Underground Root Imaging

System

Sr Design Project

Main Focus of Agriculture Research

- Create New Breeds of Food Crops Resistant to Climate Change
- ▶ Grow Test Plots and Collect Phenotype Data to Evaluate
- Continue Process Until Water Efficient Breed is Established

Data Collection in the Field

- Collect Phenotype Data of Roots
- Clear Acrylic Tubes Placed in Ground Under Plants
- Camera Inserted to Capture Root Growth
- ► Tedious and Time-Consuming Method

Difficulties of Current Approach

- Scanner Components are Not Durable Enough for Extended Field Use
- Solution is Not Portable
- Multiple Axis of Travel (Rotational and Depth)
- ► Image Collection Prone to Errors

Goals for Capstone Project

- Devise a System Based on the Following Novel Design for Efficient Image
 Capture of Roots that Utilizes a Hemispherical Camera
 - Develop Camera System and Triggering to Capture Underground Images
 - Obtain Suitable Camera Imaging of Roots at Desired Depths
 - Record Location of Individual Root Tubes in the Field
 - ▶ Transfer Image Data From Device to Remote Storage
 - Process Hemispherical Image into Separate Planar Images for Analysis
 - ► Test System in the Field and Adjust Design If Necessary

Innovative Approach Desired

- Meet with Agriculture/Engineering Group
- See Demo of Existing System
- Use Automation and State of the Art Equipment
- Design for Ruggedization
 - ► High Moisture
 - Heavy Usage (100K+ images a season)
 - ► Transported All Over Midwest
 - Drop and Vibration Resistant

Project Support Group

- Professor Andrew Leakey
 - Michael Aiken Chair Professor of Plant Biology (IGB)
- Jeremy Ruhter
 - ► Farm Field Technician
- ▶ John M. Hart
 - ▶ Principal Research Engineer (CSL) and
 - ▶ Manager and Coordinator of the CfA Robotics Labs

jmhart3@