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Abstract 

Emotion detection was intended to be done with a combination of speech, heart rate, and skin 
temperature sensors. The device was envisioned to be wearable and provide programmable text output 
to the user via LCD screen as well as LED indicators for 4 emotional categories. Successes of the project 
include meeting the design requirements for microphone, lithium-ion battery charging circuit, LCD 
screen, LED lights, and speech accuracy. Design requirements were not met for SPI communication 
between microcontroller and DSP chip, heart rate detection, implementation of speech 
algorithm/system classifier on chips, and overall device size.  
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1. Introduction 

1.1 Statement of purpose 
We live in a digital world where people can become lost in their devices, decreasing the daily amount of 
personable social interaction. As a result, their communication skills deteriorate; specifically, their ability 
to identify and express their own emotions in a constructive manner becomes more difficult. There are 
also people with medical disorders that are unable to identify emotions in their peers, such as people 
with autism.  
 To address this problem, we designed a wearable device that will help people identify their 
emotions, give the option to display their emotions, and provide constructive suggestions to the users to 
help alleviate stressful social situations. Our device aims to help someone explore the root cause of their 
feelings as well as offer the ability to display his/hers broad emotional state to help others identify with 
him/her. This concept would allow people to effectively communicate their emotional state, leading to 
less conflict on a daily basis and a better quality of life for all involved. 

2. Design 

2.1 Block Diagrams 

 

Figure 1. High Level Block Diagram for System 

 

Figure 2. Block Diagram Data Collection 
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Figure 3. Block Diagram User Interface 

 

Figure 4. Block Diagram Power Supply 

2.2 Data Collection  

2.2.1 Microphone 

The purpose of the microphone circuit is to record the speech, amplify the speech, and then pass it 

through a filter. Table 1 lists the defining output characteristics of our microphone, the ICS-40300 from 

its datasheet in [1]. From Table 1, the 94 dB SPL corresponds to the Vrms of speech spoken directly into 

the microphone. Converting to Vpp, that is approximately 20 mVpp. Given that the DSPs have a 12 bit ADC 

converter with 17 channels, the equation for finding the bit resolution is listed in Equation 1. 

 

(1) 

where ∆Vres is the voltage step a bit respresents, Vpp is the largest voltage peak-to-peak the ADC is set to 

analyze, and n is the number of bits dedicated to the ADC. Utilizing this resolution and the maximum Vpp 

amplitude of a person speaking into the microphone, we only use approximately 5 bits out of the 12 to 

resolve the voice. An amplifier is required to increase the number of bits we can use to represent the 

speech signal. From the datasheet in [2] a typical amplifier is suggested with an OP-AMP shown in  

Table 1. Output Information for ICS-40300 Microphone 

Output Impedance 200 Ω 

Output DC Offset 0.8 V 

1 kHz 94 dB SPL Maximum -43 dBV 
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Figure 5. . LTSpice Mic + OP-AMP Simulator and Circuit Diagram 

Figure 5, but it requires a decoupling capacitor grounded to replace the Vref on IN- stage. The gain can be 

approximated as shown in Equation 2. The chosen OP-AMP for this application was the LM321 which is a 

single OP-AMP version of the LM324/NS, which has small phase noise and operates at 3.3 V. It's 

datasheet is listed in [2]. 

 

(2) 

where R1 and R2 correspond to the resistors R1 and R2 shown in Figure 5. The goal was to have an 

amplification of approximately 50 due to the maximum speech signal being 20 mVpp. The output at 60 

Hz is shown in Figure 6, where Vref is the voltage reference and MICIN is the simulated microphone 

signal at 60 Hz.  

 

Figure 6. LTSpice simulation of Figure 5 LTSpice Schematic with Green as the micin signal, blue as Vout, and red as Vref. 

It is important to get the DC offset from the microphone circuit such that it is approximately 

equal the reference voltage for the DSP. The reference voltage can be set using an input pin on the DSP 

chips, which are depicted in the datasheet in [3].  



4 
 

In order to reduce the amount of computational responsibility of the DSPs, an analog filter was 

implemented to reduce the DSP computational requirement. An analog implementation of MFCC filters 

was investigated by [4], but required eight 4th order bi-quad filters or a custom IC chip to implement. 

The bi-quad filters required too much area which resulted in the LPF being the only analog option to 

decrease computational responsibility of the DSP, which is a third order LPF from OUT port to Vout shown 

in Figure 5. 

The first aspect of the filter that was considered is the impedance seen by the ADC12. According 

to microchip's ADC guide in [5] for the 12 bit converter a maximum value of 2.5 kΩ should be used as 

the input impedance into the DSP but to meet our samples per second requirement and provide some 

flexibility in samples per second, 400 Ω is desired as the total filter impedance to the input. Each IIR filter 

and bi-quad filter was analyzed, but each had a significant draw back in either area or phase noise, 

which is supported by [6]. 

