
ECE 445

SENIOR DESIGN LABORATORY

DESIGN DOCUMENT

Remote Driving System

Team #17

BO PANG (bopang5@illinois.edu)
JIAHAO WEI (jiahaow4@illinois.edu)

KANGYU ZHU (kangyuz2@illinois.edu)

TA: Yi Wang

March 23, 2023

Contents

1 Introduction 1

1.1 Problem . 1

1.2 Solution . 1

1.3 Visual Aid . 2

1.4 High-level requirements list . 2

2 Design 3

2.1 Block Diagram . 3

2.2 Physical Design . 3

2.3 System Overview . 4

2.4 TurtleBot3 . 4

2.4.1 Sound and Raspberry Pi . 5

2.4.2 Camera and Raspberry Pi . 6

2.4.3 OpenCR and Movement . 7

2.5 Server . 8

2.5.1 Unity . 8

2.6 HoloLens 2 . 9

2.6.1 Camera . 9

2.6.2 Glasses . 10

2.7 Driving Control . 11

2.7.1 Steering controller . 12

2.7.2 Accelerator and Brake Pedal . 13

2.8 Schematic . 13

2.9 Tolerance Analysis . 14

2.9.1 Bandwidth Requirements . 14

3 Cost and Schedule 16

3.1 Cost Analysis . 16

3.2 Schedule . 16

4 Ethics and Safety 18

References 20

ii

1 Introduction

1.1 Problem

Traditional chauffeuring service provides people with convenient and safe transporta-
tion solution. However, it also has many disadvantages. First, chauffeuring service may
not be available in all areas, particularly in rural or remote locations. Also, chauffeuring
service often requires advance booking, which can limit their flexibility, particularly for
last-minute trips or changes in itinerary. Some companies may also have strict cancella-
tion policies, which can be inconvenient for customers. In addition, the chauffeur might
experience distraction within the car, which might raise safety issues.

With recent developments in communication technology and mixed reality, it is possible
to build a remote driving system, in which a chauffeur can operate the owner’s automo-
bile remotely. This solution does not require the physical presence of chauffeurs. Thus, it
offers more flexibility in terms of scheduling, as remote chauffeurs can operate the vehicle
from anywhere at any time. This efficiency can reduce the cost of the service and make it
more affordable to customers. Also, it is available in rural or remote areas as long as there
exit stable network connection. Furthermore, it can provide an additional layer of safety
as the chauffeur is not physically in the vehicle, reducing the risk of distraction or driver
error.

1.2 Solution

Our remote driving system will provide real-time feedback of the car’s external environ-
ment and information (e.g., car’s current speed) to the remote chauffeurs. Through the
use of advanced technologies, chauffeurs can remotely operate the automobile’s move-
ment using designated devices.

This system consists of four subsystems (MR Subsystem, Driving Control Subsystem,
Server Subsystem, and Automobile Control Subsystem). MR Subsystem displays the in-
formation including car’s external environment and status sent back by Automobile Con-
trol Subsystem. Driving Control Subsystem records commands of the chauffeur, which
will be sent back to the automobile. Server Subsystem helps transmit message sent be-
tween these subsystems, achieving the result of remote driving.

1

1.3 Visual Aid

Figure 1: Visual Aid for Remote Driving System

1.4 High-level requirements list

We will substitute a TurtleBot3 (a programmable robot) for the automobile to reduce the
complexity of the control subsystem.

• Under a chauffeur’s operation, the TurtleBot3 should be able to navigate through
the whole campus.

• The delay of the video sent back from the TurtleBot3 should be at least within 100
ms. The delay of the chauffeur’s commands should be within 50 ms.

• The server can handle at least two connections from different chauffeurs. All chauf-
feurs can view the status of the TurtleBot3, and the one who will drive the TurtleBot3
will be selected according to a policy.

2

2 Design

2.1 Block Diagram

Our entire system consists of four subsystems (Hololens 2, Driving Control, Server, and
TurtleBot3). The server receives, processes, and sends information to interact with the
other three subsystems. In particular, Driving Control is mainly responsible for receiving
and sending control commands. HoloLens 2 is responsible for presenting real-time infor-
mation at the user end. TurtleBot3 Subsystem is capable of performing movement based
on instructions and capturing real-time information of its environment.

