
ECE 445

SENIOR DESIGN LABORATORY

DESIGN DOCUMENT

ML-based Weather Forecast on Arduino

Team #26

XUANYU CHEN

(xuanyuc2@illinois.edu)
ZHEYU FU

(zheyufu2@illinois.edu)
ZHENTING QI

(qi11@illinois.edu)
CHENZHI YUAN

(chenzhi2@illinois.edu)

Sponsor: Cristoforo Dimartino

TA: Yi Wang

March 24, 2023

Contents

1 Introduction 1
1.1 Problem & Solution Overview . 1

1.1.1 Problem Statement . 1
1.1.2 Solution . 1

1.2 Visual Aid . 2
1.3 High-level requirements list . 2

2 Design 3
2.1 Block Diagram . 3
2.2 Subsystem Overview . 4

2.2.1 Software: ML-Based Forecasting Subsystem 4
2.2.2 Hardware: Weather Data Collection Subsystem 8

2.3 Tolerence Analysis . 15
2.3.1 Hardware . 15
2.3.2 Software . 17

3 Cost and Schedule 18
3.1 Cost . 18
3.2 Schedule . 19

4 Ethics and Safety 20
4.1 Ethics . 20
4.2 Safety . 20

References 21

ii

1 Introduction

1.1 Problem & Solution Overview

1.1.1 Problem Statement

We develop a weather forecasting system that leverages the power of machine learning
to produce accurate and timely weather predictions for our surrounding areas. The accu-
racy of weather forecasting is critical for making proper plans and preparing for extreme
conditions, which is particularly important in areas where traditional weather stations
are not available, or their predictions are not reliable due to the distance and altitude of
the region. By building our own machine learning-based system, we aim to overcome
these limitations and provide more reliable, location-specific weather forecasts for our
community.

Our system will analyze vast amounts of data from various sources, including weather
sensors and historical weather data, to generate real-time weather predictions. We will
also incorporate advanced techniques such as pattern recognition and artificial neural
networks to create a comprehensive and accurate weather forecasting model. The sys-
tem will continuously learn from the new data to improve the accuracy of the predic-
tions, making it a self-adaptive system that can handle changes in weather patterns over
time.

We envision our system to be an accessible and user-friendly tool that can be easily ac-
cessed by anyone. The system will provide weather predictions for specific locations,
which can be tailored to the needs of individuals or businesses in those areas. Addi-
tionally, we hope to develop a web application that will allow users to access weather
forecasts on the go, giving them the ability to make informed decisions based on the most
up-to-date weather information.

1.1.2 Solution

A weather forecast system can be created by using a few different hardware components
and software tools. Our solution mainly consists of two parts: weather stations and fore-
casts. As to the weather measurement and data collection part, temperature, humidity,
barometric pressure, and rain sensors are considered the main components. For the other
part, a Machine Learning (ML)-based algorithm is to be applied for data analysis and
weather predictions. Also, if time permits, we plan to visualize our timely weather pre-
diction on a website based on Flask or other web application frameworks.

1. Hardware Subsystem
Due to the complexity of weather conditions, our system incorporates the following
weather indicators and their corresponding collectors: a humidity and temperature
sensor, a barometric pressure sensor, a rain sensor, a light sensor, and an anemome-
ter for wind speed. The aforementioned equipment will be integrated into Arduino,
covered with a waterproof enclosure. The power supply for the weather station
consists of batteries and a solar panel charging circuit. The outdoor weather data

1

collector will send to an indoor Arduino receiver with a display screen via wireless
communication. Then, the receiver will send the collected data to the computer via
the serial interface.

2. Software Subsystem
A practically usable weather forecast system is supposed to make reliable predic-
tions for real-world multi-variable weather conditions. We apply Machine Learning
techniques to suffice such generalization to unseen data. To this end, a high-quality
dataset for training and evaluating the Machine Learning model is required, and a
specially designed Machine Learning model would be developed on such a dataset.
After a preliminary investigation, we have downloaded Haining’s weather datasets
for the most recent 40 years from the OpenWeather platform. And we believe auto-
regressive models could serve as practical solutions for our model. Once a well-
trained machine-learning model is obtained, we will deploy the model on portable
devices with easy-to-use APIs.

