

Smartphone Controlled Jukebox
ECE 445 Fall 2015
Design Review

James Lang, Nikhil Sancheti, Sam Sagan
TA: Eric Clark

September 28, 2015

Contents

1. Introduction​………………………………………………………………………………... 2

2. Design​…………………………………………………………………………………….... 3
2.1. Block Diagrams …………………………………………………………………...
2.2. Block Descriptions ………………………………………………………………...

2.2.1. User Interface Module ………………………………...………………..
2.2.2. Control Module ………………………………………………………....
2.2.3. Filter Module ………..…………………………………………………..
2.2.4. Software …….…………………………………………………………..
2.2.5. Sensors ..…………………………………………………………………
2.2.6. Power …….……………………………………………………………...

2.3. Schematics & Flowcharts …………………………………………………………..
2.4. Simulations & Models ….... ……………………………………………………......
2.5. Smartphone App UI and Software Flows…………………………………………..

3. Requirements & Verification ​…………………………………………………………….. 15

3.1. Summary …………………………………………………………...........................
3.1.1. Requirements…………………………………………………………….
3.1.2. Verification ……………………………………………………………….

3.2. Detailed by Module ………………………………………………………………….
3.2.1. Control Module ……………………………………………………………
3.2.2. Power Module ...…………………………………………………………..
3.2.3. Filter ……………………………………………………………………....
3.2.4. User Interface Module ……………………………………………………
3.2.5. Sensor Module …………………………………………………………....
3.2.6. Software ………………………………………………………………….

3.3. Tolerance Analysis ………………………………………………………………....

4. Logistics ​…………………………………………………………………………................. 19
4.1. Cost Analysis ……………………………………………………………………….
4.2. Schedule …………………………………………………………………………….
4.3. Contingency Plan …………………………………………………………………..

5. Integrity ​……………………………………………………………………………………. 22

5.1. Ethics ……………………………………………………………………………….
5.2. Safety ……………………………………………………………………………….

6. References ​…………………………………………………………………………………. 24

1

1. Introduction

1.1 Statement of Purpose

Jukeboxes used to be a staple of the social scene in bars. Our Smartphone­Controlled Jukebox
will modernize the old­school device and create a social entertainment system for both the commercial
(bar) and home application. Our team is committed to improving the experience of guests and hosts in
bars and at home.

 1.2 Goals

● Modernize the jukebox concept
● Provide a fun and enjoyable social entertainment system with high quality audio suitable for a

bar/dorm.

1.3 Functions

● Streams and selects songs from the Spotify API
● Removes the need for the user login to the Spotify API and makes the owner the main controller

for the Spotify API
● Remote Management of the Song Queue from the owner App.
● Payments types of bitcoins, venmo, credit/debit cards that adds a new revenue stream to the

owner
● Seamless and enjoyable user­interface via iPhone app
● Visually appealing LED lit package responding to ambient light and the beat of the music
● Affordable jukebox with high quality audio output suitable for audiophiles

1.4 Novelty

Projects to produce high quality audio output by connecting a better DAC to the Raspberry Pi
have been done before. However, these systems were built strictly for home application and require some
technical knowledge to assemble. We intend to build a plug­and­play system for both home and
commercial settings. Furthermore, the similar projects mentioned are no longer being sold, and used
versions do not take advantage of the capabilities of the newest Raspberry Pi. We believe that with the
newest Raspberry Pi and a better DAC, we can produce quantitatively better audio than has previously
been available on these types of systems.

2

2. Design

2.1. Block Diagram

Figure 1. Top­level block diagram with signal and power flow

2.2. Block Descriptions

User Interface Module:​ This module takes input data such as LED controls from the Raspberry Pi and
stereo audio from the CODEC. LEDs and Audio­out ports give the user access to these inputs.

LEDs​: Individually addressable LEDs embedded in the Jukebox’s housing are sent control signals by the
Raspberry Pi. The LEDs will cycle through two modes of visual effects. The first is a (inherently
pixelated) representation of the album artwork. The second is an abstract color pattern.

