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1 Introduction

1.1 Purpose: Problem and Solution

Existing communication systems are mainly based on Shannon’s information theory, and
they are mostly developed to maximize data-oriented performance indicators, such as
communication data rate, while ignoring content-related information or considering only
upper-level information [1]. In the process of transmission, once the noise makes some
bits in the process of transmission wrong, the meaning of the transmission result will
become ambiguous [2]. This not only increases the demand for communication resources
but also limits the transmission rate of information.

In this case, people start to think about using semantic communication. Semantic commu-
nication breaks through the traditional theoretical framework of Shannon’s information
theory, making great breakthroughs in reducing communication loss, improving trans-
mission rate and accuracy, and transforming the content of communication into the mean-
ing of information more valuable to human beings, thus fundamentally transforming
the existing communication architecture into a more universal intelligent and human-
oriented system [3]. In semantic communication, the meaning of the result can be roughly
predicted even if some bits are disturbed by interference.

And now, most of the existing image semantic communication technologies rely on the
direct transmission of the whole image between the sender and the receiver [4]. The
transmission process rather than the semantic understanding algorithm is the bottleneck
of its performance. In real life, there are many scenarios that require the unmanned aerial
vehicle (UAV)’s overlooking function and the UAV’s direct real-time communication with
other intelligent devices.

The UAVs currently on the market can only fly and take pictures, and transmit the pic-
tures to the receiver using traditional means of communication [5]. But in many cases,
the direct transmission of images from UAV is a huge waste of power and transmission.
So, our goal is to develop a UAV technology that allows the UAV to transmit images us-
ing semantic communication. More specifically, our UAV can build on the capabilities
of existing UAV to process a sample of the image taken, extract specific semantics, and
convey its symbolic representation to the target receiver (for example, another UAV or
smart device). In this way, all we need to transmit is a sentence instead of a whole pic-
ture. We hope this technique will be much faster than transmitting each complete image
directly.

Firstly, we’ll assemble a powered UAV, complete with batteries and controls, as well as
a camera, a transmission module, and Raspberry PI. The controller will control the four
propellers used to control the UAV’s movement. The controller ensures that the UAV has
enough power to carry all of its equipment and is always balanced. During the flight of
the UAV, we use the camera of the UAV to shoot images, use the Raspberry PI to pro-
cess images, and extract the semantic features in the images. Then the encoder encodes
these features into digital signals and transmits them to the receiver. The receiver is an-
other smart device, such as a smartphone or computer. The digital signal is transmitted
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through a physical channel, mainly through a WiFi transmission module. Finally, the
receiver’s decoder can translate the bits back into semantic information to make sense
of the message. We will use a display screen to display the message received by the re-
ceiver.

1.2 Functionality

Figure 1: Visual Aid: Data Flow and Physical Location

The UAV carries cameras and microcomputers, such as the Raspberry PI, to move around.
The UAV hovers up to at least 5 meters in the air and the camera can take clear photo.
The microcomputer understand the video taken by camera and extract useful informa-
tion (semantics), especially the types of their behavior. Finally, the WIFI chip will must
transmit semantic information to the receiver successfully. The computer will show the
finally semantic information.

1.3 Subsystem Overview

First, here is our block diagram.
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Figure 2: System Block Diagram
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1.3.1 UAV Subsystem (UAVS)

Figure 3: Structure of UAV

The UAV subsystem includes a power module, a controller module, and a camera as
shown in figure 3. The power module, which includes a distributor board and a lithium
battery, is to supply stable voltage for every device and other subsystems on UAV. The
controller module, PIXHAWK, will receive signal and control the four propellers, which
are used to control the UAV’s movement. The camera will take images, which will be
used as input data for lighting semantic extraction subsystems (LSES).