1.2 Visual Aid

The entire system basically looks like the picture above (1).

Figure 1: The entire system looks like this.

1.3 High-level requirements list

• The weather measurement prototype with sensors should be able to accurately col-
lect the temperature, humidity, and barometric pressure. etc. To be more specific,
our collected weather parameters will be compared to real-time data from a mete-
orological station and should be within a reasonable margin of error. For example,

2

temperature error should be within 5%, humidity error, and barometric error within
10%.

• A machine learning algorithm should be successfully trained to make predictions on
the weather conditions: rainy, sunny, thunderstorm, etc. This is a multi-classification
problem and we hope our macro-average precision could reach 0.75 or higher.

• Our system can collect and forecast the weather in Haining, in real-time, and/or
longer-period forecast. To be specific, our hardware subsystem could collect and
upload real-time weather information to the software subsystem every 30 minutes.
And our software subsystem could predict the following 24 hours’ weather con-
ditions based on the recently inputted 48 hours’ weather parameters. For longer-
period prediction, our system will be able to predict the weather up to 7 days later,
but it could be a great challenge to predict accurately in this case as you can imagine.

• The forecast weather information could be demonstrated elegantly through some UI
interface. A display screen would be a baseline, and a web application on a phone
or PC would be extra credit if time permitted.

2 Design

2.1 Block Diagram

Figure 2 illustrates our entire design.

Figure 2: Block Diagram.

3

Our design consists of two parts: a data collection system and forecasting The power sup-
ply module consists of a lithium-ion battery with a boost converter, and a solar-powered
battery charger. Five different sensors are used to retrieve environmental data, and those
data will be transmitted to our data integration sub-system through an analog signal.
We use Arduino to integrate those incoming data and then transmit them via a wireless
communication module to the indoor Arduino receiver. Finally, the receiver uses a serial
interface to send those data to a personal computer for further training and forecasting.
As for our forecasting system, we leverage an RNN-based model to process time series
and make predictions, and a final weather condition would be determined by a rule-based
classifier given the predictions. Details are shown in subsequent sections.

2.2 Subsystem Overview

Our weather forecast system mainly consists of two parts: software for the Machine
Learning training model and hardware for the weather station.

2.2.1 Software: ML-Based Forecasting Subsystem

Deep Learning (DL) models, an important branch of ML models, have shown their ex-
traordinary ability to discover complex patterns and features of various types of data. In
various families of DL methods, auto-regressive models are specifically designed for pro-
cessing and generating time series. Since our algorithm’s goal is to predict the following
values in a sequence of values after taking in the current ones, we leverage auto-regressive
models’ ability to achieve our goal.

LSTM: Long Short-Term Memory We choose LSTM [1] as our base model. LSTM
is a type of recurrent neural network (RNN) that is commonly used for sequence pre-
diction tasks including time series forecasting, speech recognition, and natural language
processing. It is particularly useful when dealing with sequences of variable length and
long-term dependencies between data points. In the context of predicting values in a se-
quence of weather data, LSTM can be used to learn the underlying patterns in such data
and make accurate predictions based on the current input.

The basic idea behind LSTM is to use a memory cell (Figure 3) to store information from
previous time steps and selectively forget or remember certain information based on the
current input. The memory cell consists of three gates: the input gate, the forget gate,
and the output gate. The input gate determines how much new information is added to
the memory cell, while the forget gate determines how much old information is retained.
The output gate controls how much information is used to make the prediction.

Training LSTM To use LSTM for predicting, we first need to train the model on a
dataset of input-output weather data pairs. The forward propagation of a single LSTM

4

Figure 3: Illustration of an LSTM cell.

cell at time t is formulated as follows:

it = σ(Wiixt + bii +Whiht−1 + bhi) (1)
ft = σ(Wifxt + bif +Whfht−1 + bhf) (2)
gt = tanh(Wigxt + bio +Whght−1 + bhg) (3)
ot = σ(Wioxt + bio +Whoht−1 + bho) (4)
ct = ft ⊙ ct−1 + it ⊙ gt (5)
ht = ot ⊙ tanh(ct) (6)

Where xt is the features of interest (including temperature, pressure, humidity, wind
speed, rainfall, and month) that have been normalized, and ht is the embedding calcu-
lated for xt. LSTM cells are concatenated together into an encoder, after which an MLP
(Multi-Layer Perceptron) is attached to map the hidden states into expected data. The
LSTM and the MLP constitute a forecaster, which is trained with an MSE loss function
and is expected to predict one future value based on existing ones (in an auto-regressive
manner). The entire training procedure is illustrated in Figure 4, and is formulated in
Algorithm 1.