Audio­out Port​: Stereo XLR output provides professional quality audio. We will use an unbalanced
configuration; grounding the negative third pin of the XLR port.

Control Module: ​This module is the heart of our design. It takes streaming audio from Spotify,
serializes it, and then converts from digital to analog to be heard by the user. Filtering, isolation circuitry,
and AC coupling are used to decrease noise.

3

Raspberry Pi 2:​ A SoC with an ARM processor, running Raspbian OS. It takes streaming audio from
Spotify over a Wi­Fi connection and serializes it to be sent to the CODEC. The RPi also processes input
from the photoresistor circuit and sets the color and intensity of the LEDs. The iBeacon is used to
broadcast and send identifier to nearby iPhones. Wired connections are outlined in the following table.

Name Pin # Function Connection

PCM_CLK J8-12 Bit Clock CODEC SCLK

PCM_FS J8-35 Frame Clock CODEC LRCK

PCM_DOUT J8-40 Serial Audio Data Output CODEC SDIN

MOSI(SPI) J8-19 LED Data Output LED DI

SCLK(SPI) J8-23 LED Serial Clock LED CI

Audio CODEC:​ Decodes and converts the serial, digital audio signal of the songs from the RPi to analog.
This high quality, stereo analog signal is sent to the User Interface Module, so it can be accessed through
the audio­out ports. We use a Cirrus Logic CS4272 audio codec. We will implement isolation, low­pass
filtering, AC coupling, and various control circuits around the CODEC IC. The CODEC has an external
crystal to create the master clock signal. We will implement the CODEC’s driver on the Raspberry Pi.
This will generate necessary channel and bit clocks from the master clock. The driver will stream the
serial audio in time with the bit clock. We describe the function and connection of the CODEC’s pins in
the following table.

Name # Function Connection

XTO, XTI 1,2 For optional XTal Osc ckt Crystal and capcitors as

defined on CS4272

datasheet

MCLK 3 Master clock output To a RaspPi GPIO pin

LRCK 4 Left/Right clock input From RaspPi pin J8-35

SCLK 5 Serial Clock input From RaspPi pin J8-12

SDOUT (M/S) 6 Serial Audio Data Output – sets slave

mode if left unconnected

Unconnected

SDIN 7 Serial Audio Data Input in 2’s complement

format

RaspPi pin J8-40

4

DGND 8 Digital Ground input Grounded

VD 9 Digital Power input 3.3 V (3.1,5.25) – ckt

on CS4272 datasheet

VL 10 Positive Logic Power input 3.3 V (2.37,5.25) – ckt

on CS 4272 datasheet

M0 11 Speed mode selector bits M1M0 input 00 for single speed

M1 12 “” “”

I2S/LJ 13 Serial Audio Interface Select input 10k Pullup to VL for I2S

RST 14 Reset input - low power state when driven

low

Passively high input

from RaspPi GPIO pin

VCOM 15 Common mode voltage output Ckt on CS4272

datasheet

AINA-

AINA+

AINB+

AINB-

16

17

18

19

Differential Analog Input Unconnected

VA 20 Analog power input 5 +/-.25 V – ckt on

CS4272 datasheet

AGND 21 Analog ground input Ckt on CS4272

datasheet

FILT+ 22 Positive Voltage reference output Ckt on CS4272

datasheet

AMUTEC 23 Channel A Mute control output grounds

analog out A when high

Ckt on CS4272

datasheet

AOUTA+

AOUTA-

AOUTB+

AOUTB-

24

25

26

27

Differential Analog Audio output Ckt on CS4272

datasheet for filtering

and mute control

BMUTEC 28 Channel B Mute control output grounds

analog out B when high

Ckt on CS4272

datasheet

5

Filter:
The CS4272 is a high end IC with great specs, but it requires external filtering. Both channels have two
differential analog outputs that need filtering. To maximize flatness of the frequency response in the
audible range, we use a low­pass 3rd­order, active Butterworth filter. We eliminate DC components with
AC coupling capacitors at the filter output. This filter was designed to have less than 1dB of attenuation
throughout the audible frequency range 20Hz to 20kHz.