Figure 2: Block Diagram

2.2 Physical Design

Our physical design is shown in the following figure. The Turtlebot 3 consists of four lay-
ers, with the bottom layer containing the battery, the second layer containing the Rasp-
berry Pi, the third layer containing the OpenCR, and the top layer containing the cam-
era.

3

Figure 3: Physical Design

2.3 System Overview

In our remote driving system, a driver (the chauffeur) will wear HoloLens 2 glasses and
remotely drive a car (TurtleBot3). The car’s camera will transmit environmental informa-
tion around the car to the server, which will synchronize the video information in front
of the HoloLens 2 glasses. The driver will send control signals to the car’s control board
via Driving Control Subsystem. Automobile Control Subsystem will analyze the control
signals and control the car’s movement through the OpenCR control board.

The main platforms we use are Unity, Arduino IDE, and a OpenCR (Open-source Control
Module for ROS (Robot Operating System)) development board. Unity is a comprehen-
sive game development tool developed by Unity Technologies. It allows you to easily
create interactive content such as 3D video games, architectural visualizations, and real-
time 3D animations on multiple platforms. Through Unity, vehicle driving information
can be displayed on HoloLens 2, thus increasing driving safety. Arduino IDE is used
to control the OpenCR development board, which controls the hardware operation of
OpenCR. The OpenCR is the main controller board for TurtleBot3 and is designed for
embedded ROS development. The motion of the TurtleBot3 is controlled through the
OpenCR development board.

2.4 TurtleBot3

The TurtleBot3 system needs to transmit video to the server. As driving requires low
latency video, the User Datagram Protocol (UDP) is more suitable for our project than
Transmission Control Protocol (TCP). We plan to use Socket and UDP for real-time video
transmission and currently plan to use a resolution of 720p. We will use Socket and TCP

4

to establish reliable connections between the server and client. We will use OpenCV or
Emgu CV (a cross platform .Net wrapper to the OpenCV image processing library) to
capture camera images. Due to the 64kbit size limit of UDP packets, we plan to compress
the images using JPEG format and send them using UDP protocol at the end.

Connection between TurtleBot3 Subsystem and other subsystems: A 360-degree cam-
era on TurtleBot3 captures environmental information, which is then transmitted to the
server via the OpenCR development board. The sound collector on TurtleBot3 captures
surrounding audio information, which is transmitted to the server to facilitate commu-
nication between the driver and passengers. Meanwhile, TurtleBot3 also receives control
signals from the server, which are used to control the vehicle’s movement via the OpenCR
and ROS operating systems.

TurtleBot3 is the most critical component in this project. It is used to control the vehicle
through the OpenCR module on it. Development is done using the Arduino IDE, and re-
mote communication is achieved by controlling information transmission and reception
on the OpenCR development board. This part of the project requires us to understand the
working principle of microprocessors and to develop their functions. OpenCR is the main
controller board for TurtleBot3, designed for embedded systems development in ROS,
providing complete open-source hardware and software. By understanding the ROS em-
bedded system and processing the signals from the server, better control of TurtleBot3
can be achieved.

2.4.1 Sound and Raspberry Pi

The purpose of the sound system is to enable audio interaction between the car envi-
ronment and the driver. Currently, we have decided to use the VOIP protocol for audio
transmission. We will use a Raspberry Pi microphone, connected via a USB interface, for
sound recording. It operates at a working voltage of 4.5V. For sound playback, we will
use a Raspberry Pi speaker, powered via USB, with a 3.5mm audio jack.

5

Requirement Verification

1. The microphone and speaker can
be placed in a suitable location on
the TurtleBots3, taking up a reasonable
amount of space.

2. The sound system should enable sta-
ble remote connection between the car
and the driver systems.

3. The system should have some degree
of noise control capability.

4. The sound recording device should
be able to collect sounds at 10dB or
more, with an effective range of at least
two meters, without interference from
the speaker.