During training, the LSTM learns to recognize patterns in the data and adjust its parame-
ters to minimize the difference between its predictions and the actual output values. Once
the model is trained, we can use it to predict the next values of some weather conditions
of interest based on the current input in real-world settings.

Rule-based Classifier A rule-based classifier analyzes data based on a set of pre-defined
rules. In the context of weather forecasting, this means creating a set of rules that dictate
how different weather variables should be interpreted and combined to arrive at an over-
all description of the weather.

To create a rule-based classifier for weather forecasting, we would first need to identify
the variables that are most relevant for predicting the overall weather conditions. This
might include variables such as temperature, precipitation, wind speed, humidity, and
more.

5

Figure 4: Illustration of the training procedure.

6

Algorithm 1 Training a Forecasting Model.
Require: T : number of epochs; S: training dataset; f : LSTM; g: MLP; D: output size
Ensure: Trained model (f · g)(·)

Initialize f and g.
for epoch t from 0 to T -1 do

for batch b in S do
get sequence data x and label y.
get LSTM output: h← f(x).
get MLP output: ŷ ← g(h).
compute MSE loss: l← 1

D

∑D−1
i=0 (yi − ŷi)

2.
backward propagation from l.

end for
end for

Once we have identified the relevant variables, we would need to establish rules for how
these variables should be combined to arrive at a weather description. For example, we
might manually set a rule that if the temperature is above a certain threshold and the
precipitation is below a certain threshold, the weather is classified as sunny. Or, we can
train a decision tree to make these rules automatically.

As we establish more rules and combinations of variables, the accuracy of the classifier
should improve, allowing us to provide more accurate and detailed descriptions of the
weather. As for why we do not use a Deep Learning model like MLP for such a pur-
pose, the main reason is that such models are hard to interpret and understand. With
a rule-based classifier, it is easy to see exactly which rules are being applied and how
they are being combined to make a prediction. With a Deep Learning model, however,
it can be more difficult to understand how the model is making its predictions and what
factors are most important for determining the overall description of current weather
conditions.

Requirements Verification

Predicted values for each weather
indicator should deviate from true
values in an acceptable range. Data
predicted would be compared with
1) previously measured data and 2)
online weather forecasts. We expect a
10% and 50% relative difference from
online values and the last measured
values, respectively, for all five
parameters.

The predicted value ŷ and the true
value y (measured at the next time
step) for the next time step should
satisfy |y−ŷ|

|y| ≤ 10% (after
normalization). The adjacent
predictions should satisfy
|yt−yt−1|
|yt−1| ≤ 50%. If this threshold has

been exceeded for a certain amount
of time steps, we would be informed
by the system, and some
improvements may be needed.

7

2.2.2 Hardware: Weather Data Collection Subsystem

Our weather data collection subsystem is used for collecting real-time weather data and
transmitting them to our software subsystem for prediction. This subsystem will be de-
ployed on Arduino Uno, a microcontroller board based on the ATmega328P. Applied
sensors include a temperature and humidity sensor, a barometric pressure sensor, a rain-
drop sensor, a light sensor and an anemometer. An indoor OLED screen will be used to
display real-time collected data, which are used for weather prediction in the next step.
Also, we designed a solar-assisted power supply module, so that our system could utilize
solar energy to power itself and also make its battery endurance enhanced.