Software:
iOS App

The iOS user app will be the user’s main point of interaction with the jukebox. The main
functions of the app is to

● Search for the iBeacon
● Select the jukebox
● Search for songs from the Spotify API
● Select a song
● Pay to play the song
● See the player queue

Braintree

Braintree API was chosen for payments. It has the flexibility to accept payments from different
platforms including ​PayPal​, ​Bitcoin​, Venmo, ​Apple Pay​, ​Android Pay​ and credit cards. This will need not
only an addition on the client but also on the server. The purpose of this is to authenticate payments and
set the amount to pay for the service. It accepts ‘nonces’ which represent different types of payments such
as debit cards, bitcoins,etc and then completes the transaction. It sends a token back to complete the
transaction and tells the client if the payment processed or failed.

Spotify

The Spotify API provides high quality audio via its API’s. It helps search for the songs and
stream the songs. A premium account is needed by the owner to stream songs.

Server

The server functions to provide user sessions, handle jukebox sessions, stream songs, and finish
payment loop.

Sensors:
Our sensors allow our Jukebox to respond to changes in ambient lighting and proximity of users.

iBeacon

The iBeacon has the purpose of creating a way to uniquely identify a jukebox with a unique major
and minor as per Apple specifications. The UUID specified gives the family of the product(jukeboxes)

6

https://www.braintreepayments.com/features/paypal
https://www.braintreepayments.com/features/coinbase
https://www.braintreepayments.com/features/apple-pay
https://www.braintreepayments.com/features/android-pay

and the major and minor values help identify the exact jukebox. The iBeacon also provides RSSI values
that can be captured from scanning for the iBeacon from the app which gives a better feel for distance to
the Jukebox. It can add capabilities for social interactions in the beacon range.

Photosensor

This circuit produces a logical high when the ambient light is high. Conversely, it produces a low
when there is little to no light. A photoresistor is the sensor that reads ambient light levels. Its resistance
changes with ambient light. It is important that the circuit produces logical values within the Raspberry
Pi’s thresholds of .8V and 1.3V when exposed to natural light and dark indoor lighting.

Power:

The power requirements are important to keep both the Raspberry Pi and the LED’s fully
functional. Both have a voltage level of 5V but the LED’s need 3.5A of current for the whole strip and the
Raspberry Pi needs 1A of current. These are the two main components to be powered. The power circuit
is built using an AC/DC converter along with four linear regulators. The LEDs will be divided and power
in 3 separate strips to allow for lower amperage per line. One linear regulator is rated at 5V 1A and the
other three are rated at 5V 3A. The AC/DC converter gives an output of 5V 10A which makes it a suitable
source of powering the circuit.

2.3 Schematics and Flowcharts

Our audio processing circuitry consists of Cirrus Logic CS4272 audio codec with internal
digital­to­analog converter (DAC). The IC pinout with connections, the analog low­pass filter, and mute
circuitry are included in figures 2­4 respectively. Note the system­level blocks for the analog low­pass
filter and mute circuitry in the top­level schematic.

The codec and DAC converts a serial audio input into stereo analog output. The analog output is low­pass
filtered and AC coupled; essentially producing band­pass filtering on the audio output at the extents of the
audible range (20Hz ­ 20kHz). The codec outputs a mute signal that is usually held high; when the codec
outputs a low mute signal, the audio output on that respective channel is grounded through a BJT; muting
the audio.

Filter design notes:

● Output impedance of CS4272 analog output pins are about 3kOhms, thus we use a 5.11k resistor
at the input to the filter to avoid over­loading the the IC.

● The 3rd order Butterworth filter consists of a 1st­order Butterworth primary stage and a 2nd­order
Butterworth secondary stage; both in the Sallen­Key configuration.

● We set the 3dB cutoff frequency to 24kHz to ensure that the amplitude response at 20kHz is no
more than .99dB down.