The standard RC filter was investigated with up to 4 cascades, 4th order, in MATLab due to its 

robust phase noise through the passband. The frequency response requirements for the filter are an 

attenuation of 20 dB at 10 kHz and a maximum of 0.5 ms delay. Due to the cascade and requiring an 

output impedance of 400 Ω, the resistance value at each stage was found using  

 

(3) 

where Rcasc is the impedance at each stage, Rout is the total impedance of the filter, and n is the order of 

the filter. Rcasc was used to find the stage capacitance with  

 

(4) 

where ω is the frequency in rad/s, Rout is the total filter impedance, C is the capacitance of each stage, 

and n is the order of the filter. A 3rd order filter was found and its values shown in Figure 5 from 

Equation 3 and Equation 4. The order of the filter is determined by the number of cascaded RC 

equivalents, which have a magnitude calculated by 

 

(5) 

where ω is the frequency in rad/s, R is the resistance of each stage, and C is the capacitance of each 

stage. A -6 dB cutoff with respect to the magnitude was desired at 8 kHz as well as a 0.5 ms time delay. 

The time delay was calculated in MATLab with 

 

(6) 

where td is the time delay in seconds, φ(f) is the phaseshift at frequency f in radians, and f is the 

frequency. Equation 5 and Equation 6 were used to calculate the magnitude frequency response and 

time delay for first to fourth order filters shown in Figure 7 and Figure 8, respectively.  
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Figure 7. Magnitude Frequency Response of orders 1-4 Cascaded RC Filters 

 

Figure 8. Time Delay (ms) vs Frequency of each Order Filter 

From Figure 7 and Figure 8, it is clear that the 3rd order filter is a good compromise between all design 

requirements previously mentioned for the filter. It uses a little more area and has a little more time 

delay, but it is on approximately the same order as the 1st and 2nd time delays as well as having similar 

attenuation as the 4th order filter. The speech frame of 25 ms and with a maximum phase delay of 

approximately 0.1 ms for the 3rd order filter, the delay is less than 0.5% of the speech window. 

Theoretically, we can assume approximately no time delay throughout the speech frequencies of 

interest (< 8 kHz) with respect to the window. The frequency response and phase delay of the 

microphone amplifier system from LTspice is shown in Figure 9. 
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Figure 9. Frequency Sweep Simulation of amplified and filtered output to the DSP. Dashed line and solid line are the phase 
delay and magnitude response, respectively. 

From Figure 9, it can be seen that we meet the requirements for time delay and amplification for most 

of the frequency range. There is approximately 15 dB lost at 8 kHz, but this is acceptable because the 

speech signal is mostly less than 1 kHz. Section 3.1.1 contains the test and verification procedure as well 

as the results for the microphone circuit. 

2.2.2 Temperature 

The temperature sensor part make use of two thermistors. One thermistor will be measuring the 

ambient temperature of the whole device, and the other will be in close contact with the user’s skin. 

The thermistors are connected to the Analog Digital Converter (ADC)  I/O port of the microcontroller. 

The microcontroller will then calculate temperature with the input data at an interval of 1 seconds.  

 The thermistor used in the project is US sensor PS103J2. This senor was chosen because of its 

higher sensitivity compared to most other thermistors, it has an accuracy of ±0.1C. After reading in the 

data through the ADC port of the microcontroller, a mathematical formula is used to calculate the 

surrounding temperature. Equation 7 and Equation 8 were used to find the resistance of the thermistor 

at the moment, and then Equation 9 is used to find the temperature at the given moment. 

 

(7) 

where R2 is the resistance of the resistor, R1 is the resistance of the thermistor, and Vin is the voltage 

supplied, which will be 3.3V in this case. Vout is the voltage sent to ADC. 

  

 

(8) 

where Rthermistor is the resistance of the thermistor, and Vout is the voltage to the ADC pin. 

 

 

(9) 
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where B is the thermistor parameter constant, Tn is the standard temperature (298.15K), RT is the 

measured resistance of the thermistor, and RN is the standard resistance of the thermistor, 10kΩ in this 

case.  

 To increase the accuracy in this process, the value of the resistor in this circuit is measured with 

a multimeter. The value of the resistor will be used for the final calculation of temperature in the 

microcontroller. It is also found that there is a delay in reading the ADC value, this might due to the heat 

retained inside and on the surface of the thermistor. This factor is noted in the final algorithm 

implementation. 

2.2.3 Heart Rate Monitor 

The heart rate sensor uses an analog front end chip, AFE4400, to perform measurement and 

computation of the heart rate of the user. This component communicates with the microcontroller using 

Serial Peripheral Interface (SPI). The Master Out Slave In (MOSI), Master In Slave Out (MISO), Slave 

Select (SS) and clock signal (SCLK) will be used for this interface. To calculate the heart rate, the three 

beat average calculation as shown in Equation 10 is used and implemented in the microcontroller: 

  

𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒 =  
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 60 ∗ 3

𝑛𝑜.  𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 3 𝑏𝑒𝑎𝑡𝑠 
 

(10) 

where sampling frequency is determined in the code, and number of samples in 3 beats can be counted 

by the microcontroller.  