Sensing module We must appropriately choose the kinds of sensors we use so that
the measured types of weather parameters could be consistent with those types in our
datasets for training ML models. Also, we should make sure those selected data types
are comprehensive enough to be generalized to an output conclusion of weather. After a
thorough discussion, we decided to use a temperature and humidity sensor, a baromet-
ric pressure sensor, a water level sensor, a light sensor, and an anemometer for sensing.
Layout design is included in figure 9 and 8. Detailed decisions for sensors selection are
as follows:

Temperature and humidity are definitely the most important weather parameters. We
choose to use DHT11 module [2] because its sensing range perfectly matches the weather
condition in our measured area, Haining. Its humidity range is 20-90% RH with ±5% RH
accuracy, and its temperature range is 0-50 ◦C with ±2◦C accuracy. It’s a low-cost, long-
term stable combined sensor that allows long-distance signal transmission and precise
calibration.

For barometric pressure, we choose to use BMP 180 module [3] to sense because it is able
to precisely detect the changes in real-time pressure, which contributes to the high sensi-
bility of our data collection system. Also, the chip consumes less than 1mA during mea-
surements and only 5µA when idle, its low power consumption makes it a good choice
for our system. Moreover, we choose [4] as our Light Sensor and [5] as our Anemometer
Sensor.

To measure the rainfall per hour, we design a small-sized rain barrel 6 to collect the rain-
drops which is further used [6] for sensing the accumulated water level. According to our
dataset, the rain volume in our measured area usually falls into the range [0, 2mm]. The
maximum rate ever detected was around 20mm. Given that the water level sensor is able
to measure at most 40mm height, our rain barrel is estimated to function without manual
intervention for at least 4 hours during extreme rains. When the water level rises above
35mm, a warning is raised on the display screen of the indoor receiver.

8

Requirements Verification

1. The sensor subsystem should be
able to measure and output accurate
data. To ensure these components
function correctly, we have to
support a suitable voltage source.
The 5V logic microcontroller,
Arduino Uno will act as the main
voltage source. Specifically, the
voltage applied to the anemometer
should be above 7V.

1. Measure its output voltage using
an oscilloscope, ensuring that the
output voltage stays stable within 5%
of 5V. As to the anemometer, use a
multimeter to measure the output
voltage of the DC-to-DC Boost
Converter module, connect the
battery first to the input and
gradually rotate the potentiometer
until it shows 7.5V on the multimeter.

2. The temperature and humidity
sensor should be able to send out an
80µs-long low-voltage-level response
signal to indicate data preparation
and then pull up the voltage.

2. Measure the voltage level with an
oscilloscope, if the signal is always at
a high-voltage level, it suggests that
the module isn’t responding properly
and then we need to recheck the
connection.

3. Our collected data should reach
certain accuracy. Data readings will
be compared to the weather station’s
reports in our measured area. We
expect a 5% relative difference in
temperature, and 10% in other
parameters.

3A. Adjust our data readings to
remove the effect of altitude. For
example, as to the barometric
pressure values, we have to adjust
the data to make it appear that the
measurement was taken from sea
level. Adjustments can be made by
libraries, such as the function
sealevel(P, A) in the Sparkfun library.
3B. Calculate the relative difference
between the adjusted data and that
from the weather station.

Data transmission module Weather data collected by sensors needs to be transmitted
to our personal computers for machine-learning weather prediction. Since our sensors
will be placed in an outdoor environment that probably gets caught in rain, we decide to
use wireless communication (not traditional wire connection)to let the data come indoors.
Also, we would like our sensing information could be demonstrated through an OLED
screen real-time. As a consequence, we design our data transmission module to be two
sub-modules.

• Wireless transmission sub-module using transceiver: As Figure 8 demonstrates,
we design to use NRF24L01, an SPI-connected digital transceiver, to wirelessly trans-
mit weather data from the left Arduino which is placed outdoors with weather sen-
sors, to the right Arduino which is placed indoors near our personal computer.

9

Figure 5: Interfacing of sensors with Arduino Uno

Figure 6: Physical sketch of the rain barrel

• Wired transmission sub-module using serial port: We use the serial port to trans-
mit data from the right Arduino in Figure 8, to our personal computer. Also, we
will display all of sensed weather data on an OLED screen installed on the right
Arduino.

You might be curious why don’t we directly transmit data from the sensing-part Arduino
to our personal computer. Well, we do consider this plan before, however, this plan re-
quires an additional router and other components connecting with the sensing-part Ar-
duino, which is uneconomical and overly complex for this project. More importantly, this
cause our OLED screen to have nowhere to place (installing it outdoors is meaningless),
while two-stage transmission allows weather data to pass through to be displayed in the
OLED screen installed in the indoor Arduino, which is easy and useful for us to observe
the weather data in real-time. The workflow of the data collection and transmission pro-
cess is shown in figure 7.

