Sponsors

Cypress Semiconductor Corporation

Sponsored Projects

  • Automatic Toothpaste Dispenser (Spring 2019)
  • Smart Electric Toothpaste Dispenser (Spring 2019)

Illinois Robotics in Space

Illinois Robotics in Space (IRIS) is an RSO at the University of Illinois at Urbana-Champaign. Every year IRIS competes in the NASA Robotic Mining Competition at Kennedy Space Center, works on smaller robotics-related projects and teaches younger students at local schools about what IRIS does.

Sponsored Projects

  • IRIS Localization System (Spring 2015)

Illinois Tool Works Inc.

Sponsored Projects

  • Weld Gun Spatial Tracking System (Spring 2019)

Micron

Sponsored Projects

  • Soccer Team Gameplay Metrics (Spring 2019)
  • Traffic Sensing Bicycle Light (Spring 2019)

Siebel Center for Design

Sponsored Projects

  • Reconnaissance robot (SCD pitch) (Spring 2019)

Illini Solar Car

Sponsor

While Illini Solar Car started as a handful of engineering students in 2014, it takes more than that to create a solar car. Today we have grown into a much larger operation harnessing the skills of students from four colleges at Illinois to create one beautiful product.

Sponsored Projects

  • Modules for Safe Power Distribution in an Electric Vehicle (Spring 2019)
  • Standalone Steering Wheel for Solar Racing Vehicle (Spring 2019)
  • Integrated Li-ion Battery Sensors (Fall 2018)

LASSI

Sponsor

Laboratory for Advanced Space Systems at Illinois

Sponsored Projects

  • Power Board for Illini-Sat3 (Spring 2019)

Lextech

Sponsor

Northrop Grumman Corporation

Sponsor

Northrop Grumman Corporation has provided funding for laboratory equipment and supplies in the area of applied electromagnetics, as well as support for the following groups.

Sponsored Projects

  • Filtered Back – Projection Optical Demonstration (Fall 2014)
  • Wearable UV Radiation Sensing Device (Fall 2014)
  • Radio Jammer (Fall 2005)

Advance Devices

Supporter

ARM

Supporter

Boeing

Supporter

Intel

Supporter

Raytheon

Supporter

Rockwell Collins

Supporter

Rockwell Collins has provided funding for laboratory equipment and supplies in the area of applied electromagnetics. A number of RF student projects have directly benefited from these improvements to the laboratory.

Sponsored Projects

  • Quadcopter - Sense and Avoid - Revised RFA (Fall 2014)
  • Continuous-frequency Synthesizer (Spring 2005)
  • football position tracker (Spring 2005)
  • Point-to-Point RF Communication for Wildlife Project (Spring 2005)
  • RFID-based parking meter system (Spring 2005)
  • Smart Inventory Management System (SIMS) Using RFID (Spring 2005)
  • Wireless Laptop Alarm (Spring 2005)
  • Car rooftop antenna (Fall 2004)
  • Portable Wireless Locator System (Fall 2004)
  • Transmission line modeling in SPICE (Fall 2004)
  • Wireless Heart Attack Detector with GPS (Fall 2004)
  • Wireless switch of household appliances for handicapped (Fall 2004)

Skot Wiedmann

Supporter

Sponsored Projects

  • Interactive Proximity Donor Wall Illumination (Fall 2018)
  • Modular Analog Synthesizer (Fall 2017)
  • AUDIO - ANALOG/DIGITAL SYNTHESIZER - ANALOG VOLTAGE CONTROLLED OSCILLATOR TO DIGITALLY CONTROLLED STEP-SEQUENCER (Spring 2017)

TAKE Solutions

Supporter

Funded Project 39 (smart door) Spring 2015

Texas Instruments

Supporter

Texas Instruments has donated laboratory equipment for DSP and RFID based projects. A number of student projects have directly benefited from these improvements to the laboratory.

Sponsored Projects

  • Miner Tracking Devices (Spring 2006)
  • Quantum Cryptography Project 1 (Spring 2006)

Xilinx

Supporter

Low Cost Distributed Battery Management System

Logan Rosenmayer, Daksh Saraf

Low Cost Distributed Battery Management System

Featured Project

Web Board Link: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27207

Block Diagram: https://imgur.com/GIzjG8R

Members: Logan Rosenmayer (Rosenma2), Anthony Chemaly(chemaly2)

The goal of this project is to design a low cost BMS (Battery Management System) system that is flexible and modular. The BMS must ensure safe operation of lithium ion batteries by protecting the batteries from: Over temperature, overcharge, overdischarge, and overcurrent all at the cell level. Additionally, the should provide cell balancing to maintain overall pack capacity. Last a BMS should be track SOC(state of charge) and SOH (state of health) of the overall pack.

To meet these goals, we plan to integrate a MCU into each module that will handle measurements and report to the module below it. This allows for reconfiguration of battery’s, module replacements. Currently major companies that offer stackable BMSs don’t offer single cell modularity, require software adjustments and require sense wires to be ran back to the centralized IC. Our proposed solution will be able to remain in the same price range as other centralized solutions by utilizing mass produced general purpose microcontrollers and opto-isolators. This project carries a mix of hardware and software challenges. The software side will consist of communication protocol design, interrupt/sleep cycles, and power management. Hardware will consist of communication level shifting, MCU selection, battery voltage and current monitoring circuits, DC/DC converter all with low power draws and cost. (uAs and ~$2.50 without mounting)