● Design equations are as follows:
○ 1st stage: fc=1/(2*Pi*R*C)

7

○ 2nd stage: fc=1/(2*Pi*Sqrt(R1*R2*C1*C2)) and C1(R1+R2)=Sqrt(Ra*R2*C1*C2)
○ We set R1 to 5.11kOhms and C1 to 1nF and solve for the rest.

Simulations for the low­pass filtering and AC coupling frequency response and the mute signal’s function
are included in the simulations section 2.4.

Figure 2. Top level audio processing circuitry

Figure 3. Analog low­pass filter and AC coupling at audio output

8

Figure 4. Mute circuitry grounds audio output when MUTE_SIGNAL is low

Our Jukebox responds to ambient light to turn on or off the LEDs. We designed a photosensor circuit with
a photoresistor that produces a logic high in bright light and a low in darkness. Additionally, the LEDs
and Raspberry Pi need external power. The Raspberry Pi has standard adapters, but we cannot power the
LEDs through the Raspberry Pi due to the amperage requirements. Thus, we created a power supply
circuit with an AC/DC converter and linear regulators to power the Raspberry Pi and 3 LED strips.

The schematics for the photosensor and power supply are included here in figures 5 and 6, respectively.
The photosensor circuit is simulated in section 2.4.

Figure 5. Photosensor circuit outputs a high in full light and low in darkness

9

Figure 6. Power supply for Raspberry Pi and LEDs

The power supply has a AC/DC converter that takes a wall plug input and gives out a DC 5V output at
10Amps. The Raspberry Pi needs 1A at 5V. The LED strips need 3Amps at 5V each. The are placed in
parallel. The DC/DC converter is a linear regulator that gives out the outputs needed for the raspberry pi
and the LED’s.

2.4 Simulations and Models

Our Jukebox produces high­quality audio output. This means that it is low­noise and has a highly
consistent (flat) frequency response over the entirety of the audible range (20Hz ­ 20kHz). Decoupling
circuitry limits the noise in digital­to­analog conversion. At the analog output, a low­pass filter and AC
coupling capacitor eliminate frequency components from outside of the audible range and maintain a
consistent (+/­ .5 dB) frequency response within it. Following the simulation results, we model the
behavior at DC and at high frequency.

10

Figure 7. Output analog filter frequency response

Our photosensor circuit must output a logical high when ambient lights are on and a logical low when
lights are off. The photoresistor changes its resistance given the ambient light. In full light, its resistance
is between 5k­10k Ohms. In darkness it goes up to 200 kOhms. Thus, these regions must have logical
high and low output consistent with the Raspberry Pi’s thresholds of .8V and 1.3V. This simulation
demonstrates that our photosensor circuit meets these requirements in theory.

Figure 10. Photosensor output given photoresistor values which change with ambient light level

The mute circuitry recommended by Cirrus Logic grounds the analog output whenever unwanted
(non­audio) signals are propagating through the codec. This eliminates pops and crackles that occur
during state transitions within the codec. In this simulation, we give the audio output the arbitrary DC
value of 2.5 V meant to represent the oscillating audio output. When the mute signal (active low) is high,
the DC signal is present on the output channel, but when the mute signal is low, the analog output is
grounded.

11

Figure 11. Mute circuit functionality

2.5 Smartphone App UI and Software Flows

Figure 12. Authentication flow for the Jukebox

The Jukebox authentication is essential to making sure that the Jukebox is unique and has a

Spotify premium account attached to it. It is a single screen for the owner but a lot more goes on in the
backend to enable the jukebox. Once we have a uniquely identifiable jukebox, it is simple to start sending
song request and make the jukebox customizable to the owner preference and even add the possibility to
have a dashboard to see users at the bar and visualize the player queue.

12

Figure 13. User Authentication Flow

The user authentication is on the iOS user app. The purpose of this component is to prevent users from
playing songs after they go out of range and also make sure that the user can see the various iBeacons in
that region.