10

Requirements Verification

1. Our whole transmission module
should be able to transmit the data
correctly without any data loss with
a wireless transmission distance to be
at least 6m.

1. Keep the outdoor Arduino 6m
away from the indoor Arduino. Then
we can verify the requirement by
checking the received data on our
personal computer (of course it
builds on that sensing module
successfully achieves its
requirements). If all data types are
received and the real-time data keeps
coming into our computer, then this
requirement is achieved.

2. Our OLED screen installed on the
indoor Arduino could demonstrate
the real-time weather data
successfully.

2. Check with eyes to see whether the
OLED screen demonstrates all kinds
of weather data types. If all data
types are received and the real-time
data keeps coming into our OLED
screen, then this requirement is
achieved.

Figure 7: Workflow of weather data collection and transmission

11

Figure 8: Wireless communication schematic

Figure 9: PCB layout of the outdoor transmitter

12

Note: The water level sensor should be placed outside of the shell 6. It doesn’t lie on the PCB
board, thus it is partly included in figure 9.

Power Supply Module

For our outdoor weather station, the power source of the Arduino Board is 2 * 3.7V
4000mAh batteries with a DC-to-DC Converter Module to boost the voltage supply from
the battery. Arduino will then provides three voltage levels, including 3.3V for the water-
level sensor, 7.5V (VIN) for the anemometer, and 5V for the remaining components.
Battery-power supply is shown at the top left of figure 9. For the indoor receiver, Ar-
duino will be charged with the USB cable.

To ensure that our system won’t suffer from failure because of a dead battery, a solar panel
charging system is designed to ensure the sensor module with the Arduino is powered
continuously. The circuit is shown in figure 10. The Lithium-Ion battery will be charged
through a charger, the TP4059, powered by the solar panel. The charger is chosen for
its affordability and thermal feedback regulations. In our schematic, while the battery is
being charged, the red LED will be on. On the contrary, the green LED indicates fully
charged.

Figure 10: Power supply schematic

Figure 11: PCB layout of the power supply module

13

Requirements Verification

1. The battery-power supply for the
sensing module should provide over
3V for at least 24-hour duration.

1A. The battery should have
sufficient capacity. According to our
power analysis shown in table 1, the
battery capacity should be at least
1000mW∗24h

3V ∗2 = 4000mAh. Our current
selection is a couple of 3.5V
4000mAh Li-ion batteries. It meets
the requirement theoretically.

1B. And we will further verify the
power usage through experiments
under different weather conditions.
Our plan is to discharge the battery
at 400mA for 10 hours.

2. The solar charging circuit should
supply at least 4.2V to charge the
battery.

2A. According to our survey, the 5V
solar panel we used is estimated to
provide a 4.2V voltage supply on
cloudy days, which should be
enough.

2B. We will discharge the battery to
3V first and then measures the
charging voltage and current under
different weather conditions. If the
voltage supply is not enough, we
will connect the same solar panels
together in parallel or switch to
larger-area panels.

Water-proof Enclosure

To protect the circuit, we will also design a highly waterproof shell for our hardware sub-
system. Due to such consideration, the PCBs would be put above the bottom of the outfit.
For requiring measuring Temperature, Air Pressure, Light, Raindrops, Humidity, Wind
speed, and direction, we need to carefully consider the distribution of the sensors and
PCBs. As for the shell must be placed under sunlight, the shell should have considerable
UV resistance. After taking Manufacturing costs into consideration, we think ABS/PETG
plastic is the best choice. The outfit layout is shown in Figure 12.

14

Requirements Verification

The enclosure of the box should
totally prevent the dust and water jet
into the outfit. Taking the IP
waterproof as a reference, our outfit
enclosure should at least reach the
IP65 waterproof. This IP65
waterproof means no ingress of dust
whatsoever permitted, and no
ingress from precipitation permitted.

