 48/50× 100% = 96%

Table 1: Test of Squarts

Test of Push-ups

Conditions
Results

(S=standard, N=non-standard, M=missing)

Tester Side View Light 1 2 3 4 5 6 7 8 9 10 Accuracy

Chang Liu Left Normal N S N S S S S N S M 90%

Chang Liu Right Normal S M N S S N S S S S 90%

Kunle Li Left Normal S S S N N S S S S N 100%

Kunle Li Right Normal S N M S S S S S N S 90%

Kunle Li Left Against the Light S S N S S N S N S S 100%

Total Accuracy: 47/50× 100% = 94%

Table 2: Test of Push-ups

7 Cost and schedule

7.1 Cost Analysis

7.1.1 Labor

Our fixed development costs are estimated to be ¥15/hour, 10 hours/week for every-
one.

19

weekly cost = 15 RMB/hours × 10 hours/week × 8 weeks × 4 = 4800 RMB

7.1.2 Parts

Part Vendor Cost (CNY) Qty Total(CNY)

Depth Camera Taobao 980.00 1 980.00

Raspberry Pi 4B Main-board Taobao 855.00 1 855.00

Rplidar A1 Omnidirectional Ultra-
sonic Radar

Taobao 269.00 1 269.00

7 Inch touching display screen Taobao 260.00 1 260.00

High-torque motor Taobao 48.25 4 193.00

Metal chassis and Mecanum wheel Taobao 98.00 1 98.00

Acrylic plate frame Taobao 56.59 1 56.59

Differential PID motor speed regu-
lating drive board

Taobao 150.00 1 150.00

GY-85 Nine-Axis Gyroscope Taobao 70.51 1 70.51

Bluetooth speaker Taobao 58.00 1 58.00

16G SD card and SD card reader Taobao 34.90 1 34.90

12V lithium batery Taobao 3.00 9 27.00

Data cables and adapting pieces Taobao 10.00 1 10.00

Wired keyboard Taobao 58.00 1 58.00

Total — — — 3120.00

Table 3: Cost List

7.1.3 Total

Total cost estimate: 7920 RMB

20

7.2 Schedule

Week Dalei Jiang Zifei Han Chang Liu Kunle Li

3/20 Assemble the
robot hardware
devices and set
up the OS and
environment

Documentation
reading about
ROS and build
(later update)
lab notebook

Paper reading
and environ-
ment setup

Environment
Setup

3/27 Use the Rviz to
set the naviga-
tion task man-
agement system
in ROS

Explore and im-
plement several
algorithms on
navigation in
rospy

Try to launch the
detection model
on the laptop

Push-up count &
motion evalua-
tion

4/03 Based on
OpenCV, ap-
ply the KCF
algorithm on
PC, and use the
existing video to
test

Documentation
reading about
KCF of recogni-
tion of human
figure

Write the GUI
and complete
the related
design of the
scripts

Integrate the
individual meth-
ods

4/10 Move the algo-
rithm function to
the robot, and
connect the cam-
era as input

Deploy the
algorithms func-
tion onto the
platform and
debug

Deploy the
algorithms func-
tion onto the
platform and
debug

Implement the
GUI and adjust
the adaption of
the application

4/17 Set up easy-to-
call scripts for
target tracking
function

Further debug
and double
check the inter-
action between
software and
hardware

Help Kunle
combine GUI
and Model

Implement the
GUI and adjust
the adaption of
the application

4/24 Help Kunle mi-
grate the system
onto robot

Help Kunle mi-
grate the system
onto robot

Help Kunle mi-
grate the system
onto robot

Migrate the sys-
tem onto robot

5/01 Test the function
and debug

Test in expected
usage situations
and debug

Test the function
and debug

Debug and en-
hance

5/08 Organize materi-
als and write fi-
nal report

Test in real appli-
cable situations
and debug

Organize materi-
als and write fi-
nal report

Exhaustive tests
to improve sta-
bility

Table 4: Schedule

21

8 Ethical considerations

8.1 Privacy protection

All our processing and the data collection are done off-line, and we do not update any
data to online server. The IEEE Code of Ethics indicated that engineers should ”protect
the privacy and confidentiality of their clients or employers’ information, including
personal information.” [6] In ACM Code of Ethics, it mentions that ”The engineers
should respect the privacy of users, collect as little user information as possible, and
avoid information disclosure.” [1] On our project, none of the users’ privacy will be
collected, analyzed or published out side of the robot hardware.