2.3 User Interface 

2.3.1 LCD Display 

The LCD screen uses a standard 16x2 LCD Display. There will be two rolls of text and 16 characters per 

row. The display module is designed to display the  calculated emotion state of the user. This LCD 

display is designed to be placed at the bottom of the wrist of the user.   

2.3.2 LED light indicator 

Other than the LCD screen for display, the device is also designed to have 3 LED lights for display. They 

will be used for a non-discrete display of emotion. The connection of these 3 LEDs are connected to the 

microcontroller through General Purpose Input/ Output (GPIO) pins. An npn transistor will be used to 

control the current to protect the microcontroller from burning out.  

2.3.3 Switch 

Slide Switches are used for turning things on and off in the design. A total of three switches are used in 

our design. One is used for the LCD Display, one for the LED lights, and last one for the whole system. 

Switches are connected to 3.3 V voltage supply and ground, with the middle pin connected to the 

corresponding component.  

2.4 Power Systems 
The power system supplies the power to all of the modules in the device. Lithium-Ion Polymer (LiPo) 

battery was chosen due to the extremely light weight as well as the energy capacity per unit volume. 

There are some safety concerns, which are outlined in greater detail in Section 5.3. But, in order to help 
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mitigate any issues during operation, the LTC3553 buck convert and single cell LiPo charger was selected 

because of its ability to monitor the temperature, voltage, and charge/discharge rate of the battery. 

 Table 2 lists the power requirements for every component on the device. The mA-hr is 

calculated for each device and the efficiency of the buck converter on the LTC3553 charger is used to 

approximate the energy capacitance required for the battery. Ideally, the design requires a minimum life 

of approximately 5 hours. 

Table 2. Power Requirements 

Component Operating Voltage Range Maximum Current 

LEDs 3.3 V 30 mA 

AFE Rx 3-5.25 V 25 mA 

AFE Tx 2-3.6 V 0.67 mA 

Microphone 1.5-3.63 V 0.22 mA 

Temperature Sensor 3.3 V 0.65 mA 

OLED Display 2.4 or 3.3 V 5 mA with backlight, 0.14 mA st 

IC Charger 3.3 V 0.12 mA 

MSP430F6635 MCU 1.8 to 3.6 V 1.84 mA @ 8 mHz 

dsPIC33EP512 3 to 3.6 V 42 mA @ Maximum operation 

Total mA @ 3.3 V: 105.5 

 

From Table 2, it is observed that a LiPo battery with approximately 650 mA-hr at 3.7 V would power the 

device for 5 hours. This assumes a 90% down conversion loss for 5 hours of operation without any 

power conservation techniques. The Schematic for the IC charger is shown in Figure 10. The values for 

the capacitors and NTC thermister were specified in the datasheet, shown in [7]. Ideally, the thermister 

will rest on the LiPo battery while the device is in operation. 

 

Figure 10. IC Charger Circuit for LiPo Battery 
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This IC charger a buck converter and LDO implemented with it. The LDO convert will be used to drive the 

3.3 V line while the sw/buck_fb converter will drive the OP-AMP VCC/2 terminals at 1.7 V. The maximum 

current from the combined LDO and buck terminals is 500 mA. The voltage for each terminal, while 

referencing Figure 10, is set by 

 

(11) 

where Vbuck is the desired output voltage for LDO or buck converter, R1 is the resistor in parallel to the 

capacitor(s) and R2 is the resistor in series from buck_FB to GND or from LDO_FB to GND terminals. The 

calculated resistor values using Equation 11 are shown in Figure 10 for the buck and LDO converters. The 

charge current is set by the resistor at the Prog terminal, which is given by  

 

(12) 

where Ic is the charge current in A, and Rprog is the impedance into the Prog [7]. Using Equation 12, and 

500 mA as the desired charge current, Rprog was found to be 1.5 kΩ. The charge current is also regulated 

by HPWR port. When it is set to 3.3V, the charge current is IC and when it is set to 0 V, the charge 

current becomes 100 mA. This signal is controlled by the microcontroller. The results for this circuit and 

testing procedure are summarized in Section 3.3. 

2.5 Microcontroller and Processing 
The MSP430F6xx and F5x series has built in USB port capability. There is no need for an external JTAG or 

OTG chip to interface USB to SPI or UART with the MCU. The MSP430F6635 was chosen as our MCU due 

to the number of SPI connections available as well as extended memory capabilities. The design of the 

resistors and capacitors is explained in detail in [8] and [9]. A snip from the schematic is shown in Figure 

11 from the USB interface circuit.  

The crystal is necessary to control the USB 2.0 transfer rate. The faster the crystal, the faster the USB 2.0 

can transfer data. Data rate is not really a concern with our application, therefore a 4 MHz crystal was 

chosen to reduce power consumption. The USB power line will come directly from the Power System 

section. The diode is there to ensure that current is not driven back to the power system/USB per USB 

2.0 specifications, [8]. The capacitor values were selected from the suggested values listed in the 

datasheet in [9]. Electrostatic discharge protection is provided by the TPD2E001 chip shown connected 

to the data lines of the USB. The switch is used to indicate to the MCU that it should expect to be 

programmed from USB. 