5. The speaker should be able to deliver
clear sound that is easily heard and un-
derstood.

1.After completing the transmission
function, sound recording should be
tested to determine if the effective range
of at least two meters is achieved.

2. The volume range of sound recording
should be tested to determine if it can
capture sounds at 10dB or higher.

3. The ability to transmit audio clearly
in a noisy environment should be tested.

2.4.2 Camera and Raspberry Pi

The camera should be able to capture all environmental information required by the
driver and transmit it to the server in a stable manner. The information collected by
the camera is the most important information for driving. We plan to use two Raspberry
Pi cameras with a viewing angle of 220 degrees each to collect video information, and
transmit it to the server using the UDP protocol. The server will then stitch the video
together to provide the driver with a panoramic view of the environment. To ensure sta-
ble video capture despite the movement of the car, we plan to use an image-stabilization
algorithm.

6

Requirement Verification

1. Stable connection between Raspberry
Pi and Server, able to transmit video
data reliably.

2. Implement a certain degree of shock
absorption function to achieve anti-
shake video during movement.

3. Capture the complete environment
around the car, and the two cameras can
synchronize transmission.

1.After the video transmission is com-
pleted, the delay of video data received
by the Server should be within 100ms,
and the delay between the two received
video data should be within 40ms.

2. Test in a bumpy environment to en-
sure that the driver can obtain accept-
able video information in a bumpy envi-
ronment, to verify the correctness of the
anti-shake algorithm implementation.

3. Able to splice video information on
the Server-side, and the received video
information can be spliced.

2.4.3 OpenCR and Movement

OpenCR (Open-source Control Module for ROS) is an open-source control module based
on ROS (Robot Operating System). The module uses an ARM Cortex-M7 processor to
communicate with ROS and achieve control of the robot. Currently, we plan to imple-
ment reliable communication between OpenCR and the server, receive and process con-
trol signals from the server, and convert the server’s control signals into control signals
for the car to achieve control of the car.

7

Requirement Verification

1. Establish a reliable communication
connection with the Server to transmit
the control signals. The connection de-
lay should not exceed 10ms.

2. Correctly receive and process various
control signals sent from the Server and
convert them into control signals of the
car.

1. Test the communication delay be-
tween the OpenCR module and the
Server to ensure that the delay does not
exceed 10ms.

2. Send various types of control sig-
nals to the OpenCR module to verify
whether it can accurately convert them
into control signals of the car and con-
trol the car. Testing can be done using a
simulation environment or an actual car.

2.5 Server

Server Subsystem plays the most important role in information exchange as the bridge for
signal control. It needs to decode the video information sent by the TurtleBot3 and project
it onto the HoloLens 2. It also needs to send signals from Driving Control Subsystem to
the TurtleBot3 system to control the car.

2.5.1 Unity

Unity is a cross-platform game engine and development environment widely used in
augmented reality (AR) application development. In this project, we need to connect
Unity to HoloLens via the MRTK package, and at the same time, Unity needs to receive
real-time information from the server (from the car, video information, data information,
etc.).

8

Requirement Verification

1. Connect HoloLens2 through MRTK.

2. Retrieve video information from the
server.

3. Retrieve data information from the
server sent by the distant car (e.g. car
battery, speed).

1. Check the display on HoloLens2.
If the displayed image on HoloLens2
is the same as the simulated image
in Unity, and the simulated functions
such as clicks can be performed in
HoloLens2, then the verification is suc-
cessful.

2. Check whether Unity can display the
real-time image transmitted from the re-
mote car camera, focusing on frame rate
and latency. If there is no disconnection
or frame dropping for a long time, the
verification is successful.

3. Continuously change the running sta-
tus of the car, and check whether the
data information about the car in Unity
changes dynamically accordingly.