8.2 Avoid discrimination

According to the IEEE Code of Ethics, We should not discriminate or treat users dif-
ferently based on their race, age, gender or other factors. [6] In our program, our robot
will only give comments on users’ performance on doing exercise. We should avoid
making comments on users’ body shape or physical fitness levels.

8.3 Avoid physical and mental harm

According to the IEEE Code of Ethics, we need to avoid all forms of harm. Our robot
will keep a distance from the user while moving to avoid collisions. [6] At the same
time, we isolate all live equipment to prevent direct contact. Furthermore, we have
paid attention to the feedback we offer for the user, to make the feedback positive and
supportive.

9 Conclusion

9.1 Accomplishments

The gym robot system has been successfully developed and verified, demonstrating
robust functionality and performance. The robot is capable of autonomously tracking
a person within the gym, ensuring that the user can do exercise wherever wanted,
without the hassle of moving the robot around. Once the person initiates their ex-
ercises by starting the exercise mode on the robot, the robot transitions to the pose
evaluation module, which analyzes the individual’s posture and generates a compre-
hensive feedback report for correction and improvement.

The robot is also capable of counting the number of repetitions performed by the user,
providing a convenient and reliable tool for tracking exercise progress. The counter is

22

shown on the touch screen of the robot at run time, and the user can check the number
in the report after he finishes exercising.

9.2 Uncertainties

Despite the successful development and evaluation of the gym-tracking robot system,
there are certain uncertainties that should be acknowledged. These uncertainties stem
from various factors and aspects of the project, and they should be considered for
future improvements and advancements in the system.

• Accuracy under different camera configurations: The Pose Evaluation module
exhibited reliable performance when analyzing standard movements. However,
challenges arose when the user is facing various directions. This discrepancy
raises uncertainties regarding the accuracy of the Pose Evaluation module under
different camera configurations, distances, and angles. Further investigations
and refinements are necessary to address this limitation and enhance the sys-
tem’s robustness.

• Generalizability to diverse user populations: The gym robot system has been
evaluated using a limited set of users and exercise routines. Due to the limited
availability of resources and time, the system’s performance has not been eval-
uated across a broader range of users with varying body types, fitness levels,
and exercise techniques. Future studies involving larger and more diverse user
populations can provide valuable insights into the system’s performance across
a wider demographic.

Addressing these uncertainties through further research, and development will con-
tribute to the refinement and advancement of the gym robot system.

9.3 Future work and alternatives

Firstly, the power supply problem should be solved. Currently, our robot can only use
24-inch display screen with individual power supply to make the tracking function
GUI work. To achieve complete GUI operation of functions, we need to set another
battery-display system, and modify current metal frame to fasten new battery.

Then, we can build more functions in movement recognition system, such as sit-ups
and Bur-pees, and allows the robot to instruct more types of movement.

Besides, we can develop more peripheral applications, such as mobile phone APP to
make the product more user-friendly.

23

References
[1] ACM, “Acm code of ethics,” 2018. [Online]. Available: https://www.acm.org/

code-of-ethics (visited on 03/10/2023).
[2] M. Andriluka, U. Iqbal, E. Insafutdinov, et al., “Posetrack: A benchmark for hu-

man pose estimation and tracking,” in 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2018, pp. 5167–5176. DOI: 10.1109/CVPR.2018.00542.

[3] M. Chang, C. Zhang, Y. Chen, W. Chen, Y. Chen, and Y. Tsai, “Real-time multi-
person squat detection and counting for group fitness videos,” IEEE Access,
vol. 8, pp. 15 248–15 259, 2020.

[4] Google, “Mediapipe: A framework for building pipelines to process media data,”
Google AI Blog, 2019. [Online]. Available: https://ai.googleblog.com/2019/03/
mediapipe-framework-for-building.html.

[5] J. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with
kernelized correlation filters,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, no. 3, pp. 583–596, 2015.

[6] IEEE, “Ieee code of ethics,” 2016. [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7-8.html (visited on 03/10/2023).

[7] J. W. Keogh, P. W. Winwood, and P. T. Nikolaidis, “Injury prevalence and sever-
ity in fitness athletes: Association with training experience,” Journal of Strength
and Conditioning Research, vol. 20, no. 4, pp. 855–860, 2006.

[8] W. D. Lee, The turtlebot follower demo, http://wiki.ros.org/turtlebot follower/
Tutorials/Demo/, Accessed March 31, 2015.

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.

[10] A. Vij, Push-ups with python + mediapipe = open, https ://aryanvij02 .medium.
com/push-ups-with-python-mediapipe-open-a544bd9b4351, 2021.