Figure 14. User Screens and Navigation Flow

The user iOS app has the above flow. The UI design section below makes this a lot more clear and gives a
better idea of how the iOS app functions. The iOS app is designed to be simple for a user and makes it

13

really easy to select songs and complete payments. This is the face of the project and simplicity in design
was the major focus.

iBeacon Discovery
The iBeacon discovery screen must have to capability to scan for iBeacons, call the server to get its
name and display it as an option to get selected.

Search Songs Screen
The search songs screen must be capable of searching for Spotify songs and when the song is selected,
the pay screen shows up.

Pay for Song
The Braintree API takes care of payments here. It can be paid via venmo, card, paypal or bitcoins.
Successful payment sends the song to the server.

Song Queue
The Song queue shows the order of songs and the position of your song, if any.

iOS UI Design

14

3. Requirements and Verification

Control Module

Raspberry Pi 2
1. Power is being supplied

to the Raspberry Pi at
5V ± 0.25V.

2. Raspberry Pi can
connect to the internet.

3. GPIO Pins 12, 35, 40,
19, 23 on J8 Header can
output 3.3V ± 0.1V.

1. Connect a voltmeter across TP1 and TP2. The reading

should be 5V ± 0.25V.

2. $ ping google.com should show packets being received.

Ctrl­C to return.
3. Connect a voltmeter across GND and applicable pin.

Drive pins high and check if the reading falls in the
appropriate range.

5

CODEC and DAC
Convert I2S bit­serial digital
audio to analog signal. Master
clock must have a frequency of
12.288 MHz +/­ 20ppm.
Frequency response must be
within a range of .01dB over the
audible range (20Hz ­ 20kHz).
2nd harmonic must be at least
67dB down from first harmonic.
The mute circuitry grounds the

Connect oscilloscope to MCLK pin and ground to read the
frequency of oscillation.
Use chirp tests once per octave to test the response at
frequencies throughout the audible spectrum. Compare the
frequency response to the response at 1kHz.
Use the same chirp test to measure the second harmonic
amplitude.
Set the mute signal to low on each channel individually and
observe the output of the channel on a multimeter.

25

15

analog output to under 50mV
whenever the mute signal is low.

Power Module

Power Supply
The output voltage for each
parallel device must be at 5V ​±
0.1V. The raspberry pi needs
1A­1.2A to function
comfortably based on the data
sheet. The 1 meter LED strips
need 3A to function. The LED’s
do not need the max rating of
3.5A since it functions at 50%
of the max described. The need
for bright white light is limited
and using a lesser power rating
will give the sufficient
brightness. This has been
verified on the Adafruit website.

Connect a oscilloscope and check the output at the
Raspberry Pi to be 5V +/­ 0.1V and 1A +/­ 0.1A and check if
the LED’s are at 5V +/­ 0.1V and 3A +/­ 0.5A. To measure
the current a small resistance can be placed and the output
voltage is measured. Use V=IR to check the current value.

10

Filter Module

Filter
Our filter must vary at most
.99dB from the magnitude at
1kHz from 20Hz to 20kHz.
The attenuation at 30kHz must
be at least 6dB (½ of
fundamental volume).
Attenuation at DC must be at
least 12dB (¼ of fundamental
volume)

Send sinusoidal signal into filter once per octave and
measure the amplitude response. Make sure a reading is
taken at 20Hz, 20kHz, and 30kHz additionally. Compare
sinusoidal input and output in MATLAB.
Input DC signal of 5V and read output on multimeter.

User Interface Module

Audio Out Ports
Analog signals on the leads are
reproduced on pins of male
XLR connector.

Apply a test voltage ramp waveform to the input pins
individually and read the output with an oscilloscope.

5

LEDs
Visible color corresponds to the
software­defined color. Current
draw at 5V when a 60­LED strip
is completely turned on should
be 3.5 amps or less.

Plug the LEDs into a lab power supply with 5V and observe
the current drawn.

10

16

Sensors

Photoresistor circuit
In a well lit room, the circuit
should output a logical high, as
defined by the Raspberry Pi’s
processor (1.3V or more).
Conversely, in a dim or dark
room, the circuit should output a
logical low (.8V or less). The
photoresistor itself must adhere
to the following in order to
accomplish this: 5­10kOhms in
a well­lit room, and 200kOhms
+/­ 50kOhms in a dim or dark
room.