To reach such a waterproof level, we
decided to use a rubber sealing strip
in the connecting area between the
cap and bottom. And for the holes on
the side faces where wires go
through, we would use epoxy resin
to occupy the space. In our assumed
test, water projected by a nozzle (6.3
mm) against the enclosure from all
directions shall have no harmful
effects. This would verify its
waterproofing ability.

Figure 12: CAD model of the enclosure

2.3 Tolerence Analysis

2.3.1 Hardware

Power Supply Analysis for sensing subsystem We roughly estimate the working
power for our remotely placed sensing subsystem as the following table states. It is es-
sential to do the estimation since our sensing subsystem will be placed outside in an
outdoor environment and will be powered by our self-designed power system.

15

Components Power

Arduino Uno Power: ≈ 450mW from Youtube [7]

Wind speed sensor Power: ≤ 300mW from its data sheet
[5]

Water level sensor Working Voltage: 5V

Working Current: ≤ 20mA

Power: ≈ 100mW

DTH11: Temperature and Humidity
Module

Working Voltage: 5V

Working Current: 0.3mA when
measuring, 60µA when standby

Power: ≈ 0.3mW

BMP180 Digital pressure sensor Working Voltage: 3.3V

Working Current: 5µA

Power: ≈ 0.02mW

Light detector sensor Working Voltage: 5V

Working Current: ≤ 5µA

Power: ≈ 0.03mW

nRF24L01 Wireless Module Working Voltage: 3.3V

Working Current: ≤ 13.5µA

Power: ≈ 44.55mW

Other auxiliary resistors Power: ≤ 100mW

Table 1: Power Usage Analysis

As shown in table 1, the total power consumption is estimated to be 1W. Our battery
component provides a 3.7V voltage supply and has 4000 ∗ 2 = 8000mAh, thus providing
3.7V ∗ 8000mAh ∗ 3600s = 106560J . Our battery power supply can work for at most
106560J

1W
= 29.6h, which will be sufficient for our basic goal of a whole-day usage. Moreover,

our chosen solar panel can supply at most 1.1A under the sun. Assume that sunlight
is available for 4 hours on average (the assumption is reasonable referring to Haining’s
weather dataset). We are able to refill the battery 4000mAh∗2

1.1A∗2 = 3.63 with double-panel once
a day at the best case. Based on the aforementioned estimation, our power supply system
is able to produce adequate energy for our weather station.

16

2.3.2 Software

In the case of the forecasting model, potential problems may arise due to a lack of accuracy
or precision in the data inputs.

Denote the model as a function f . Given weather data sequences S = {Xtemp, Xhumidity, ...},
where X = [xt, xt+1, ..., xt+n−1] of length n at time step t, the model predicts the next-step
values Y = {ytemp, yhumidity, ...} by Y = f(S). Therefore, each predicted value y is con-
tingent on all five types of measured data (temperature, humidity, pressure, rainfall, and
wind speed). Since we use MSE (mean square error) to evaluate the prediction quality,
which is calculated by MSE(Y, Ŷ) = 1

N

∑N
i=1(Yi − Ŷi)

2, the error caused by wrongly mea-
sured data would be of second order. So the most important tolerance in the software part
comes from the robustness of the model against the incorrectness of measured data.

If we do nothing to the input data, the error would be magnified to a greater extent due to
the difference in units. If both deviate the same percentage from actual values, the error
caused by pressure (of order 1× 103) would be 10(3−1)∗2 times as much as the temperature
(of order 1× 101). We leverage normalization on the input data to erase the dimensional
differences (e.g. 19◦C of temperature and 1031 hPa of pressure) so that each weather
feature contributes to the prediction results to the same extent. The Lp normalization for
an input vector v scales the vector into range [0, 1], which is calculated by:

v =
v

max(||v||p, ϵ)
,

where ϵ is a small value to avoid division by zero. Since all features are mapped to the
same range, the difference in units would not be a problem anymore.

Besides, we continuously monitor and validate the model’s performance and recalibrate
it according to previously learned data patterns as necessary. We set the threshold of
predicted values’ deviation from the real values (measured in the next time step) to be
10%. That is, the predicted value for the next time step ŷ should satisfy |y−ŷ|

|y| ≤ 10%

(after normalization). If this threshold has been exceeded for certain times, we would be
informed by the system and improve the model design. Incorporating more data sources
or modifying the model’s architecture may also be necessary to improve its accuracy and
robustness.