2.6 HoloLens 2

The HoloLens 2 system carries all the learning that the driver can obtain. The Server
will project the transmitted video signal onto the HoloLens 2, allowing the driver to see
the environment around the car from multiple angles. Through the Unity platform, the
running information of the car can be projected onto the HoloLens 2 for the driver’s ref-
erence. With Hololens 2, We need to ensure that the driver can see a clear video captured
by the remote turtlebot 3‘s camera virtually located at a distance of 1 m from the driver.
The field of view in front of the driver should be approximately 120 degrees from left to
right. They should be able to see more angles when turning their head.

2.6.1 Camera

Hololens 2 has four environment-aware cameras and two depth cameras. It can achieve
functions such as spatial awareness and gesture recognition. Through programming, we
need to enable these cameras to capture gestures and enable interactions between hands
and objects (such as clicking, popping up dialog boxes, etc.).

9

Requirement Verification

1. Recognize gestures and display inter-
active menu bars when clicking on ob-
jects (e.g. small balls).

2. Continue clicking on different but-
tons on the menu bar to trigger multiple
functions (e.g. display navigation maps,
play music, etc.).

1. Adopting the method of multi-
ple verifications, first run the interface
on the Unity platform to virtually ver-
ify whether the small ball can be suc-
cessfully clicked. After wearing the
HoloLens 2, click on the small ball from
different angles multiple times, conduct
more than ten trials for each angle, and
ensure a success rate of over 95

2. First, run the interface on the Unity
platform for virtual verification. After
wearing the HoloLens 2, click on each
button multiple times (no less than 10
times for each button) to ensure that
each button triggers the correct function
with a success rate of over 95

2.6.2 Glasses

Hololens 2 glasses serve as a display device for mixed reality experiences. They enable
users to see and interact with virtual information that is overlaid onto the real world,
creating a mixed reality environment. With such glasses, we need to provide the driver
with a clear and stable field of view. Specifically, the screen should be positioned at a
distance of 1 m from the driver, and the immersive virtual interface should be located
directly in front of the driver.

10

Requirement Verification

1. It can display a stable immersive vir-
tual interface (e.g. dashboard, driving
environment) in front of and below the
user (at a close distance), and the align-
ment of the immersive virtual interface
can be reset when the driver changes
position.

2. The screen displaying the remote
view needs to be at an appropriate dis-
tance from the driver so that they can
see the content clearly. The distance is
set to about one meter, and the align-
ment of the screen displaying the re-
mote view can be reset when the driver
changes position.

3. It can provide drivers with a stable
view of the remote driving environment
(captured by the car camera), with the
interface displayed in a curved shape,
surrounding the driver’s field of view
(approximately 124°). When the driver
turns their head, they can see the sur-
rounding environment of the car (envi-
ronmental information of about 180° on
the left and right sides).

1.When the driver is driving or slightly
moving, check whether the immer-
sive virtual interface is fixed. Move
the driver’s position several times and
check whether it can be successfully re-
set each time, and whether the position
of the interface reaches the front and
bottom of the user.

2. When the driver is driving or slightly
moving, check whether the screen dis-
playing the remote view is fixed. Ver-
ify the distance between the screen and
the driver by first recording the current
position of the driver, then having the
driver pass through the screen, and fi-
nally measuring the distance between
the two recorded positions to see if it is
1 m.

3. Ask the driver to look straight ahead,
and have someone stand about 120 de-
grees off the driver’s front, ensuring
that the driver can see the scene from
this angle in the screen. When the driver
turns their head, make sure they can see
the left and right visual areas that can-
not be seen when looking straight ahead
(about 180 degrees away from the front),
which means the verification is success-
ful.

2.7 Driving Control

Driving Control Subsystem is the control system for the chauffeur, which should include
components such as a steering wheel, accelerator, and brake. The driver sends control
information to the server by using the corresponding control parts, achieving remote con-
trol of the car.

Connection between Driving Control Subsystem and other subsystems: The driver

11

controls the car by watching the audio-visual feedback projected by HoloLens 2 Subsys-
tem. The driver uses the steering wheel, accelerator, and brake pedals in Driving Control
Subsystem to control the car. Driving Control Subsystem is directly connected to the
server, which receives the control signals from Driving Control Subsystem and transmits
them remotely to the car, enabling remote control of the car.