1.3.2 Lighting Semantic Extraction Subsystem (LSES)

Given an video as input, LSES can be designed to analyze the video and generate a de-
scriptive sentence within the scene. LSES could utilize advanced computer vision algo-
rithms and machine learning techniques to accurately detect and identify the people and
their actions in the image, providing valuable insights for a range of applications. Our
project will focus on some specific domains, especially basketball game at the gym. The
semantic information extracted by LSES will serve as the input of the mutual communi-
cation subsystem (MCS).
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1.3.3 Mutual Communication Subsystem (MCS)

MCS accepts the text information extracted from images by LSES. This subsystem con-
verts text into a bits signal and transmits it to another smart device over a physical chan-
nel. MCS consists of two separate parts: the transmitter on UAV and the receivers on
smart devices, for example a computer, which are connected by the physical channel.
The subsystem includes a source encoder and a source decoder. And finally, the text in-
formation will be displayed on a screen. The text has similar semantic information but
omits unnecessary words. The text example could be like “there is a player shooting
the ball”, and the result could be ”quotafree commentary player shooting quotafree ball
quotafree” and can be summary as ”player shooting ball”. Communication should be
quick and without losing semantic information.
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2 Design

2.1 Equations & Simulations

Besides, the semantic channel capacity of a discrete memoryless channel [4] is expressed
as

Here I(X;V ) is the mutual information between the source, X , and the transmission
task, V . Here p(Z|X) is the conditional probabilistic distribution that refers to a seman-
tic coding strategy with the source, X , encoded into its semantic representation, Z, and
H(Z|X) means the semantic ambiguity of the coding. HS(V ) is the average logical infor-
mation of the received messages for the task V . Then here we can see that if we could
make HS(V ) be bigger than H(Z|X), the semantic channel capacity could be always big-
ger than 0. That means the receiver can handle the semantic ambiguity. For our design,
this is easy to accomplish.

The following is the simulation result of our LSES on the computer. This is the accuracy
of the trained model in the training set, test set and verification set.
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Figure 4: The result of LSES

2.2 Design Alternatives

Since the design document, under the suggestion of the course instructor, we change our
application scenario. We will choose a single kind of sport, basketball, and recognize
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some specific action in the game, for example, passing, laying up, shooting. This change
makes our project much more challenging, since we need to analysis video instead of
image to understand semantic meaning. We need to change our network. The YOLO is
not a good network deal with video. More importantly, we cannot any suitable dataset.
Thus, we need to collect and label the dataset by ourselves, which has huge amount of
work.

2.3 Design Description and Justification

Figure 5: Initial UAVS

8



Figure 6: Modified UAVS

2.3.1 UAV mechanical, balance and dynamic Subsystem (UAVS)

We modified a dumb drone, which already has a power module, a controller module as
shown in figure 5. Then, we add a camera, a power distributor and a Raspberry Pi on the
UAV, which is shown in figure 6. It is also important to ensure that the UAV has enough
power to carry all the devices and keep them balanced all the time. The camera will
take images with high resolution, which will be used as input data for lighting semantic
extraction subsystems (LSES). We modified a dumb UAV. Equipment likes, a camera,
Raspberry Pi, and a communication module was added.

2.3.2 Lighting Semantic Extraction Subsystems (LSES)

The model used in our project is 3D convolutional network(C3D network) based on the
paper Learning Spatiotemporal Features with 3D Convolutional Networks. This paper
proposes an efficient C3D network to extract the spatial-temporal features of videos and
extract features from time series better. The usage scenario of C3D network is to do action
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recognition, which is very similar to our purpose. In particular, it was found that the
convolution kernel of 3*3*3 had the best effect and had a revelatory effect.

The architecture of C3D network is like this:

Figure 7: Structure of LSES network

From this figure we can see that the network takes the edited video clips as input, and the
resolution of all videos is adjusted to 128*171. The video is also split into 16 frames that do
not overlap each other and are used as network input. The network has 5 convolutional
layers and 5 pooling layers, two fully connected layers and a softmax loss function layer to
predict action labels. All convolutional layers have suitable padding and stride to ensure
that the input to output of convolutional layers does not change in size. The pooling layer
is processed by 2*2*2 kernels to reduce the output by a factor of 8. The least gradient
algorithm has a starting learning rate of 0.003.

