A Deep Learning Based Paradigm in 3D Human Pose Detection and Estimation in Multi-View Videos

ECE445/ME470 Design Document

Fengkai Chen, Feiyu Zhang, Zhuoting Han, Han Zheng

Group 14

Project Advisor: Gaoang Wang

Course Instructor: Mark Butala

1.Introduction

1.1 Problem and Solution Overview

Human Pose estimation and reconstruction is a widely researched topic in the recent decades. Its main idea is detecting location of people's joints which form a skeleton, and to estimate the posture and movement of human body. Estimating the pose of a human in 3D given an image or a video has recently received significant attention from the scientific community. The main reasons for this trend are the ever-increasing new range of applications (e.g., human-robot interaction, gaming, sports performance analysis) which are driven by current technological advances [1].

Although recent approaches have reported remarkable results in 3D pose estimation from static images, it remains an unsolved problem in continues-time videos. This is because the time-varying overlaps of human bodies in consecutive video frames impose several challenges in detecting the joints from human bodies, which are not fully addressed by existing methods.

The objective of this project is to propose a 3D Pose Estimation paradigm for video setting via leveraging machine learning and optimization technique. In particular, we will first use a Neural Network (NN) to detect the human body (pose) from the surroundings in video clips captured by our multi-view camera system. The detected poses are indicated by a group of boxes (bounding boxes). Then we apply multi-way matching algorithm to cluster the detected 2D poses in the resulting bounding boxes, and finally reconstruct the 3D pose associated to each person.

The multi-way matching algorithm aims at finding 2D poses of the same person in a group of videos clips captured by several cameras (our camera system). For example, there are five people (labeled in 1 to 5) in the room, and we have three cameras shooting from different directions. Then the multi-way matching algorithm matches the 2D pose of person 1 in video from camera 1 to his 2D poses in videos from camera 2 and camera 3. The matched 2D poses of

person 1 are categorized by bounding boxes of a specific color (a color corresponds to a labeled person), and 2D poses inside the bounding boxes with same color will be cut-out from the video for 3D pose reconstruction. The 2D to 3D pose reconstruction is done by some well-developed approach such as 3D pictorial structure (3DPS) based model [2].

A schematic of our design is shown as follows.

Figure 1.1 Visual Aid: Design schematic

The designing process of this project consists of programming environment configuration (setting up parallel-computing-based programming platform CUDA and machine learning packages such as TensorFlow in Linux system), neural network design (adopting convolutional layer and recurrent layer etc.) and architecture validation (finding the optimal size of network layers, optimal layer concatenations etc.), multi-view matching algorithm implementation, and experiment and demonstration.

As for the metric for evaluating our design, we introduce the Mean Per-Joint Position Error (MPJPE) proposed in [12]. MPJPE is the average Euclidean distance between the location of real-life joints on human bodies and the location of predicted joints on 3D pose model. As mentioned in [7], the MPJPE is as low as 150 (the lower the better) on the dataset Human3.6M (an open-source video data set). Considering we will implement a model that can detect videos instead of photos, the error will be higher. We plan to have similar reconstruction error on the promising datasets like CMU Panoptic [12], Human3.6M and TotalCapture.

1.2 High-level requirements

- Total number of human bodies predicted in 3D pose model should equal to the true number of human bodies in video clips.
- Number of joints in 3D pose of every person should be correct (at least 13, the least number to represent a human 3D pose).
- We expect a MPJPE to be 200(±15) on CMU Panoptic dataset.

2.Design

Block Diagram

As shown in the block diagram, human motion is captured by camera modules which contains more than three cameras, and stored as video clips. 2D Pose Detection Module allows accurate identification of 2D joints in human bodies from video clips, and Multi-view Matching Module selects the 2D poses of the same person among all 2D poses and groups them. And finally, the 3D Pose Reconstruction Module maps the 2D poses of the same person to his 3D poses. If four main modules mentioned above function properly, all high-level requirements will be achieved.

2.1 Camera Module

Camera module contains several cameras with different positions and projection angles as the following figure shown. The camera system provides us a multi-frame real time video of human movement, which will be used as raw data for subsequent software processing.