The role of Driving Control Subsystem in the project is to provide a more immersive and
realistic remote control experience. By using a driving interface similar to real life, the
remote driving process becomes more accessible and safer.

2.7.1 Steering controller

The steering wheel system is used to provide feedback on the steering signals made by
the driver. We are planning to develop a force feedback steering wheel control system to
enhance the driver’s driving experience, and to better simulate the driving environment
and reduce the discomfort of driving.

For the steering wheel control system, we need to simulate the real driving experience.
The force feedback needs to accurately simulate the real driving sensation, including the
steering force of the steering wheel and the feedback from the vehicle suspension system
to the steering wheel. At the same time, good force feedback should be smooth and
continuous without noticeable jitter or sudden changes. We will also ensure low feedback
latency to enable safer control.

We need to develop the driver ourselves to make the steering wheel system’s signals
recognizable by the server. We are currently attempting to use Pygame to implement the
driver. Specific implementation details are yet to be determined.

Requirement Verification

1. Develop a suitably sized force feed-
back steering wheel simulator that ac-
curately simulates the real driving ex-
perience and provides accurate steering
wheel turning forces.

2. The latency between the steering
wheel simulator and the server must be
within 10ms and provide low latency
control.

3. The driver must accurately recognize
the steering wheel movement angle.

1.Calculate the feedback torque of the
feedback motor to ensure that the
torque is within a safe and reasonable
range.

2. Test the latency of the server driver
detection signal, which must be less
than 5ms.

3. Check whether the feedback signal
is reasonable and can truly reflect the
driver’s actions.

12

2.7.2 Accelerator and Brake Pedal

The accelerator and brake pedal system is responsible for transmitting the throttle and
brake information of the vehicle, which is processed by the driver’s pressing degree. It
can provide feedback to the server about the driver’s operation. We plan to use Pygame
to implement the driver to obtain control information from the pedal system.

Requirement Verification

1. Able to accurately feedback the
driver’s driving operation.

2. Can simulate the throttle and brake in
real life to some extent.

3. The driver can accurately feedback
the pedal system signal to the server.

1.Calculate whether the relationship be-
tween the pedal signals obtained by the
driver and the human stepping force is
reasonable.

2. Test the signal delay detected by the
server driver, which must be less than
5ms.

2.8 Schematic

Figure 4: Driving Control Schematic

13

2.9 Tolerance Analysis

2.9.1 Bandwidth Requirements

A critical feature of this project is reliable and timely transmission of video data captured
by the camera in TurtleBot3. The following analysis shows that the network condition is
sufficient for our video transmission.

Since our project will be used inside campus, the router with IPv4 address 10.105.254.214
is used to measure the network bandwidth. This router is chosen because it appears to
be the gateway router of school network. We used tracert to examine the routes of
data packets. Although the bandwidth usage varies, we measure the round trip times at
different time during a day and take the maximum as the upper bound of network delay.
We used ping to measure the round trip time, and the result is 9ms, as indicated in the
figure. Based on this result, we estimated the upper bound of transmission delay from
our server to TurtleBot3 as 20ms.

Figure 5: Output of ping 10.105.254.214

The eduroam Wi-Fi utilize 5.0 GHz channels. Assume a Wi-Fi access point covers at
most 100 people, and a 5.0 GHz Wi-Fi connection can provide 1300 Mbps upload and
download speed. In the worst case, the upload and download speed for our TurtleBot3 is
13 Mbps.

The camera we used to capture the environment of TurtleBot3 has a sensor with 1080
pixels. We use JPEG image compression for video data and UDP for data packet trans-
mission. Assume each pixel need 3 btyes to represent. With a rate of 360p video frame
every 1/30 second, the transmission time needed for each frame is

480 ∗ 360 ∗ 3B/13Mbps+ 20ms ≈ 58.03ms

which is within our high-level requirement.

To make sure Wi-Fi has sufficient signal strength, we used RSSI (Received Signal Strength
Indicator) in dBm to indicate the signal strength. The following of table shows RSSI for

14

possible places where our TurtleBot3 will be driven through. These places have strong
Wi-Fi signal for maintaining a good network connection.