For our project, I modified the fully connected layers output slim to the number of our
labels. To be specific, that is 3. Besides, I changed the probability of the dropout from 0.5
to 0.3 to make the fitting of the model better. Since we are running the code on Raspberry
PI, we want to minimize the model size and computational time. Therefore, here I delete
two layers of convolutional networks that do not change the output dimension. The rea-
son is that the network accuracy will not decrease much after deleting, but the operation
time can be greatly reduced. Here I did the testing, using both the modified network and
the pre-modified network on the UCF-101 dataset. The result is that after 20 epochs, the
modified network accuracy rate is 76.5%, and the average running time per epoch is 10
minutes and 26 seconds; the pre-modified network accuracy rate is 80.2%, and the aver-
age running time per epoch is 13 minutes and 35 seconds. As you can see, although the
accuracy doesn’t decrease much, the computation time decreases a lot.

2.3.3 Mutual Communication Subsystem (MCS)

MCS accepts the text information extracted from images by LSES. MCS consists of two
separate parts: the transmitter on UAV and the receivers on smart devices, which are con-
nected by the physical channel. The transmitter includes a semantic encoder, a semantic
decoder.

Driven by deep learning, natural language processing (NLP) has achieved great success
in analyzing and understanding large volumes of linguistic text. we also try to use a
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new perspective for the communication system from the semantic level, and proposes a
semantic transmission system based on deep learning, that is DeepSC, for text transfer.
On the basis of Transformer, the goal of DeepSC is to minimize semantic errors, restore
sentence meaning, not traditional bit or symbol error communication.

The structure of DeepSC is shown in figure 8.

Figure 8: Structure of DeepSC network

2.4 Subsystem Diagrams Schematics
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3 Cost and Schedule

3.1 Cost

First, for our labor cost, we assume everybody’s hourly wage is ¥100/hour, and we need
to work for 10 hours/week for all four people. And we need to do this for the following
10 weeks this semester. So for this part, our fixed development cost is :

4 · 20CNY

hr
· 10hr
wk

· 10wks · 2.5 = 20000CNY

Then, since only one person is needed to operate the drone, we don’t need a lot of bulk.
For the parts and manufacturing prototype costs, it’s estimated ts ¥2946 each:

Part Vendor Cost (prototype) Cost (bulk)

Professional aerial
photography UAV
(CK10pro)

Taobao ¥1888 ¥50

8GB Raspberry Pi
(4B; generic)

Taobao ¥728 ¥20

200W pixels
Monocular Camera
(Reshi Technology)

Taobao ¥150 ¥20

WiFi module (Small
R Technology;
MT7620)

Taobao ¥50 ¥40

Total Taobao ¥2816 ¥130

Then we add two parts together, our total development cost should be ¥22946.

3.2 Schedule
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4 Requirements and Verification

4.1 UAV mechanical, balance and dynamic Subsystem (UAVS)

4.2 Lighting Semantic Extraction Subsystems (LSES)

4.2.1 Completeness of Requirements

The requirements for LSES subsystem are that it could identify the actions of players on
the basketball court with an accuracy of more than 80%. The accuracy value should range
from 70 to 90. Besides, the running time of the model should also be small enough. Our
expectation is to process a video in 5 seconds.

4.2.2 Appropriate Verification Procedures

First, we did the training model part on the computer. The model divides the dataset
taken by us into three parts: training set, test set and verification set. At this stage, we
will try our best to adjust the model parameters to make the accuracy of the model on the
training set as high as possible and pay attention to the accuracy of the model on the test
set and the verification set.

Subsequently, we wrote the inference script to test the validity of the model by using the
video file. We selected video files of some test sets and validation sets. We tested the
validity of this file on the computer first.

Then we put the script on Raspberry PI and used the drone to shoot video for motion
recognition. We will record the accuracy of our predictions.

4.2.3 Quantitative Results

The final completeness of our requirements is very exciting. As the Figure 4 shows, after
training, the accuracy of our C3D network can reach 1.0 on the training set, and more
than 90% on the verification set and test set.

The accuracy of the predicted results of script can reach more than 90%. On the NVIDIA
GeForce RTX 3090 graphics card, our script running time was about 2 seconds per video.
This processing speed is capable of processing drone images in real time and predicting
results.