Requirements	Verification
1.Provide 24 to 30 fps frames video	1A. Measure the real time output data
data.	using a laptop, ensuring that the
2.Work under 11.5V-15.5V DC voltage	transmitted videos are between 24 and 30
supply	fps.
3.Maintain normal working status	2A. Connect the camera system to a 11.5V
between 0 $^\circ$ C to 40 $^\circ$ C	DC power supply, measured by a voltage
	meter.
	2B. Measure the real time output data
	using a laptop, ensuring that the
	transmitted videos are between 24 and 30
	fps.
	2C. Repeat above process while adjusting
	the power supply until 15.5V DC.

3A. While verification for Requirement 1
and 2, use a thermometer to ensure that
the temperature of working space is
between 0 $^\circ$ C and 40 $^\circ$ C.

Table 2.1	. RV Table	of Camera	System
-----------	------------	-----------	--------

2.2 2D Pose Detection Module

This 2D pose detection module serves to produce 2D locations of people in each view, and every detected human pose will be labeled with box, which is called "bounding box". For example, in the figure below, a walking man is detected and marked with some joints to represent his pose. Our result will be a bit different from this figure because we use bounding box to label each human pose. Our approach will be using a Convolutional Neural Network (CNN) pretrained on MSCOCO [10] dataset for 2D pose detection in images to finish this task. As shown in the block diagram, our CNN consists of two sub networks: the GlobalNet estimates human limbs approximately and the RefineNet provides more detailed human joints on 2D poses. Both models are proposed in [14].

Figure 2.3 Example of 2D Pose Detection Module [9]

Requirements	Verification
1. Generate joints and bounding boxes	1A. We use this module for several
with precision higher than 90% on CMU	different test datasets which are selected
Panoptic [11] dataset	from CMU Panoptic dataset, and we check
2. Every human pose must contain at	every time if the precision is higher than
least 13 joints (the least number to	95%.
represent a human pose using joints)	2A. After every test of 1A, we will observe
	each detected human pose to check if the
	number of joints is higher than 13.

Table 2.2 RV Table of Camera System

2.3 Multi-view Matching Module

Match the detected 2D poses across views, i.e., find in all views the 2D poses belongs to the same person. We will use a discriminative metric to measure the likelihood that two 2D poses belong to the same person and a matching algorithm to establish the correspondences of across multiple views.

2.3.1 Appearance Matching Sub-module

2D pose within bounding boxes is feed to another CNN and the out-put vector of the last layer is taken as the feature of the input pose. We compute the Euclidean distance between two feature vectors and normalize this distance using sigmoid function to range (0,1) as the appearance discriminative score of these two poses. Two poses from the same person should have near-zero appearance discriminative score.

Requirements	Verification
1. For images from the same person in	1A. To begin with, we will do some test on
multi-view, this sub-module should give	small test datasets to determine threshold
a diversity score lower than threshold ϵ_{0}	ε ₀ .
(An empirical value which will be set by	1B. After determining threshold ϵ_0 , we will
some pre-testing)	input several images from the same person
2. For images from different persons,	from our team members to check if the
this sub-module should give a higher	diversity score is lower than threshold ϵ_0 .
diversity score than $\epsilon_{0.}$	2A. After determining threshold ϵ_{0} , we will
	input several images from different
	persons from our team members to check
	if the diversity score is higher than ϵ_0 .

Table 2.3 RV Table of Appearance Similarity sub-module

2.3.2 Geometric Matching Sub-module

The multi-view matching function of this sub module is based on the fact that a joint on a body in the first camera view should lie on the epipolar line (the straight line of intersection of the epipolar plane) with the image plane. as sociated with its correspondence in the second camera view, which can be explained in the schematic following:

Figure 2.4 Explanation of epipolar line and projection

An image point Y_P^u back-projects to a ray in 3D defined by the camera C_u and Y_P^u . This line is imaged as I in the camera C_v . The 3D point P which projects to Y_P^u must lie on this ray, so the image of P in camera C_v must lie on I.

For two poses, we measured the average point-to-line distance between joints in one pose to the epipolar line associated with these joints in another pose. Then normalize this distance using sigmoid function to range (0,1) as the appearance geometric discriminative score. Two poses from the same person should have near-zero geometric discriminative score. We take the product of geometric discriminative score and appearance discriminative score (mentioned in the previous sub-module) as the discriminative metric to measure the likelihood that two 2D poses belong to the same person. The matching algorithm takes the smallest discriminative score of each pose and identify the another pose which this score corresponds to. Then these two poses should belong to the same person.