Read the resistance of the photoresistor in a well­lit room
with a ohmeter and then read it with the sensor covered.
Finally, read the resistance in a dimly lit room.
Given that the photoresistor meets the requirements, test the
circuit’s output with a voltmeter in the same ambient­light
conditions.

15

Software

Owner App
Creates the Jukebox Name,
Logs into Spotify premium and
sets up payment email address
endpoint. Checks if the
credentials are valid.

Do the login flow and check if the Jukebox has the right
credentials to call the Spotify API and play songs.

10

Server
Does the authentication for the
username and password. Also
links the owner to the payment
account. It generates the unique
major and minor values to
identify the jukebox.
Sends a session id back to the
Smartphone with an expiry of a
day. Also sends metadata of the
jukebox to the smartphone

Check if the generated major and minor values are unique by
doing a test to generate a large subset of the values. Check if
payments are routed to the owner.

Once the device is in session and in range it verify that it can
send song ids

5

iOS App
Scans for the iBeacon UUID. If
found, gets the major and minor
values and requests the server to
authenticate a session. Also
provides the smartphone with
the Jukebox details such as the
name. Deauthenticate if the user
is out of range for more than 5

Finds the iBeacon in the range provided. Can call the server
to get the name of the beacon and picks the right jukebox.
Once the user is out of range for more than 5 minutes it no
longer lists the user as in range.

10

17

minutes. The scanning
frequency for the Raspberry Pi
in the foreground is 5 seconds.

iBeacon
Registers the right UUID, major
and minor values so that it can
be detected. It maintains reliable
scanning for 40ft.

Scan for the iBeacon and confirm detection of the iBeacon
zone based on the major and minor values

5

Tolerance Analysis:

High quality audio means two things. First, accurate reproduction of sound, and second, low total
harmonic distortion + noise. Quantitatively, we are looking to provide a frequency response from 20Hz to
20kHz that varies by no more than 1dB (measured against the amplitude at 1kHz), and we wish to provide
a THD+N of .02% (­74dB). There are three components that contribute to these measures of fidelity: the
CODEC/DAC, analog output filter, and the op amps in the filter.

First of all, we are going to ignore noise levels in our calculations following because our components are
already so low in noise, that the levels produced are negligible compared to the amplitude of the
harmonics. The op amp has output noise of 3.3nV/Hz^½. Over our bandwidth of 19980Hz, this amounts
to 470nV of noise, which is 140 dB down from our full­scale output voltage of 5V. The codec itself has
an incredible THD+N of ­100dB, and although it does not provide noise specs separately, we will assume
that the noise produced is negligible as well. Noise will also come from the four resistors in the filter, but
using the approximation that resistor noise is .13*Sqrt(R) nV/Hz^½, the total noise from the four will be
no more than 3.78uV (­122dB).

Now, we will focus on the frequency response flatness, which produces the accurate reproduction of
music. The CODEC specs out to +/­ .01dB over the range 10Hz to 20kHz. Thus, our filter must have a
passband consistency of +/­ .99dB over 20Hz to 20kHz to ensure the +/­ 1dB flatness we are designing
our device at. If we do not achieve this flatness, the result is less strong audio at the extremes of the
audible range. This is not a huge issue as the human ear does not pick up these frequencies well anyway,
but it is a consideration. Note that ­6dB corresponds to half the volume.

Finally, we must keep the THD down to avoid strange unintended tones in the audio at harmonics to the
fundamental frequency. Harmonics come primarily from the DAC. The CODEC/DAC specs out at
­100dB THD+N, meaning the THD is even a few dB better than that. We do not have a THD plot for the
CODEC, but we expect the second harmonic will be at least 67dB down from the fundamental and the
third and up will be even lower. It is traditional in audio measurement to look at the attenuation of analog
output filters at 1.5 times the maximum passband frequency; this corresponds to 30kHz for us. The
attenuation is designed to be at least 7dB. This will attenuate the second harmonic to at least ­74dB and
we will ignore the higher order harmonics in this approximation. We consider ­74dB to be our target THD

18

of .02% for our design, thus we are designing to just hit this requirement, but the CODEC/DAC output is
probably better than we are designing for, so we expect to actually do better than ­74dB THD+N. If,
however, we do not hit this mark for THD+N, the sound will become noticeably inaccurate as harmonics
become audible.