 SPI was used to connect the MCU with the heart rate sensor and DSP with independent SPI 

ports on the MCU with the MCU being the master in both instances, the temperature sensors were 

connected to the MCU ADC10 channels, and the GPIO ports were used for the lines to the IC charger and 

User Interface. 

 Originally, the design did not have a DSP component. After researching the complexities of the 

speech algorithms, it was decided that a separate component was necessary. The requirements were 

low footprint, 3.3 V power and moderate current draw. The dsPIC33EP512GM304 was selected as the 

DSP because it met the requirements with only 44 pins. The amplified microphone out was connected to 
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the ADC12 input and the voltage reference was inputted into the default port. The schematics for the 

MCU and DSP are depicted in Appendix A. 

 

 

Figure 11. USB to MCU Connection 

the ADC12 input and the voltage reference was inputted into the default port. The schematics for the 

MCU and DSP are depicted in Appendix A. 

2.6 Emotion Classification  
The emotion detection algorithm is the way our machine will be able to determine what emotion the 

user is feeling. It contains a few steps throughout our device; first, in the sensor block, the data from 

each specific sensor is processed and the features we want are extracted in our digital signal processor. 

Next, these features are sent to our microcontroller, from where we classify what emotions the user is 

feeling from the data we just received. After an emotion is determined, that data is then sent to our 

user interface block where the emotion is displayed onto our LCD screen. 
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2.6.1 Data Set 

After extensive research, it was decided that the data points we would use were speech, heart rate, and 

skin temperature. The main factors behind this decision were that these were the data points that had 

the most impact on emotion detection while being the most portable and easy to fit into a wrist band. 

The heart rate and skin temperature sensors would fit right into the band and press against the skin, 

while the microphone would face the user and pick up any speech data from the user.  

 For the emotion detection algorithm to work, we need a training set with which we can 

compare the user data with to determine the current emotion. Mordkovich et al, a group which 

achieved ~85% accuracy with their emotion detection from speech algorithm, used the Emotional 

Prosody Speech and Transcripts obtained from the Linguistic Data Consortium. With such promising 

results, we decided to develop our algorithm with the same training set [10]. However, we were not 

able to find the complete data set online, so we are using a couple samples from the data set at the 

moment. We were also unable to find a suitable emotional biosensor dataset.  We believe that finding a 

full dataset with more samples will greatly increase the accuracy of our algorithm. 

2.6.2 Feature Extraction 

When our microphone receives a speech signal, we want to keep only the features of the signal that 

best describe the emotion the user is feeling. According to multiple papers on the topic, the mel-

frequency cepstral coefficients (MFCCs for short), the pitch, and the deltas of those features most 

accurately represent the frequencies of a speech signal. These features proved to be sufficient for our 

purposes, though more features such as pulsing and jitter of the speech signal would have improved our 

accuracy. 

2.6.2.1 Mel-Frequency Cepstral Coefficients 

The mel-frequency cepstral coefficients (MFCCs) are a feature set widely used in speech processing. It 

involves calculating the power spectrum of the speech signal, and converting that to the mel scale using 

Equation 13, then taking the logarithm of those energies, and finally the discrete cosine transform of the 

log energies. What this serves to do is create a representation of the speech signal on a scale that is 

similar to the signals our ears receive when we hear somebody talk. The mel-scale helps relate the pitch 

of a signal to its actual measured frequency, and since humans are better at discerning changes in pitch 

at low frequencies, this scale makes our signal better match what a human ear would hear [12] . The 

formula for converting to the mel-scale is  

 (13) 

where f is the frequency we want to convert to the mel-scale [12]. 

2.6.2.2 Pitch 

The pitch of a speech signal commonly refers to the fundamental frequency of the speech signal. This 

correlates to how high or low a person’s voice sounds, and contains speaker specific information [13]. 

However, if we analyze the pitch of the speaker in specific intervals, we are able to see the changes in 

pitch corresponding to their emotion. For example, an excited person might raise their pitch when 

speaking, while a bored person’s pitch will drop slightly below their normal pitch. A graph depicting the 

pitch contour is shown in Figure 12, taken from a random segment of speech from our data set. 
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Figure 12. Pitch Contour Plot 

In order to calculate the pitch, we use the autocorrelation method to find the fundamental 

frequency of the speech signal. The autocorrelation of the speech signal is found by  

 

(14) 

where τ  is the time delay and x(t) is the speech signal [14]. 

The autocorrelation function takes a signal, and multiplies it by a time delayed version of the 

same signal. The time delayed signal is then delayed again, until the whole signal has been shifted 

through once. The resulting graph shows how much the signal correlated with itself at each time delay. 