Requirements	Verification
1. For images from persons in the same	1A. To begin with, we will do some test on
position in multi-view, this sub-module	small test datasets to determine threshold
should give a diversity score lower than	ε ₁ .
threshold ϵ_1 (An empirical value which	1B. After determining threshold ϵ_1 , we will
will be set by some pre-testing)	input several images from the person of
2. For persons from different positions,	the same position to check if the diversity
this sub-module should give a higher	score is lower than threshold ϵ_1 .
diversity score than threshold ϵ_{1}	
	2A. After determining threshold ε , we will
	input several images from persons from
	our team of different positions members to
	check if the diversity score higher than
	threshold ϵ_1 .

Table 2.4 RV	' Table of	Geometric	Discriminative	Sub-module
--------------	------------	-----------	----------------	------------

2.4 3D Pose Reconstruction Module

Actually, given the estimated 2D poses of the same person from different views, we can directly reconstruct 3D pose by simple triangulation. However, the error in 2D pose estimation may significantly degrade the reconstruction process. So we are going to use 3D pictorial structure(3DPS) [13] model to reconstruct the 3D pose. 3DPS is kind of similar to search algorithm, which search in the 3D space for the points with highest posterior probability that may occur. The theorem is like following:

Let $S = \{s_i | i = 1, 2, ... N\}$, where $s_i \in R^3$ denotes the predicted 3D position of joint *i* on the reconstructed 3D pose. If we have 2D poses from total of *M* camera views, ie. $R = \{r_j | j = 1, 2, ... M\}$. Then we have the posterior distribution of 3D poses can be written as:

$$P(S|R) \propto \prod_{j}^{V} \prod_{i=1}^{N} P(r_j | \pi_j(s_i))$$

Where $\pi_j(s_i)$ denotes the 2D projection of s_i the view of camera j. We get $P(r_j | \pi_j(s_i))$ by feeding the grouped 2D poses from the Multi-view Matching Module to the Neural Network Model proposed in [14], which determines the 2D spatial distribution of each joint. Then the optimal 3D pose reconstruction S^* is achieved by maximizing P(S|R) via searching among all possible predicted joints placement in 3D space.

Requirements	Verification
1. Given a set of 2D poses from the	1A. We will use several test datasets that
same person in different views, 3D Pose	includes pre-matched 2D poses of the same
Reconstruction Module should be able	person, then we use this module to
to generate a single 3D pose in 3D space	generate corresponding 3D pose. After
that has a correct joints number (at	processing, we will manually check if the
least 13).	result is a single 3D pose with correct joints
2. Given 2D poses that are matched	number.
into different 3D persons, this module	2A. We use pre-matched 2D poses from
should not reconstruct them into a	different 3D persons as input, then we
single 3D pose.	check if the output will generate an error
	output or wrongly reconstructed single 3D
	pose.

Table 2.5 RV Table of 3D Pose Reconstruction Module

2.4 Tolerance Analysis

Suppose there are k people in the videos, each comprised of n joints. After processing, we can represent i_{th} people's j_{th} joint with three features $\widehat{y_{i,j}} = (\hat{x}, \hat{y}, \hat{z})$, and we have the ground truth label $y_{i,j} = (x, y, z)$. Then we can use Mean Per Joint Position Error (MPJPE) to validate the performance of our program. Per joint position error is the Euclidean distance between ground truth and prediction for a joint. The prediction error is $Err_{pred} =$

 $\frac{1}{k} \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n} \left\| \widehat{y_{\iota,j}} - y_{i,j} \right\|_{2}.$

