Requirements and Verification

ECE445

What is RV table?

- A two-column table with requirements on the left, and verification on the right
- A checklist for both modular goals and modular debugging
- If all requirements have been verified by your verification for every module, you should have a fully functioning project.

Requirements

A technical definition of what each and every module in your system block diagram must be able to do

- Quantitative (tolerance range)
- Thorough and detailed
- Driven by project goals
- Design requirements ≠ purchase requirements

Verification

A set of procedures that you will use to verify that a requirement has been met

- Equipment
- Test procedures
- Presentation of results
- Explicit

Voltage Regulator

Requirements	Verification
1. Step down battery to 3.3VDC	1. Take oscilloscope measurements to make sure that voltage output is 3.3V.

Voltage Regulator

Requirements	Verification
1. Step down battery to 3.3VDC	1. Take oscilloscope measurements to make sure that voltage output is 3.3V.

What is battery voltage?

Voltage Regulator

Requirements	Verification
·	1. Take oscilloscope measurements to make sure that voltage output is 3.3V.

Do I fail if the output is 3.25V?

Voltage Regulator

Requirements	Verification
1. Step down battery to 3.3VDC	1. Take oscilloscope measurements to make sure that voltage output is 3.3V.

Do we miss any requirements? e.g, current draw?

Voltage Regulator

Requirements	Verification
1. Step down battery to 3.3VDC	1. Take oscilloscope measurements to make sure that voltage output is 3.3V.

How to measure?

Voltage Regulator

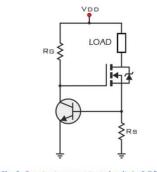


Fig. 3. Constant-current test circuit, I_L=0.7/R_s

Requirements	Verification
1. Provide 3.3V +/- 0.5% from a 3.7V-4.2V source	1A. Measure the output voltage using an oscilloscope, ensuring that the output voltage
2. Can operate current within 0 - 300mA	stays within 5% of 3.3V.
3. Maintain thermal stability below 125°C	2A. Connect the output of the voltage regulator to VDD node in the constant-current test circuit in Figure 3. 2B. Adjust Rs in Figure 3 to deliver at most 300mA to the load, measured by a multimeter. 2C. Measure the output voltage using an oscilloscope, ensuring that the output voltage stays within 5% of 3.3V.
	3A. During verification for Requirement 1 and 2, use an IR thermometer to ensure the IC stays below 125°C.

Voltage Regulator

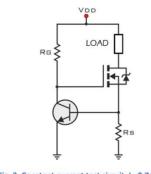


Fig. 3. Constant-current test circuit, I_L=0.7/R_s

Requirements	Verification
 Provide 3.3V +/- 0.5% from a 3.7V-4.2V source Can operate current within 0-300mA 	1A. Measure the output voltage using an oscilloscope, ensuring that the output voltage stays within 5% of 3.3V.
3. Maintain thermal stability below 125°C	2A. Connect the output of the voltage regulator to VDD node in the constant-current test circuit in Figure 3.
Quantitative measurable ranges	2B. Adjust Rs in Figure 3 to deliver at most 300mA to the load, measured by a multimeter. 2C. Measure the output voltage using an oscilloscope, ensuring that the output voltage stays within 5% of 3.3V.
	3A. During verification for Requirement 1 and 2, use an IR thermometer to ensure the IC stays below 125°C.

Voltage Regulator

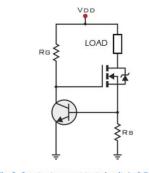
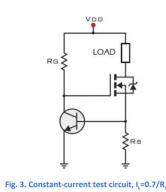



Fig. 3. Constant-current test circuit, I_L=0.7/R_s

Requirements	Verification
1. Provide 3.3V +/- 0.5% from a 3.7V-4.2V source	1A. Measure the output voltage using an oscilloscope, ensuring that the output voltage
Can operate current within 0-300mA	stays within 5% of 3.3V.
3. Maintain thermal stability below 125°C	2A. Connect the output of the voltage regulator to VDD node in the constant-current test circuit in Figure 3.
Very detailed and thorough requirements	2B. Adjust Rs in Figure 3 to deliver at most 300mA to the load, measured by a multimeter. 2C. Measure the output voltage using an oscilloscope, ensuring that the output voltage stays within 5% of 3.3V.
	3A. During verification for Requirement 1 and 2, use an IR thermometer to ensure the IC stays below 125°C.