The first peak of the autocorrelation sequence corresponds to the zero lag signal, so it will always have 

the highest amplitude. Since speech can be treated as a periodic signal in short segments [13], the signal 

will roughly repeat itself at a certain time delay, which is represented in the autocorrelation sequence as 

the second largest peak. This is the fundamental frequency or pitch of the speech signal. A graph 

depicting a voice signal and the auto correlation sequence is shown in Figure 13. 
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Figure 13. The top graph shows a speech signal, and the bottom graph shows the autocorrelation sequence. At time delay 0, 
we can see the highest peak of the signal, since we are correlating a signal with itself. At approximately 5 ms, we can see the 

second larges 

2.6.2.3 Deltas 

The deltas of the above features represent the change in those features over time. This shows us the 

speed of the speech and the rate at which the pitch is changing. This is useful because the rate of speech 

and pitch can tell us useful information about the user’s emotion. For example, if the user is excited, the 

rate of speech will go up, while if the user is bored, the rate of speech will drop back down to normal 

levels. The formula we used to calculate the deltas is  

 

(15) 

 

where N is the window size, and t is the frame count [12]. 

2.6.2.4 Biosensor Data 

For the heart rate and skin temperature data, we take the mean of the raw signals and the standard 

deviation of the raw signals. This data can help characterize an emotion based on how fast a heart is 

beating or how warm their skin feels. For example, if the user is excited, the heart rate will increase, or if 

the user is frightened, their skin temperature will usually decrease. We were not able to find a good 

data set with enough samples to train a sufficient model for biosensor readings based on emotion, so 

we were not able to test how well our biosensor features categorized emotion. 

2.6.3 Support Vector Machines 

For our classification method, we chose support vector machines (SVM). SVM is a machine learning 

algorithm that tries to find the maximum distance plane between 2 or more classes. Once this plane 
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(can be linear or non-linear) is found, any new data that we want to test is compared with the plane to 

see which side the new test data falls under. For multi-class problems, we use the one vs one strategy, 

where our test data is compared with every pair of classes to see which class the test data is closest to. 

Another common method is the one vs rest strategy, where each class is trained against all the rest of 

the classes combined. The winning class is then picked by which training plane is closest to the test 

point. The maximum distance plane is found by optimizing the following equation  

 

 
 

(16) 

where x is the label vector, y is the feature vector, and w is the normal vector to the hyperplane [15]. 

The kernel parameters will be optimized in a following step. To better illustrate the maximum distance 

plane separating two classes, Figure 14 shows a binary SVM. The hyperplanes H1 and H2 represent the 

boundary of class 1 and 2 respectively. We then find the maximum distance between those two lines to 

find our hyper plane. 

 

Figure 14. Maximum distance boundary plane between two classes [16] 

 

2.6.3.1 Procedure 

In order to speed up our testing process, we used an open source library LIBSVM [17]. This library 

provides functions that help us train our classifiers, and also predict what class a test speech segment 

falls under. Before training our feature sets, we first scaled the features so that the whole feature set 

was within [-1, 1]. This prevents features in a larger numeric scale from dominating features in a smaller 

numeric scale. Scaling was done with  

 

(17) 
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where [A,B] is the range we are converting from, and [C,D] is the range we are scaling to. In our case, 

[C,D] is equal to [-1,1]. It is important to remember to scale both the training set features and the 

testing set with the same constant for the most accurate result. 

Next, we pick a kernel, which maps our feature vectors into a higher dimensional space. We 

picked the Radial Basis Function kernel (RBF) because it non-linearly maps our feature vectors into a 

higher dimension. That way, our kernel will still be able to map a plane if the maximum distance 

between two classes is nonlinear [15]. The equation for the RBF kernel is 

 
(18) 

where x are the training vectors and  is a kernel parameter [15]. 

Once we have our kernel picked, LIBSVM has a function svmtrain that trains the scaled feature 

data. We then pass in our test feature vectors for a classification result. As of now we have not 

optimized the kernel parameters for the training function, but that is something we can do in the future 

to improve our accuracy. 

2.6.4 Classification 

The data set we used provided us with speech samples for 15 emotions: hot anger, panic, anxiety, 

disgust, sadness, contempt, cold anger, shame, despair, boredom, neutral, elation, pride, interest, and 

happy. Our initial tests classified each individual emotion with a result of 27.53% accuracy. While this 

result was better than guessing randomly between the 15 emotions, we wanted a better result from our 

algorithm. 

With the same data set, Mordkovich et al tested the accuracy of the data set using grouped 

emotions for better results [10]. Since emotion can be classified in two dimensions by valence 

(positivity) and arousal (excitability), we are able to split the emotion into a two dimensional space as 

shown in Table 3. We tried the same emotion grouping, and labeled each emotion group in Table 3 as its 

own emotion category. Using these new emotion groups as the classes, the accuracy of our algorithm 

increased to 42.53%. This is testing between 6 different classes, so our results were slightly better than 

random. 