Overall, anticipating and addressing potential failures in both hardware and software
components is crucial to ensuring the reliability and accuracy of the weather forecast-
ing system. It requires a comprehensive approach that combines proper maintenance,
monitoring, redundancy measures, and continuous improvement to ensure optimal per-
formance.

17

3 Cost and Schedule

3.1 Cost

Category Item Price

Board Arduino Uno *2 ¥ 300

Display 0.96 OLED screen ¥ 15

Sensors

Temperature &
Humidity Sensor
(DHT11)

¥ 10

Barometric Pressure
Sensor (BMP180)

¥ 5

Water level sensor ¥ 3

Adafruit/DFRobot
Anemometer

¥ 200-240

Light sensor module ¥ 5

Wireless
Communication

nRF24L01 * 2 ¥ 10

Power Supply
3.7V Battery *2 ¥ 50

Solar panel *2 ¥ 50

TP4059 Charger ¥ 5

PCB / ¥ 50

GPU NVIDIA RTX A5000 * 1 ¥ 200

3D Printing Material Enclosure ¥ 100

Weather Station
Holder

/ ¥ 50

Auxiliary Components / ¥ 100

Labor Cost ¥150 ∗ 100 ∗ 4 ¥ 60000

Total ¥ 1200 + 60000 (for labor)

18

3.2 Schedule

Date Zhenting Qi Xuanyu Chen Zheyu Fu Chenzhi Yuan

03/20/23 Complete the data
preprocessing
code.

Complete power
supply and
wireless
communication
module schematic
& PCB design

Verify sensor
selection and
complete sensor
module PCB
design

Design a rough
outfit(v1) for the
sensors’ circuit.
Decide the
material used in
the outfit printing.

03/27/23 Complete the
weather
forecasting ML
model.

Arduino coding
for sensors and
consult on version
2 sensor
schematic

Assemble sensor
module (except
Anemometer &
rain barrel) and
complete
functionality
testings.

Design a rough
outfit(v1) for the
sensors’ circuit.

04/03/23 Complete the
code for training
and evaluating
weather
forecasting ML
model.

Arduino coding
for wireless
module and
experiments of
data transmission.

Assemble power
supply module
and experiments
of functioning
duration.

Discuss the
waterproofing
methods. Add the
holes for wire
connection on
CADs. Verify the
Temperature
resistance.

04/10/23 Debug all the
code and
integrate them
into a first-version
implementation.

Finalize sensor
module PCB
design including
rain barrel and
anemometer.

Finalize power
and wireless
module.

Print the
outfit(v2). Modify
the outfit CAD
model(v3). Verify
the UV resistance.

04/17/23 Conduct
extensive
experiments and
analyze the
results.

OLED screen
display.

Webpage basic
design.

Verify the
waterproofing
method on
outfit(v3).
Improve the
waterproofing
method.

04/24/23 Improve the
model
architecture and
implement a
last-version
system.

Conduct
experimental
testing.

Complete data
visualization. 2.

Check the PCB
waterproofing
methods. Verify
the final version
of the outfit and
PCBs assembly.

05/01/23 Prepare final
demo and design
demo testing
cases.

Prepare final
demo and design
demo testing
cases.

Prepare final
presentation.

Final check for the
assembly.

05/08/23 Mock Demo

19

4 Ethics and Safety

4.1 Ethics

According to the IEEE Code of Ethics 1 [8], we should hold paramount the safety, health,
and welfare of the public, to strive to comply with ethical design and sustainable de-
velopment practices. Following this, We are committed to designing our weather fore-
cast equipment to be both practical and ethical. We hope our design could be a next-
generation solution for a mini-size meteorological station, and we will try to prevent any
form of behavior that may endanger public order with our products.

Also, the IEEE Code of Ethics states that engineers shall maintain confidentiality and pro-
tect the privacy of others. We ensure that we use legally available datasets, like Haining’s
weather conditions from the OpenWeather platform, for training our machine learning
models. To avoid ethical breaches, we may implement appropriate measures to safeguard
the privacy of data, such as encryption and secure storage.

