

# **PCB Review!**

Electrical & Computer Engineering

Jason Jung

10-3-2025



### Topics:

Basic Power Electronics
USB-C Implementation
Differential Signaling
Trace Sizing
Impedance Matching
Protection Circuits
General Power/Ground Routing Guidelines
Good Practices/Bad Mistakes/Rules of Thumb

#### General Reminders



- Best practice is to prototype your idea before designing your PCB (Breadboard Demos).
- It takes about 7-10 days to go from PCB wave deadline to delivery
- Consider assembly before choosing PCB components

- Please keep the benches and the soldering stations clean
- A quick wipe-down or tidying up after you are down goes a long way

#### General Reminders – Getting Parts



- Parts can be procured from
  - E Shop: by TA ordering or student self service drawers
  - Online CFOP Orders
- Most required parts can be obtained via E Shop including MCUs, connectors, SMD components, etc.
- Tall White cabinet in Senior Design Lab
  - Ask a TA to checkout a part for you

#### Electronics Services Shop - ECEB First Floor



#### PCB Ordering Guide



- Maximum Size of PCB is 100mm x 100mm
- Like you did in the CAD assignment, export your gerber files into a zip
- Make a PCBWay account and upload your files
- Save to cart
- Make sure your board passes their auditing process
  - You will get a notification in your cart
- Once it does, send your zip file to your project TA. Modify the file name with your team number



#### Basic Power Electronics - Regulators



- Regulators create a constant output voltage from a higher voltage input
- Require a certain amount of voltage headroom, i.e. "dropout voltage"
- At steady state conditions, it behaves as a resistor dissipates heat
- Designed to maintain constant output voltage under dynamic loads
- Account for current rating

#### Two common types:

- Linear
  - Larger dropout
- Low Dropout
  - Lower drop out voltage, typically worse load handling



#### Basic Power Electronics – Switching Regulators



Higher conversion efficiency but noisier power supply Typically greater design flexibility.

Basic principle a dynamic PWM signal that adjust its duty cycle to regulate output voltage

#### **DC/DC Converters:**

- Buck (High V to low V)
- Boost (Low V to low V)
- Flyback (Multiple output configurations)
- Inverting



Basic rule of thumb: if your voltage drop is around greater than 5V, consider a switching regulator

#### **USB-C Guidelines**



#### **USB-C Connectors**

USB-C connections provide power and data. The hardware configuration determines the utility of the connector in your circuit according to the USB-C standard:

- USB 2.0
- USB 3.0
- USB PD
- Others

In its simplest configuration (right), the connector handles US 2.0 communication and can handle 15W(5V, 3A)

CC1, CC2 are tied down by 5.1kOhm Resistors



TI has a nice USB-C guideline you can refer to for more complex implementations

#### Choose the right USB C Connector for your purpose!



Any USB C receptacle will have 24 pins, but not all of them used and will be ignored in plenty of cases.

Although USB C is a standard, connectors come in different configurations:

- 6 pins, 12 pins, 18pins, etc.
  - O Typically more pins is to allow for more data intensive applications
- through holes, smd
- Vertical Mount, Horizontal Mounts



Check the physical drawings, CAD models, and datasheets for your connectors (and other parts!)



#### Differential Signaling (USB 2.0, USB3.0, CSI, etc.)



- Differential signals improve noise performance by having complementary datalines
- In hardware, the implementation of this standard requires 2 coupled transmission lines of equivalent length
- +/- lines in USB 2.0 for instance
  - USB 2.0 Signal lines require 90 Ohm Impedance with some tolerance
- In KiCAD, use the following tools:
  - "Route Differential Pair" to initate routing process
  - O KiCAD follows a naming convention for designating differential traces
  - "Tune Skew of a Differential Pair" to prevent length/phase mismatches







#### **Tuning Skew of Differential Signals:**

**Before** 



#### **After**



#### **Custom Trace Sizing**



# Under "Board Setup > Design Rules > Pre-Defined Sizes" you can set trace geometry as desired

**Board Setup ICON** 





#### Impedance Matching (USB 2.0) and Trace Sizing



Copper Fill (GND Plane)

Some parts of your system will demand certain requirements on your trace geometry For example, USB 2.0 requires **90 Ohm** differential impedance  $\pm 15\%$ 

If your board matches what is shown on the right, a decent approximation of a model is to use a differential coplanar waveguide model