Place RSSI (dBm)

Plaza -48

Lecture Theatre East -41

Lecture Theatre West -46

Auditorium -51

Resident College 2 -72

Resident College 3 -71

Library -52

North Teaching Building -59

North Circular Road -70

Table 1: RSSI of Landmarks in Campus

15

3 Cost and Schedule

3.1 Cost Analysis

• Labor
Assume salary per hour is ¥45. Then the total labor cost is 45× 3× 85 = 11475 ¥.

• Bill of Materials

Name Description Price Qty Total

Pi Camera wide-angle camera ¥40 2-3 ¥100

Speaker Normal Speaker ¥15 1 ¥15

Microphone Normal microphone ¥9 1 ¥9

Power supply 24V20A500W ¥88 1 ¥88

Belt HTD3M480*15MM ¥13 1 ¥13

Motor MY1016 24V300W ¥65 1 ¥65

Development Board Leonardo R3 ¥26 1 ¥26

Steering wheel ¥68 1 ¥68

DC motor drive board 4f0W DC motor drive board ¥52 1 ¥52

Pedals Normal Pedals ¥18 2-3 ¥45

Base support Just normal wood and iron N/A 1 N/A

Screws and nuts Just normal screws and nuts N/A 1 N/A

Total ¥481

• Total
The grand total of costs is 11956 ¥.

3.2 Schedule

Week Bo Pang Jiahao Wei Kangyu Zhu

3/27 Learn OpenCV pro-
gramming under the
C++ framework. Choose
appropriate encoding
and decoding methods.

Program OpenCR to ma-
nipulate the motion of
TurtleBot3.

Establish a connection
between Unity and
HoloLens.

16

Week Bo Pang Jiahao Wei Kangyu Zhu

4/3 Roughly completed the
framework for UDP
video transmission.
Build a PCB architecture
based on the working
principle and complete
component procure-
ment.

Understand the working
principle of the steer-
ing control system, and
main control solutions.

Complete the video
streaming from the
server into Unity for
rendering.

4/10 Complete the frame-
work for UDP video
transmission function.

Brainstorm the working
plan of the driving sys-
tem.

Implement video stitch-
ing for multiple camera
images.

4/17 Understand the work-
ing principle of firmware
and flash the firmware.
Print PCB and solder
components.

Understand the work-
ing principle of the driv-
ing system, and attempt
to program to drive the
analysis of the steering
wheel motion signal.

Optimize the display of
remote videos in Unity,
including features such
as following movement
of head rotation.

4/24 Install cameras in Turtle-
Bot3 and make Rasp-
berry Pi collect video sig-
nal.

Understanding how
firmware works and
burning firmware.

1. Transmit information
such as battery level and
speed of the turlebot to
Unity.
2. Model AR compo-
nents in Unity and dis-
play real-time informa-
tion such as battery level
and speed.

5/1 Setup Raspberry Pi and
establish connection be-
tween Raspberry Pi and
the server.

Complete the driving
programming and trans-
mit the control signal in
real time.

Collect external audio
using a microphone on
the car and transmit it to
the server.

5/8 Conduct testing. Conduct testing. Transmit the micro-
phone signal from the
server to the car radio.

17

4 Ethics and Safety

Due to safety considerations, our project involves a variety of potential hazards that may
arise during the interaction between humans and machines.

• The potential risks associated with using lithium batteries on Turtlebot 3.

Turtlebot 3 is powered by lithium batteries. Although it is environmentally friendly,
it has poor safety and there is a risk of explosion. To protect the lithium battery and
reduce safety risks, we have established the following agreements regarding the use of
Turtlebot 3 and its lithium battery:

1. Avoid overcharging and overdischarging: Overcharging or overdischarging can
damage its performance and shorten its lifespan. Charging and discharging should
follow the Turtlebot instructions charging guide.
2. Avoid excessive vibration or violent collisions: Lithium batteries should not be sub-
jected to excessive vibration or violent collisions because this may cause internal short
circuits, resulting in battery overheating, fire or even explosion. Therefore, the activity
area of the robot should be on flat ground.
3. Place the robot in a dry environment because placing it in a humid environment may
cause a short circuit in the battery, causing damage to the battery.
4. When removing and replacing the lithium battery, handle it gently and turn off the
switch when not using the robot.