4. Logistics
4.1. Cost Analysis

4.1.1. Parts

Part Source Description Qnt. Unit cost Total cost

1138 Adafruit RGB 60­LED strip 2 24.95 49.90

2385 Adafruit Raspberry Pi 2 ­ Model B ­ ARMv7
with 1G RAM

1 39.95 39.95

 Spotify Spotify Premium Account 3 mo. 10.00 30.00

603­BLED112 Mouser BLED112 Bluetooth Dongle 1 16.00 16.00

161 Adafruit
Photo cell (CdS photoresistor)

1 3.95 3.95

777­CS4272­CZZ Mouser CODECs Stereo Audio CODEC 114 dB 192
kHz

2 8.65 17.3

SDC4/8GBET Kingston 8 GB Micro SDHC 1 3.92 3.92

863­MC7805CTG Mouser 5V 1A linear regulator 1 0.95 0.95

658 Adafruit 5V 10A Power supply 1 25.00 25.00

511­LM323T Mouser 5V 3A linear regulator 3 0.5 1.5

BOB­00500

ROHS

Sparkfun
SparkFun SSOP to DIP Adapter ­

28­Pin
2 3.95 7.9

19

https://www.sparkfun.com/static/rohs/

568­NC3MBH Mouser Male XLR connector 2 2.53 5.06

815­ABM3B­24.5

76­B2

Mouser 24.576MHz crystal oscillator 2 1.14 2.28

 ECE
Supply

BJT ­ npn and pnp 3 0.00 0.00

 Total 203.71

4.1.2. Labor

Name Hourly Rate Hours Total (Rate *
Hours * 2.5)

James $30.00 225 $16875

Nikhil $30.00 225 $16875

Sam $30.00 225 $16875

Total 675 $50,625

4.1.3. Total Cost

Section Cost

Parts $203.71

Labor $50,625

Total $50,828.71

4.2. Schedule

Week Tasks Responsibility

9/14 Project Proposal Due
1. Finalize Parts List
2. Decide on APIs
3. Project Proposal

Sam
Nikhil
James

20

http://www.mouser.com/ProductDetail/Neutrik/NC3MBH/?qs=sGAEpiMZZMv0W4pxf2HiV0%252bKdhvD8lQRFJZfQ74lBpM%3d

9/21 Mock Design Review
1. Audio Processing Circuit Schematic
2. Mock Design Review
3. iPhone App Mock UI

Sam
James
Nikhil

9/28 Design Review
1. Order Parts
2. Raspberry Pi Setup
3. Design Review

Sam
James
Nikhil

10/5 1. Breadboard and debug audio processing circuit
and output ports

2. Play music from Spotify on Raspberry Pi
3. Finish iBeacon Scanning. Build UI and integrate

Braintree payments.

Sam
James
Nikhil

10/12 1. Breadboard and debug photosensor. Begin
writing CODEC driver

2. Output I²S from Raspberry Pi
3. Write Server to accept song requests. Make sure

iBeacons have unique Major/Minor values. Write
payments extension for the server.

Sam
James
Nikhil

10/19 1. Complete CODEC driver ­ test audio throughput
2. Debug Audio Fidelity & Clocking
3. Test major functionality of phone­server

interactions. Unit test major interactions.