 

           Table 3. Emotion Classification by Arousal/Valence [10] 
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In order to further improve the accuracy of our algorithm, we treat the emotion classification as 

a two dimensional binary problem. Instead of classifying individual groups of emotions in Table 3, we 

first test whether an emotion is classified as high valence or low valence. Then we test whether the 

emotion is classified as high arousal or low arousal. In this way, we can predict the valence and arousal 

values of an emotion and be able to guess which emotion group it belongs in. Using these new arousal 

and valence classes, we achieved approximately 66.9% accuracy along the valence axis and 

approximately 71.8% accuracy along the arousal axis. 

3. Design Verification 

3.1 Data Collection 

3.1.1 Microphone 

The microphone functionality was verified with an electret microphone because the MEMS microphone 

had some complications with soldering to the board. The gain was adjusted to 8 V/V due to the electret 

output amplitude. The DC offset parameter was verified with DC coupling on the oscilloscope and the 

gain parameter was verified by comparing the amplitude of the input signal with the amplitude of the 

output signal with AC coupling. 

3.1.2  Temperature  

The temperature sensing module functionality was verified by using an external thermometer. The 

calculated value from the microcontroller is printed out and the values were cross verified. The results 

showed that the thermistors are working. The circuit is also tested by placing hand over the thermistor, 

and seeing if the reading changes as expected.  

3.1.3 Heart Rate monitor 

The functionality of the Heart Rate monitor was not verified because of problem concerning the SPI 

connection with the microcontroller. During debugging process, the first microcontroller was burnt, and 

the SPI communication stopped on the second microcontroller. It is concluded that the second 

microcontroller fails on SPI connection because no clock signal was seen on the oscilloscope, therefore, 

signals were not able to be shifted in and out of the microcontroller. To verify the soldering of the AFE 

chip on the PCB, multimeter was used to detect for short circuits, and none were detected. The AFE also 

has sign of life after powered on, which was verified using suggestions from the Texas Instruments 

website. [11] 

3.2 User Interface 

3.2.1 LCD Display 

The LCD Display uses a 16x2 LCD. The functionality of this LCD is verified by writing strings of word in the 

microcontroller and see if the display outputs the design words. This function worked as expected. One 

of the pins on the LCD Display adjusts the brightness of the backlight based on the voltage input, instead 

of using a potentiometer for this pin, a 1kΩ resistor is used between power supply and this pin to 

provide a suitable brightness.  
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 This component  is tested again after the switch is implemented, the words display is reset and 

does not distort after power supply turned off and on.  

 

Figure 15. Words display on LCD Screen 

3.2.2 LED Light Indicator 

The LED lights were first tested its individually for the functionality. After seeing that the LED lights light 

up and does not overheat over a long period of time then it is tested to see if it lights up in the right 

order as corresponds to the LCD. This component  is tested again after the switch is implemented, the 

words display is reset and does not distort after power supply turned off and on.  

3.2.3 Switch 

The switches were verified using a power supply and multimeter. The multimeter set to voltage reading 

and is connected to the output of the switch. The result is as expected, output is 3.2V ±0.1V when the 

switch is at high, and 0V when low. It is also then connected to an oscilloscope to observe any 

debouncing behavior and it is not noticeable on the oscilloscope and did not affect functionality of 

circuit.  

3.3 Power Systems 
The voltage ripple was verified by connecting a two watt 33 Ω resistor as the load across the 3.3V output 

line, to simulate 100 mA current draw. The signal across the resistor was measured with AC coupling on 

the oscilloscope to measure the peak to peak voltage, which was approximately 100 mVpp. The DC 

signal was observed with a multimeter under the 100 mA load. The charge current was tested for both 

100 and 500 mA, utilizing  two Watt 40 Ω and 8 Ω resistors, respectfully, in series with a 100 Ω 15 turn 

potentiometer. The potentiometer was adjusted such that the voltage across the series capacitors went 

over 4.1 V and charging was observed to stop.  

3.4 Microcontroller and Processing 
The MCU was capable of being programmed through the USB and was able to turn on LEDs and accept 

switch input signals. The DSP was programmable with pickit3 and was able to accept data from the 

microphone as well as turn on LEDs. The SPI communication failed to work between the MCU and DSP, 

because the master clock was not being generated by either chip. Failure of the SPI made algorithm 

integration not possible. 

3.5 Emotion Classification 
In order to test our emotion detection by speech algorithm, we used a v-fold cross validation method. 

We first divide our data set into v subsets of equal size. Then for each subset, we train the remaining v-1 

subsets and test the subset we left out against this classifier. We do this v times, until each subset has 

been tested once. The accuracy of this is then averaged over all v cases to find the overall accuracy of 

our algorithm.  
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 Using 5-fold cross validation, we achieved approximately 66.9% accuracy along the valence axis 

and approximately 71.8% accuracy along the arousal axis. We created confusion matrices shown in 

Table 4 to further analyze the performance of our algorithm. Each column contains our predicted 

classes, which is the class our algorithm picked, while each row contains the actual class the emotion fell 

under. In this way we can observe any bias in our algorithm and see if any class is favored over the 

other. We also calculated sensitivity and specificity values for high valence and high arousal in Table 5 to 

show the performance of our algorithm. 