On Raspberry PI, the prediction accuracy of the model is roughly the same as that of
the computer, at more than 90%, as long as the drone does not shake badly due to air
currents, causing the picture to shake or be unclear. However, the Raspberry PI GPU
model is VideoCore VI. Due to the limited hardware conditions of Raspberry PI, it takes
about 7 seconds to run a script file on Raspberry PI. That speed makes it impossible for
PI to process video in real time.
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4.3 Mutual Communication Subsystem (MCS)

4.3.1 Completeness of Requirements

The requirements for MCS subsystem are that it could transmit the text output of the LSES
subsystem accurately and efficiently. The transmission time should be less than 1 second,
and the semantics during the transmission process should not change significantly. We
can evaluate the performance of our network by BLEU score.

4.3.2 Appropriate Verification Procedures

We divide the dataset into three parts: training set, test set and verification set. In our test,
we will use our test data, which will not be used in our training, to test the model’s per-
formance under different epoch. Meanwhile, I will test some sentences used in basketball
games, for example, the player shoots the ball to test it on Raspberry PI.

4.3.3 Quantitative Results

The final result of this subsystem is not bad. After training, the BLEU of our DeepSC
network can reach 80% on the test dataset, and 70% for our whole system. The result for
our test under different epoch is shown in figure
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5 Conclusion

In short, we have completed all subsystems well and reached the pre-set high-level re-
quirement:

• The UAV must be able to carry cameras and microcomputers, such as the Raspberry
PI, to move around. The UAV can hover up to at least 5 meters in the air and take
sample video.

• The UAV must understand its images and extract useful information (semantics),
especially the number of people and even the types of their behavior. The UAV
should be able to predict the number of people with 80% accuracy and predict the
types of behavior with 70% accuracy.

• The UAV must transmit semantic information to the receiver successfully. The time
required to transfer each picture should be less than 1s.

5.1 Uncertainties and Future Work

5.2 Ethical Considerations

A number of potential ethical and safety issues had to be considered in our project. First
of all, both the UAV and the Raspberry Pi board need to be powered by batteries, which
cannot be replaced by other power sources. So the stability and safety of the batteries are
an important part of ensuring the success of the project. According to the ECE445 bat-
tery safety document[6], we will understand the battery specifications before installing
the battery, test the battery circuit packaging, charging and discharging, and the oper-
ating temperature, and pay attention to the isolation from other work areas such as the
transmission module and the Raspberry Pi board to avoid impact.

In addition to this, as the drone is flying work outdoors, the weather will cause problems
such as short circuits in our work area, which will affect our work. Therefore, we will
follow IP66 standard to make the working area of the drone waterproof, so that it can
operate normally even in the rain and snow.

Also, given that the drone needs to be manned, I need to make sure that the drone can fly
safely and avoid collisions with people or other objects to reduce the risk of maneuvering.
Currently, I decided to add sensors and GPS modules to determine the location of the
drone. In addition, I will use the programming software to achieve special circumstances
such as an automatic landing function. These measures maximize the safety of drone
maneuvering.

In addition to the manipulation method, when choosing the flight area and time period,
we also need to ensure that the drone will not cause threats and interference, and avoid
flying in densely populated areas and flight-restricted areas. When flying, we need to
comply with local regulations and rules to ensure that my project is operating within legal
limits. Because our tests and demonstrations are conducted on the campus of Zhejiang
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University, according to the school’s guidelines [7], we need to apply to the school in
advance before the drone flight.

According to the Institute of Electrical and Electronics Engineers(IEEE) Code of Ethics 1
“to protect the privacy of others, and to disclose promptly factors that might endanger
the public or the environment;”[8], we promise that the data set used in the project will
seek the permission of the owner, and the collected images will also be cleared after use
in order to protect information security. The final result of the project cannot be used in
any scenario that infringes on public information and privacy.

According to IEEE Code of Ethics 5 “to seek, accept, and offer honest criticism of tech-
nical work, to acknowledge and correct errors” and “credit properly the contributions of
others;” [8] We will take the problems that may occur in the whole process of the project
seriously and correct it in time. For example, we need to adjust the index and model if the
simulation result is not as expected. Also, the references involved and other open-source
references will also be correctly referenced and identified with permission.
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