• The precision of the control system

The instructions given by remote driver are transmitted to the car, allowing them to
control its movements remotely. However, inaccuracies or delays in the control system
can pose serious safety hazards for both the vehicle and its carring passengers. For
instance, on narrow or busy roads, even minor inaccuracies in the control instructions
could result in severe accidents or collisions. To minimize these risks, it is imperative
that the human-machine interaction system has high control precision. The remote
driver’s controller should be designed to have similar function and precision to that
of a physical steering wheel and provide a precise and responsive control experience.
One of the efficient ways is to add a force feedback functionality (simulated vibration,
resistance) to the steering wheel so that users can perceive physical changes. This will
enable the remote driver to make more accurate and effective driving decisions, espe-
cially in critical situations.

• The mental and physical state of the remote driver

Remote driving system requires designated drivers to wear virtual reality devices, such
as glasses, which often have relatively large sizes and weights compared with the nor-
mal devices in our everyday life. These devices could possibly cause distraction to the
remote driver and increase their susceptibility to fatigue. Moreover, extended use of
virtual reality devices can lead to symptoms such as dizziness, significantly compro-
mising the safety of remote driving. These are all factors that could possibly violate ”to
hold paramount the safety, health, and welfare of the public, to strive to comply with

18

ethical design and sustainable development practices” in IEEE code of ethics[1].. To
avoid this from happening, we we highly recommend that designated drivers undergo
rigorous screening and training before operating this system. Additionally, they must
take sufficient rest after driving for an extended period. These steps are essential to
guarantee the safety of both the driver and passengers. We prioritize this issue and will
continuously work towards improving the system to reduce potential risks.

• Communication delay, stability and resolution of the transmitted video

The system use cameras to capture the driving situation and transmit it to a remote
driver’s location. Through virtual reality technology, the substitute driver can inter-
act with the vehicle in real-time, enabling them to navigate the roads and ensure the
safety of passengers. However, this technology is not without its challenges. Accrod-
ing to ACM code of ethics: ”the emergent properties of systems should be carefully
analyzed[2].” In our system, the transmission of the live video feed from the car to the
remote location may be unstable and delayed, leading to potential safety risks. Further-
more, areas with weak signals may require a reduction in video resolution, which could
further compromise the remote driver’s ability to make informed judgments and deci-
sions. To address these issues, it is essential to focus on enhancing the hardware of the
cameras to improve their maximum resolution. In addition, optimizing the transmis-
sion network can help to enhance stability, reduce latency, and minimize delays during
transmission. In our project, we propose to use 5.0 GHz channels in our campus, with
JPEG image compression for video data and UDP for data packet transmission to en-
sure reliable and timely transmission. By addressing these challenges, we can improve
the effectiveness and safety of driver substitution, ensuring a seamless and secure driv-
ing experience for all passengers.

19

References

[1] IEEE. “IEEE Code of Ethics.” (2016), [Online]. Available: https://www.ieee.org/

about/corporate/governance/p7-8.html.

[2] ACM. “ACM Code of Ethics and Professional Conduct.” (2018), [Online]. Available:

https://www.acm.org/code-of-ethics.

20

https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics

	Introduction
	Problem
	Solution
	Visual Aid
	High-level requirements list

	Design
	Block Diagram
	Physical Design
	System Overview
	TurtleBot3
	Sound and Raspberry Pi
	Camera and Raspberry Pi
	OpenCR and Movement

	Server
	Unity

	HoloLens 2
	Camera
	Glasses

	Driving Control
	Steering controller
	Accelerator and Brake Pedal

	Schematic
	Tolerance Analysis
	Bandwidth Requirements

	Cost and Schedule
	Cost Analysis
	Schedule

	Ethics and Safety
	References

