Team #37 Dental Health Monitoring System

Linjie Tong, Yichen Shi, Xin Wang, Zitai Kong

1 Block Diagram

2 High-level Requirements List

Requirement 1. For the physical part, the total mass of the system should be around 500g to make the user easy to hold; the force required for user to adjust the system should not be larger than 1 Newton to make the use convenient. The structure must have a safety factor of at least 10, which is calculated from the largest von mises stress in FEA analysis.

Requirement 2. The segmentation algorithm obtains the accuracy better than that directly applied to nature image processing algorithm.

Requirement 3. The 3D reconstruction algorithm obtains the accuracy better than that directly applied (by the baseline).

3 Points Summary Table

Mechanical Sample Subsystem

Requirements	Verifications	Points
1 degree of freedom	From certain orientations, rotate the threads 20 times clockwise	4
	and 20 times counterclockwise, test if the final orientation is the	
	same as the initial orientation	
Correct location of the	For 4 members in the group, we install the matcher into our	4
placement of the system	face, and use centimeters to test the accuracy of the placement	
	of the system. A desirable situation is that the centerline of the	
	system is within 1mm the centerline of human face.	
Self-locked system	As we use threads to control the orientation of the system to	1
orientation	the mouth. An easy way to test is to first make the threads	
	vertical, and then install a nut on the threads. If the nut does	
	not slip down, the requirement is satisfied	
Invulnerable to shaking	For the steel rods, it will be tested as a cantilevered beam. We	4
	give an approximately 1Nm*s impulse on the free end of the	
	beam, which will typically cause the beam to vibrate. When the	
	maximum amplitude of the response is within 1mm, the	
	requirement is satisfied.	
	Also, when the phone is installed on the crab, the phone is	
	locked by springs. We will put the system on a soft material to	
	prevent falling, and then start shaking the mechanical system.	
	The objective is that we want to make sure the phone will not	
	fall due to shaking of human hands.	

Segmentation Subsystem

Sample

RequirementsVerificationsPoints

1.	Sample part should	1. a. The code must execute without bugs	5
	successfully sample video.	2. visualize the images to test whether we successfully slice the video.	

Segmentation

	Requirements	Verifications	Points
1.	Segmentation should make pixelwise predictions with high accuracy. Segmentation should successfully extract teeth from background which means it should combine the mask with original images	 a. The code must execute without bugs. b. When tested by test set, the metric IoU of teeth must above 50. a. visualize the output from segmentation part to show it can combine mask with original images. 	10

3D Reconstruction Subsystem

Requirements		Verifications	Points
1	generate the Final refined	1.	10
	3D model of its origin 2D	A. Input the test dataset images	
	feature with mAP>0.5 (at	B. Calculate the averaged 3D mAP of outputs	
IoU=0.4), and final loss < 0.05		C. Calculate the loss function	
		D. Observe the shape of loss curve and the final level	
		value of it	

Application Subsystem (This is the extra subsystem we made after the design document, so no RV table at that time.)

Requirements	Verifications	Points
Have register and login function	Everyone can register patient account but cannot	4
	register dentist account. Everyone can login	
	successfully by providing correct account and	
	password.	
Upload and download function for	The patient can upload the video to the cloud server	4
patient	and can download the feedback from the cloud server	
	by inputting correct id.	
Upload and download function for	The dentist can download the video from the cloud	4
dentist	server by inputting correct id and can upload the	
	feedback to the cloud server.	