Table 4. Confusion Matrixes for Valence and Arousal 

 Predicted High Valence Predicted Low Valence 

Actual High Valence 32 48 

Actual Low Valence 5 75 

 

 Predicted High Arousal Predicted Low Arousal 

Actual High Arousal 41 23 

Actual Low Arousal 13 51 

 

From Table 4, we observe that our algorithm tends to pick the low valence class over the high 

valence class. The algorithm will only classify correctly 40% of the time when the emotion is high 

valence, but will classify correctly 93.75% of the time when the emotion is low valence. This could be 

due to our small number of training samples in our data set, or the features we choose to extract. In the 

future, we can include more features to extract from speech to try and improve the accuracy of our 

algorithm. 

 We can also see that our algorithm slightly favors the low arousal class over the high arousal 

class. The second confusion matrix in Table 4 shows that our algorithm will classify correctly when the 

emotion is high arousal 64.1% of the time, and will classify correctly when the emotion is low arousal 

79.7% of the time. While these values are not ideal, they form a good basis from which to improve in the 

future. 

Table 5. Statistical Measures of Performance for Valence/ Arousal 

 
Sensitivity Specificity Precision 

Negative 
Predictive Value 

High Valence 40.00% 93.75% 86.50% 61.00% 

High Arousal 64.10% 79.70% 75.90% 68.90% 

4. Costs  

4.1 Parts 
Table 9 is the parts cost table and is listed in Appendix B due to its size. It does not include breakout 

board parts or other prototyping costs. 



19 
 

 

4.2 Labor 
Table 6. Labor Cost Approximation 

Name Hourly Rate Total 
Hours(hr) 

Total ($) 
= 2.5*(Hourly Rate)*(Hours) 

Jonathan Fouk 30 150 11,250 

Matthew Palmer 30 150 11,250 

Vivian Tseng 30 150 11,250 

Total 
  

33,750 

 

4.3 Grand Total 
Table 7. Total Cost 

Section Total ($) 

Parts 83.20 

Labor 33,750.00 

Grand Total 33,833.20 

 

5. Conclusion 

5.1 Accomplishments 
We have successfully designed and tested most of the components in the project. The display module, 

biosensors, microphone and amplifying circuit, power supply all worked as designed. We were able to 

design an algorithm that can extract emotion information from speech, which is a great proof of concept 

to our project.  

5.2 Uncertainties 
Because of the malfunction with the SPI communication at the microcontroller, the digital signal 

processor's functionality could not be fully tested. The algorithm worked well in MATLAB, but since it 

could not be tested on the microcontroller, it is uncertain how accurate the functionality of the whole 

system is.  

5.3 Ethical considerations 
All members in the team are aware of the IEEE Code of Ethics. Our device is designed to help people 
with social disability express their emotions.  
 
1. to accept responsibility in making decisions consistent with the safety, health, and welfare of the 
public, and to disclose promptly factors that might endanger the public or the environment; 

 We will ensure that the power supply from the lithium polymer battery is connected safely and 
in addition we will monitor the temperature and shut down the device if the temperature of the 
battery is over 50 C.  

3. to be honest and realistic in stating claims or estimates based on available data;   
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 We will calculate the battery life of the device and report the battery life in the specifications as 
measured 

 We will test the device on different users and determine the percentage of accuracy our device 
is. We will not exaggerate the accuracy of the system in our final report.  

5.  to improve the understanding of technology; its appropriate application, and potential consequences;  
 This product helps us understand how our body react and changes with our changing emotion. 

We see a lot of potential future development in this product and growth by adding different 
combinations biosensors and having more advance audio processing technology.  

6. to maintain and improve our technical competence and to undertake technological tasks for others 
only if qualified by training or experience, or after full disclosure of pertinent limitations;   

 We are continuously seeking more in depth knowledge in the areas of engineering covered in 
this project. Research notes were taken throughout the process. 

7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to 
credit properly the contributions of others;   

 Through design review and TA meeting sessions, we take advice from our peer and mentors to 
improve the design of our system, and we will credit their contributions 

9. to avoid injuring others, their property, reputation, or employment by false or malicious action;   
 We will design a good algorithm for determining the user emotion, and if the detected result 

has a high percentage of uncertainty, it will inform the user. We will also state the limitations of 
the product for potential users.  

5.4 Future work 

5.4.1 Emotion Classification 

We want to further test our emotion classifier and improve the accuracy. This can be done by extracting 

and testing extra features from the speech and biosensor data. We also want to conduct more testing 

on the biosensor data and either find a data set that correlates emotion and biosensor data, or create 

our own data set. Then we can train a new model that includes more biosensor data. Finding a better 

speech data set will also help to improve the accuracy of our algorithm. 