Suppose there is only one person in the video, and we establish the coordinate system based on him, setting his pelvis as the origin. Suppose this person is comprised of 5 joints – pelvis, two feet and two hands. So we have $\widehat{y_{1,1}} = (0,0,0), \widehat{y_{1,2}} = (-0.2, 0, -1), \widehat{y_{1,3}} = (0.2, 0, -1), \widehat{y_{1,4}} = (-0.1, 0, 0.5), \widehat{y_{1,5}} = (0.1, 0, 0.5).$ And the estimation of our program is $y_{1,1} = (0,0,0.1), y_{1,2} = (-0.2,0,0), y_{1,3} = (0.2,0,-1), y_{1,4} = (-0.1,0,0.5), y_{1,5} = (0.1,0,0.5).$

$$Err_{pred} = \frac{1}{k} \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n} \left\| \widehat{y_{i,j}} - y_{i,j} \right\|_{2} = \frac{1}{5} \left(\sqrt{(0 - 0.1)^{2}} + \sqrt{(-1 - 0)^{2}} \right) = 0.22$$

3. Cost and Schedule

3.1 Cost Analysis:

3.1.1 Labor Cost

Name	Hourly Rate	Hours	Total	Total*2.5
Fengkai Chen	\$30	240	\$7200	\$18000
Han Zheng	\$30	240	\$7200	\$18000
Zhuoting Han	\$30	240	\$7200	\$18000
Feiyu Zhang	\$30	240	\$7200	\$18000
Total				\$72000

Table 3.1 Labor Cost

3.1.2 Parts

Description	Quantity	Manufacturer	Vendor	Cost/Unit	Total Cost
Webcam	5	Logitech	Amazon	\$27.47	\$137.35
1TB SSD	1	Western Digital	Amazon	\$89.99	\$89.99
Colab Pro	3	/	Google	\$9.99 /Month	\$29.97
Total				\$257.31	

Table 3.2 Parts Cost (Our Project mainly based our camera, PC and Colab)

3.1.3 Grand Total

Section	Total
Labor	\$72000
Parts	\$145.43
Grand Total	\$72257.31

Table 3.3 Grand Total Cost

3.2 Schedule:

	Fengkai Chen	Han Zheng	Zhuoting Han	Feiyu Zhang
03/01/21	Study and read related paper	Study and read related papers	Study and read related paper	Study and read related paper
03/08/21	Set up the	Study the	Set up the	Study the
	environment on	network	environment on	network
	PC	structure in	PC	structure in
		different papers		different papers
03/15/21	Use the	Designed	Use the	Designed
	provided model	multiple	provided model	multiple
	to perform 3D	network	to perform 3D	network
	estimation on	optimizations	estimation on	optimizations
	Image dataset	for video 3D	Image dataset	for video 3D
		estimation		estimation
03/22/21	Examine the first	Optimize the	Examine the first	Optimize the
	demo	network, apply	demo	network, apply
	results,data	LSTM to the	results,data	LSTM to the
	dugmentation	current network	dugmentation	current network
03/29/21	Trainning our	Help with model	Trainning our	Help with model
	model on video	trainning, fix any	model on video	trainning, fix any
	dataset.(CMU	problems during	dataset.(CMU	problems during
	Panoptic)	trainning	Panoptic)	trainning
		process		process
04/05/21	Run the model	Set the data	Run the model	Set the data
	validation& test.	collecting	validation& test.	collecting
	Analyze the	environment. Collect our own	Analyze the	environment. Collect our own
	result analysis.	dataset using	result analysis.	dataset using
		webcam		webcam
04/12/21	Using webcam	Refine the	Using webcam	Refine the
	recorded/real-	algorithm, try to	recorded/real-	algorithm, try to
	time videos to	optimize	time videos to	optimize
	demo 3D	model's	demo 3D	model's
	estimation	performence	estimation	performence
04/19/21	Try real-time	Fix the problems	Try real-time	Fix the problems
	videos under	of real-time	videos under	of real-time

04/26/21	complex situation(Small object, overlap object) to test the robustness of our model Start with Final Report	video 3D estimation, try to optimize the performance under complex situation. Final Test on our model & Result Analysis	different situation(Small object, overlap object) to test the robustness of our model Start with Final Report	video 3D estimation, try to optimize the performance under complex situation. Final Test on our model & Result Analysis
05/03/21	Prepare Final	Prepare Final	Prepare Final	Prepare Final
	Presentation &	Presentation &	Presentation &	Presentation &
	Finish Final	Finish Final	Finish Final	Finish Final
	Report	Report	Report	Report

Table 3.4 Weekly Schedule

4. Ethics & Safety

Our project has several potential safety and ethics concerns. The first concern is network intrusion. Currently we are using campus network to transmit our information and signals. However, every network has a possibility to be attacked, and this rule also applies to our campus network. This is against #7 and #9 of the IEEE Code of Ethics – "the people committing piracy are not properly crediting the work of others, and they could be injuring the copyright holders by sharing content without paying for it." [4] Once the network is controlled, we may lose our control over the whole system, such that our core codes and algorithms may leak. Actually, we do not have a perfect plan for this. Our current solution is that use version control tools, like SVN and git, to store our codes and do not publish it before some sense of agreement is made.