[11] C. Wang, L. Xu, J. Liu, and D. Tao, “Human physical activity recognition by
multi-modal deep learning method,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 6, pp. 3656–3666, 2019.

24

https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://doi.org/10.1109/CVPR.2018.00542
https://ai.googleblog.com/2019/03/mediapipe-framework-for-building.html
https://ai.googleblog.com/2019/03/mediapipe-framework-for-building.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
http://wiki.ros.org/turtlebot_follower/Tutorials/Demo/
http://wiki.ros.org/turtlebot_follower/Tutorials/Demo/
https://aryanvij02.medium.com/push-ups-with-python-mediapipe-open-a544bd9b4351
https://aryanvij02.medium.com/push-ups-with-python-mediapipe-open-a544bd9b4351

Appendix A Requirements and Verification Table

Subsystem Requirements Verification (Y for success)

Human
Tracking
System

1. The robot can keep the user in
the center of the scenery (occupying
the center rectangle of half width and
height).

1. Verify by activating another node to
show the view of the robot on moni-
tors and check if the user locates in the
supposed region. (Y)

2. The robot can follow the user who
walks at a normal speed in a straight
line, and keep the distance at 0.7 me-
ters.

2. Verify by walking in a straight line
in the view of the robot and measuring
the distance between them. (Y)

3. The robot can follow the user who
turns left or right at a normal speed,
and keep the distance at 0.7 meters.

3. Verify by first standing in front of
the robot and then turning left or right,
and measuring the distance between
them. (Y)

4. The robot can avoid being influ-
enced by the surrounding items lo-
cated at least 0.4 meters that it passes
by.

4. Verify by walking by a few manu-
ally placed obstacles at around 0.4 me-
ters and observing if the robot can still
follow the user. (Y)

Pose
Evaluation
System

1. The robot can determine whether
the user has done the supposed type
of movement under certain modes.

1. Verify by doing the supposed type
of movement in front of the cam-
era and see if the system returns a
count increase or a message for non-
standard poses. (Y)

2. The robot can count and show
the number of standard movements,
having an accuracy of 80% or higher.

2. Verify by doing 10 standard move-
ments in a row for 5 times, and check-
ing if the average counted number of
movements reaches 8 or larger. (Y)

3. The robot can reach an accu-
racy of 90% or higher in collecting
standard or non-standard (but rec-
ognized) movements from all move-
ments.

3. Verify by doing 10 movements in a
row for 5 times, and checking if the av-
erage collected number of movements
reaches 9 or larger. (Y)

GUI System
and Report
Generation

1. The buttons should be responsive
and run the correct program or direct
to the correct page when pressed.

1. Verify by clicking all buttons on the
GUI for either tracking, exercising, or
showing introductions and checking if
they work as supposed. (Y)

2. The generation of the log and re-
port should be complete to record all
movements.

2. Verify by checking in the report
if the number of movements done
equals the one shown in the report. (Y)

3. The report should describe with
joint angle conditions how each non-
standard movement is judged as so.

3. Verify by checking the images in
the report to see if the number of them
equals the difference between stan-
dard movements and collected move-
ments. (Y)

25

	Introduction
	Project Purpose
	High Level Requirements
	Block Diagram

	Hardware setting
	Hardware Structure
	Hardware Components
	Cameras
	Raspberry Pi 4B
	STM32F103RCT6 control board
	Motors, wheels and battery
	Display screen
	Wireless mouse and keyboard
	Schematics with components

	Human tracking system
	System introduction and requirements
	Challenges
	Algorithm choices
	Faster R-CNN
	Kernel Correlation Filter tracking algorithm
	Central depth sampling method

	Principle of Central depth sampling method
	Outline
	Ratio matrix
	Interested box and distance range
	Navigation publishing

	Improvement by range reduction
	Drawbacks and flaws

	Pose evaluation system
	Overview
	Components

	GUI system and report generation
	Introduction and requirements
	Methodology
	Results and discussion

	Verification
	Tracking system
	Verification procedure
	Verification results

	GUI system
	Verification procedure
	Verification Results

	Pose Evaluation System
	Verification procedure
	Verification Results

	Cost and schedule
	Cost Analysis
	Labor
	Parts
	Total

	Schedule

	Ethical considerations
	Privacy protection
	Avoid discrimination
	Avoid physical and mental harm

	Conclusion
	Accomplishments
	Uncertainties
	Future work and alternatives