Moreover, In line with the IEEE Code of Ethics 4 [8], it is important to actively seek, ac-
cept, and provide sincere critiques of technical work while acknowledging and rectifying
any mistakes. We should be truthful and practical when making statements or predic-
tions based on available data, and give appropriate recognition to the contributions of
others.

4.2 Safety

According to the safety guidelines from the ECE445 course website [9], our team will
abide by the rules below:

1. Minimum of two people must be present at the lab at all times to ensure our safety.
Especially when doing some procedures with electricity, we should pay extra attention
to the safety of ourselves as well as our teammates. Also, when we are doing soldering,
material cutting, and 3d printing, we should prevent ourselves from being burned or
cut.

2. Everyone in our team will complete the mandatory online safety training, and submit
our certificates of completion on Blackboard. This is to ensure our team has the necessary
common sense for laboratory safety.

3. On the whole, our project does not involve many dangerous operations. However, we
should always be careful and cautious to ensure that our safety and health will not be
affected.

20

References

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[2] A. Electronics. “”Temperature and Humidity Module DHT11 Product Manual”.”
(2014), [Online]. Available: https : / / components101 . com / sites / default / files /
component datasheet/DHT11-Temperature-Sensor.pdf (visited on 03/07/2023).

[3] B. Sensortec. “”BMP180 Digital pressure sensor Datasheet”.” (2013), [Online]. Avail-
able: https : / / cdn - shop . adafruit . com / datasheets / BST- BMP180 - DS000 - 09 . pdf
(visited on 03/07/2023).

[4] S. H. S. Co. “”Ambient light detector Photosensitive sensor”.” (2014), [Online]. Avail-
able: https://www.arduino.cc/documents/datasheets/HW5P-1.pdf (visited on
03/07/2023).

[5] Q. Electronics. “”Anemometer Wind Speed Sensor Datasheet (in Chinese)”.” (), [On-
line]. Available: https : / / cdn - shop . adafruit . com / product - files / 1733 / C2192
datasheet.pdf (visited on 03/07/2023).

[6] K. Robots. “”Water Sensor Module User’s Manual”.” (), [Online]. Available: https:
//curtocircuito.com.br/datasheet/sensor/nivel de agua analogico.pdf (visited on
03/23/2023).

[7] M. Klements. “”How Long Can An Arduino Run On Batteries? I Tested 6 Of The
Most Common Boards”.” (), [Online]. Available: https : / / www. youtube . com /
watch?v=5cYN5-Spnos (visited on 03/24/2023).

[8] IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7-8.html (visited on 03/07/2023).

[9] ECE470. “”ECE470 Safety Guidelines”.” (2023), [Online]. Available: https://courses.
grainger.illinois.edu/ece445zjui/guidelines/safety.asp (visited on 03/07/2023).

21

https://components101.com/sites/default/files/component_datasheet/DHT11-Temperature-Sensor.pdf
https://components101.com/sites/default/files/component_datasheet/DHT11-Temperature-Sensor.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
https://www.arduino.cc/documents/datasheets/HW5P-1.pdf
https://cdn-shop.adafruit.com/product-files/1733/C2192_datasheet.pdf
https://cdn-shop.adafruit.com/product-files/1733/C2192_datasheet.pdf
https://curtocircuito.com.br/datasheet/sensor/nivel_de_agua_analogico.pdf
https://curtocircuito.com.br/datasheet/sensor/nivel_de_agua_analogico.pdf
https://www.youtube.com/watch?v=5cYN5-Spnos
https://www.youtube.com/watch?v=5cYN5-Spnos
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://courses.grainger.illinois.edu/ece445zjui/guidelines/safety.asp
https://courses.grainger.illinois.edu/ece445zjui/guidelines/safety.asp

	Introduction
	Problem & Solution Overview
	Problem Statement
	Solution

	Visual Aid
	High-level requirements list

	Design
	Block Diagram
	Subsystem Overview
	Software: ML-Based Forecasting Subsystem
	Hardware: Weather Data Collection Subsystem

	Tolerence Analysis
	Hardware
	Software

	Cost and Schedule
	Cost
	Schedule

	Ethics and Safety
	Ethics
	Safety

	References