Sam
James
Nikhil

10/26 PCB First Revision
1. Submit PCB design of audio circuit, power

supply, and photosensor.
2. Write LED controller scripts
3. Clean up UI and complete testing the

phone­server interaction

Sam
James
Nikhil

11/2 Mock Demo & PCB Final Revision
1. Test PCBs and submit changes
2. Public User Testing & Feedback
3. Add extra functionality with Social interactions

for the app

Sam
James
Nikhil

11/9 Mock Presentation
1. Continue to test all hardware and driver

functionality­ Submit package design to machine
shop

2. Test & Debug
3. Prepare for presentations and debug/test

components app/server components for the demo

Sam
James
Nikhil

21

11/16 Demo
1. Assemble and test newly packaged product
2. Model and 3D­print housing
3. Finish Demo and prepare for the final

presentation

Sam
James
Nikhil

11/23 Thanksgiving Break
1. Start writing final report. Test if necessary.
2. Software Testing
3. Software Testing

Sam
James
Nikhil

11/30 Final Presentation
1. Produce finished product
2. Finalize Presentation
3. Start writing final report

Sam
James
Nikhil

12/7 Report and Lab Notebooks
1. Finish report
2. Finish Final report and submit lab notebook
3. Finish Final report and submit lab notebook

Sam
James
Nikhil

4.3. Contingency Plan

APIs: If the Spotify API is not very responsive or there are issues with the open source library to

stream the songs, the Soundcloud API will be picked.

CODEC/ DAC: If there are issues with writing the low level drivers/getting the DAC to work, a
HIFIBerry DAC with similar specifications will be taken. It has direct integration with the Raspberry Pi
and the libraries were written for a simple integration with the board. This will make the project more
expensive though.

5. Integrity

5.1 Ethics

The main points of possible contention in the product is the use of the Spotify API. Trivia games
are not allowed on the same app as per the API. A conflict of interest is possible with Spotify’s usage of
the API in terms of building a jukebox. The API could change any day and could lead to possibly making
the product defunct since it is heavily dependent on the Spotify API to get songs and search for songs. A
disclaimer must be provided because of the dependence on the Spotify API and the possibility that it
could make the product unusable if there is a change in the terms of how the API is used or rate limited
based on the usage of the app. Written permission will be requested to use the API for commercial
purposes.

22

5.2 Safety

The power supply will plug into a wall outlet, which carries 120V AC and up to 15 A. Normal
care should be taken to ensure that people cannot come into contact with the power line. Make sure that
the power supply is completely plugged into the wall when in use. Do not expose liquid, raw wires or any
other conductive material to the interface between the wall and the power supply.

After conversion to 5V DC at 10A, the on­board power lines do not offer a threat of electrocution.
However, the LEDs still require a high current. Measures to prevent short circuits will be kept in
consideration to prevent components from taking damage or overheating. Power to the Raspberry Pi will
be current­limited with a fuse, so that if someone accidentally shorts the Pi, it cannot draw more than 2A.
Before tinkering with electrical components, make sure that the device has been unplugged, capacitors

23

have been given a sufficient time to discharge, and that your body is static­free. Upon completion of the
project, electrical components will be contained in a housing, so user exposure to them is minimized.

6. References
Electric Shock:
https://en.wikipedia.org/wiki/Electric_shock#/media/File:IEC_TS_60479­1_electric_shock_graph.svg
CS4272 datasheet: ​http://www.cirrus.com/en/pubs/proDatasheet/CS4272_F1.pdf
Raspberry Pi logic levels: ​http://www.scribd.com/doc/101830961/GPIO­Pads­Control2
High Quality Audio with a Raspberry Pi:
http://www.ti5.tu­harburg.de/staff/meier/master/meier_audio_over_ip_embedded.pdf
Raspberry Pi 2 Model B ­ Pin Numbering:
http://pi4j.com/pins/model­2b­rev1.html

24

https://en.wikipedia.org/wiki/Electric_shock#/media/File:IEC_TS_60479-1_electric_shock_graph.svg
http://www.cirrus.com/en/pubs/proDatasheet/CS4272_F1.pdf
http://www.scribd.com/doc/101830961/GPIO-Pads-Control2
http://www.ti5.tu-harburg.de/staff/meier/master/meier_audio_over_ip_embedded.pdf
http://pi4j.com/pins/model-2b-rev1.html