The second concern is the private pictures/video disclosure. The disclosure violates the ACM code of Ethics, #1.6, "Therefore, a computing professional should become conversant in the various definitions and forms of privacy and should understand the rights and responsibilities associated with the collection and use of personal information." [5] Due to the high volume of picture/videos used for network training, saving all data in our personal laptop is not recommended. For convenience in calling data, we plan to store our data on an online server, which may be cyber-attacked and cause data disclosure. To minimize such risk, we suggest shutting down network acceleration software such as Cisco AnyConnect Mobility Client and Express VPN when testing online algorithms.

With the following concerns are fully considered, we still want to make sure that the model will treat everyone equally. If we use a biased training dataset, like some dataset mostly containing videos/pictures of white people, the model may have worse effects on black, Asian and Hispanic people. If we use a training dataset that mostly involves men moving and acting, this model may have worse effects on women. All these violate the #8 of the IEEE Code of Ethics, "to treat fairly all persons and to not engage in acts of discrimination based on race, religion, gender, disability, age, national origin, sexual orientation, gender identity, or gender expression" [4]. To avoid such things, we will carefully choose our dataset, including the

percentage of different races, genders, ages and other tags that may divide people into different groups, to ensure an unbiased development process.

References

- [1] Sarafianos, Nikolaos & Boteanu, Bogdan & Ionescu, Bogdan & Kakadiaris, Ioannis. 3D Human Pose Estimation: A Review of the Literature and Analysis of Covariates, in *Computer Vision and Image Understanding*, 2016.
- [2] V. Belagiannis, S. Amin, M. Andriluka, B. Schiele, N. Navab, and S. Ilic. 3d pictorial structures for multiple human pose estimation. In *CVPR*, 2014.
- [3] J. Dong, W. Jiang, Q. Huang, H. Bao, and X. Zhou. Fast and robust multi-person 3d pose estimation from multiple views. In *CVPR*, 2019.
- [4] CVSSP Research. Multi-Person 3D Pose Estimation and Tracking in Sports. Apr.17, 2019.[Online Video]. Available: <u>https://www.youtube.com/watch?v=jLEv14GAcbs</u>
- [5] ieee.org, IEEE Code of Ethics, 2020. [Online].
- Available: http://www.ieee.org/about/corporate/governance/p7-8.html[Accessed: 28- Feb-2021].7
- [6] ethics.acm.org, ACM Code of Ethics, 2020. [Online]. Available: https://ethics.acm.org.[Accessed: 28- Feb- 2021].7

[7] openaccess.org, 3D human pose estimation in video with temporal convolutions and semisupervised training, 2020. [Online].

- [8] Umar.Iqbal, Pavlo.Molchanov, Jan.Kautz, NVIDIA Research. Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the Wild. In *CVPR*, 2020
- [9] Fast Human Pose Detection Using Randomized Hierarchical Cascades of Rejectors Scientific Figure on ResearchGate.
- [10] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll'ar, and C. Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014.
- [11] Kocabas M, Karagoz S, Akbas E. Self-Supervised Learning of 3D Human Pose using Multiview Geometry[J]. In *CVPR*, 2019.
- [12] Joo, Hanbyul and Simon, et al. Panoptic Studio: A Massively Multiview System for Social Interaction Capture, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017
- [13] V. Belagiannis, S. Amin, M. Andriluka, B. Schiele, N. Navab, and S. Ilic. 3d pictorial structures for multiple human pose estimation. In *CVPR*, 2014. 1, 2, 6, 7
- [14] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun. Cascaded pyramid network for multiperson pose estimation. In *CVPR*, 2018. 3, 6, 7