Websites like JLCPCB, Digikey, and even KiCAD has models for these calculations you can

use easily

| o 22. CB, Biginey, and over the had include for those calculations you can |                                        |              |         |                 |            |         |                |               |                           |  |
|----------------------------------------------------------------------------|----------------------------------------|--------------|---------|-----------------|------------|---------|----------------|---------------|---------------------------|--|
| Impedance $(\Omega)$                                                       | Туре                                   | Signal Layer | Top Ref |                 | Bottom Ref | Trace W | /idth          | Trace Spacing | Impedance trace to copper |  |
| 90                                                                         | Coplanar Differential Pair             | L1           | 1       |                 | L2         | 17.260  | 00             | 8.0000        | 8.0000                    |  |
| Layer                                                                      | Material                               |              |         | Thickness (mil) |            |         | Thickness (mm) |               |                           |  |
| L1                                                                         | Outer Copper Weight                    |              |         |                 | 1.38       |         |                | 0.0350        |                           |  |
| Core                                                                       | 1.5mm 1/1OZ with copper (double-sided) |              |         | 57.68           |            |         | 1.4650         |               |                           |  |
| L2                                                                         | Outer Copper Weight                    |              |         | 1.38            |            |         | 0.0350         |               |                           |  |

Substrate

Your board geometry will influence your inputs into these online calculators! Pay attention to:

- GND Planes
- Distance to GND planes
- Substrate Thickness
- Trace Spacing, copper thickness, etc.

#### **Protection Circuits**



#### Schottkey Diodes – reverse current protection

- Diode responds quickly to changes in voltage polarity
- If multiple power supplies are present, this can be a good measure to prevent damage from miswirings
- Also good for batteries

#### Fuse - Overcurrent protection

- Protection from short circuiting events
- Ex. High in-rush current with motors

#### **Zener Diodes - Overvoltage protection**

- Protect circuits from over voltage when in reverse bias.
- When a voltage pike goes beyond the Zener voltage, current flows through the Zener diode

#### Use cases:

- Can be used to clip waveforms
- Shunt regulator: surge protection, protection from transients, ESD, etc.



Schottkey Diode Ex.



Zener Diode ex.

#### Power Routing – General Guidelines



The goal of power routing is to have a reliable source of Voltage/Current for your system needs.

This is made challenging due to parasitic effects:

- Ground Bounce ground is not really ground
- EMI Issues cross talk, lack of shielding
- Thermal Issues your ICs may not be able to dissipate heat properly in any configuration

Unless you are doing a multi-layer board, there should not be a need for a dedicated power plane

- A wide trace dedicated to power will help
- 2-layer boards should suffice for majority of projects
- Determine trace width with a trace calculator
- Try to minimize trace length to reduce parasitic inductances

Position high power components with intention

- Aim for good airflow/heat dissipation
- Place these components close to one another

#### **Example of Spacing Components**





#### General Grounding Guidelines



Return paths are important to consider. Without one, current will find a random way back to the source, causing issues.

#### **General Techniques/Guidelines:**

Fill unused PCB areas with a copper ground

Try to have a ground path below/close to your signals

Use shielding vias for more sensitive signals

Use stitching vias to connect front and back GND planes

Do your best to keep components on 1 side first, try to avoid excessive use of backside components

Grounding is a cool + complex topic! Especially as board designs get more demanding.

#### Shielding vias



Stitching vias







#### Do not ignore MCU Bootmodes



#### MCUs have boot modes that are defined by HW

This should NOT be wrong on your PCB or else there is 0 chance to program

Give yourself options, buttons for your for boot-modes are a good choice to have



#### 4.1 Chip Boot Mode Control

GPIOO and GPIO46 control the boot mode after the reset is released. See Table 4-3 *Chip Boot Mode Control*.

Table 4-3. Chip Boot Mode Control

| Boot Mode                        | GPI00 | GPI046    |  |  |
|----------------------------------|-------|-----------|--|--|
| SPI Boot                         | 1     | Any value |  |  |
| Joint Download Boot <sup>2</sup> | 0     | 0         |  |  |

<sup>1</sup> **Bold** marks the default value and configura-

- USB Download Boot:
  - USB-Serial-JTAG Download Boot
  - USB-OTG Download Boot
- UART Download Boot

<sup>&</sup>lt;sup>2</sup> Joint Download Boot mode supports the following download methods:

#### Good Practices and Common Mistakes



- **Test Points –** Everyone should have them!
  - Pads, Holes, are all basically free to use
- **Space Components apart appropriately** make soldering easy
- **PCBWay DRC File**
- **Lack of Mounting Holes**
- **Connector Placement**
- No right-angle traces



- Place near ICs Pins
- Shunts noise to GND
- 0.1uF, 1uF, nFs range are common
- Your IC datasheets may have suggestions

#### Traces

- Make power traces wide (~20mils)
- Signal traces width (~10 mils) typically good
- Size traces to match impedance as necessary
- Keep traces adequately spaced apart to reduce capacitive coupling/crosstalk
- ~2-3x trace width spacing is usually good









## **Questions?**

# We can start the PCB review session