Voltage Regulator

(adapted from SP16 Wireless IntraNetwork)

Requirements	Verification
1. Provide 3.3V +/- 0.5% from a 3.7V-4.2V source	1A. Measure the output voltage using an oscilloscope, ensuring that the output voltage
2. Can operate current within 0-300mA	stays within 5% of 3.3V.
3. Maintain thermal stability below 125°C	2A. Connect the output of the voltage regulator to VDD node in the constant-current test circuit
Step-by-step procedure	in Figure 3. 2B. Adjust Rs in Figure 3 to deliver at most 300mA to the load, measured by a multimeter. 2C. Measure the output voltage using an oscilloscope, ensuring that the output voltage stays within 5% of 3.3V.

stays below 125°C.

3A. During verification for Requirement 1 and

2, use an IR thermometer to ensure the IC

Voltage Regulator

Fig. 3. Constant-current test circuit, I_L=0.7/R_s

Requirements	Verification
1. Provide 3.3V +/- 0.5% from a 3.7V-4.2V source	1A. Measure the output voltage using an oscilloscope, ensuring that the output voltage
Can operate current within 0-300mA	stays within 5% of 3.3V.
3. Maintain thermal stability below 125°C	2A. Connect the output of the voltage regulator to VDD node in the constant-current test circuit in Figure 3. 2B. Adjust Rs in Figure 3 to deliver at most 300mA to the load, measured by a multimeter.
Equipment	2C. Measure the output voltage using an oscilloscope ensuring that the output voltage stays within 5% of 3.3V.
	3A. During verification for Requirement 1 and 2, use at IR thermometer to ensure the IC stays below 125°C.

Voltage Regulator

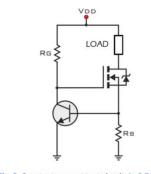
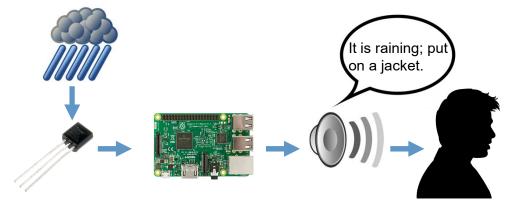
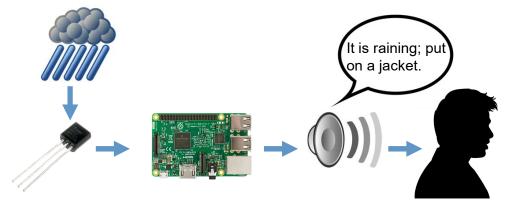



Fig. 3. Constant-current test circuit, I_L=0.7/R_s


Re	equirements	Verification
1.	Provide 3.3V +/- 0.5% from a 3.7V-4.2V source	1A. Measure the output voltage using an oscilloscope, ensuring that the output voltage
2.	Can operate current within 0-300mA	stays within 5% of 3.3V.
3.	Maintain thermal stability below	2A. Connect the output of the voltage regulator
	125°C	to VDD node in the constant-current test circuit
	Explicit set-up/configuration	in Figure 3. 2B. Adjust Rs in Figure 3 to deliver at most 300mA to the load, measured by a multimeter. 2C. Measure the output voltage using an oscilloscope, ensuring that the output voltage stays within 5% of 3.3V.
		3A. During verification for Requirement 1 and 2, use an IR thermometer to ensure the IC stays below 125°C.

Bad RV ExamplePersonal Rain Detector

Requirements	Verification
1. Raspberry Pi is functional.	1A. Provide 5V power to Raspberry Pi. Inspect status lights to ensure it is operating.
Raspberry Pi GPIO pins can produce outputs.	2A. Toggle GPIO pins and measure with oscilloscope.
Speaker produces sound when powered.	3A. Drive speaker with 9V power supply and listen for sound to ensure it works.
Moisture sensor can survive manufacturer-specified weather conditions.	4. Put sensor outside on a rainy day and test that it works after.

Bad RV ExamplePersonal Rain Detector

Requirements	Verification
1. Raspberry Pi is functional.	1A. Provide 5V power to Raspberry Pi. Inspect status lights to ensure it is operating.
Raspberry Pi GPIO pins can produce outputs.	2A. Toggle GPIO pins and measure with oscilloscope.
Speaker produces sound when powered.	3A. Drive speaker with 9V power supply and listen for sound to ensure it works.
Moisture sensor can survive manufacturer-specified weather conditions.	4. Put sensor outside on a rainy day and test that it works after.

ISSUE: Padding your RV table.

Each of these is "guaranteed" by the manufacturer. You aren't testing any new designs of your own.

If you have any questions, contact your TA!