5.4.2 Interfacing between modules 

The SPI between the microcontroller, heart rate module and the digital signal processor needs to be 

fixed. This will be done step by step, first testing the functionality of SPI with the microcontroller being 

the master and reading the signal output using an oscilloscope. This would help debugging and finding 

out what is wrong  before going too far.  
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Appendix A Requirement and Verification Table 
Table 8.   System Requirements and Verifications 

  Requirements Verification Verification 

status (Y or N) 

Power Supply a. Charge battery to 4.2 
V ± 1% with maximum charge 
current of 500 mA 
b. Supply 3.3V with 
ripple of +/- 0.20V with 150 
mA load. 
c. Supply 1.8V +/- 0.1 V 
to Vcc/2 

a. Use multimeter to measure 
voltage difference across battery while 
charging. Measure charge current with 
separate multimeter. When fully 
charged, record voltage across battery. 
b. Use multimeter oscilloscope to 
measure the voltage across the buck 
converter output. 

Y 
 
 
 
 
 

Y 

Microcontroller a. Print Text onto LCD 
display 
b. Correctly choose 
suggestion words to display 
onto LCD depending on the 
detected emotion 
c. Maximum 
microcontroller temperature 
will not exceed 60℃ when 
operating at 8 MHz 
 

a. Input strings of characters to 
microcontroller and test it’s ability to 
correctly display character on LCD 
b. Program test cases into the 
Microcontroller with every possible 
emotion, then analyze the suggested 
words and determine relevancy 
c. Use an external temperature 
sensor to measure the temperature of 
the microcontroller when in use, 
compare that to the internal 
temperature 

Y 
 
 
 

Y 
 
 
 

Y 

DSP a.  ADC correctly reads and 
converts values 

b. DSP can communicate with 
the MCU through SPI 

c. Extracts mel-frequency 
coefficients, pitch, and 
the deltas of the speech 
signal 

a.  Connect photoresistor to ADC and 
check that bright light and low light 
are accurately converted to values 
between -1 and 1 

b. Send a specified value across SPI to 
the MCU and display that value on 
the PC 

c. Send test speech signal into DSP to 
extract features, then compare 
feature vectors with the results in 
MATLAB 

Y 
 
 
 
 

N 
 
 

N 

Temperature 
Sensor 

a. Determine 
temperature of skin with an 
accuracy error < ±1.0C 
 

a. Using an external temperature 
sensor (thermometer), compare 
temperature readings and the difference 
is less than   ±1.0 C 

Y 

Heart Rate 
Sensor 

a. Determine the heart 
rate (Beats per minute) of 

a. Compare heart rate from sensor 
with an external heart rate monitor and 

N 
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user with an accuracy of 95% 
i. accurate SPI 

communication between chip 
and MCU 

calculate percentage error of our HRM 

Microphone/ 
Audio  

a. Able to record sound 
from 1 cm distance and filter 
out noise 
b. Output Waveform DC 
offset is 2.0V ± 0.2 V from 
amplifier stage. 

i. Amplitude gain for 
amplifier must be 10±2 V/V 
for a frequency sweep from 
20 Hz to 10kHz 

a. Hold microphone 1 cm from 
mouth and speak in a regular tone.  
b. Use signal generator to create a 
25 mVrms sinewave w/ 0.8 V offset and 
frequency sweep from 0 Hz to 10 kHz. 
Input that into the amplifier stage and 
record the output. Check the output 
offset. 

i. Record the microphone output 
for a 80 dB noise with frequency 
between 20 Hz and 22 kHz.  

ii. From b check the gain as the 
signal generator’s frequency is swept to 
10 kHz from 20 Hz. 

Y 

Display a. LCD display words 
that are preloaded onto the 
microcontroller 
b. LED light display will 
be on or off depending on a 
signal from the 
Microcontroller 

a. Program the display to show 
characters on display 
b. Send on and off commands to 
the LED to check if it turns on and off 

Y 

Switches a. When ON state, the 
buck and LDO converters 
output 3.3V and 1.8V 
approximately. 

a. Connect multimeter to 3.3V line 
and 1.8V line, read output when switch 
is set to off and switch is set to on . 

Y 

Emotion 
Classification 
Algorithm 

a.   Identifies emotion with an 
accuracy of 60% along 
the valence and arousal 
axes 

 

a.   Perform cross validation with the 
data set for binary valence and 
count number of correct 
classifications 

b.  Perform cross validation with the 
data set for binary arousal and 
count number of correct 
classifications 

Y 
 
 
 

Y 
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Appendix B  Detailed Parts Cost Table 
Table 9.  Parts Costs 

Item Part number Quantity Bulk Purchase 
Cost ($) 

Actual Cost ($) 

Resistors (Surface Mount) - 30 0.20 6.00 

Capacitors (Surface mount) - 50 0.20 10.00 

Slide Switch NKK switches MS13ANW03 3 3.84 11.52 

Thermistor PS103J2 2 3.19 6.38 

Heart Rate Monitor AFE4400 1 8.42 8.42 

Green LED APL3015MGC 1 0.58 0.58 

photodiode QSB34CGR 1 1.05 1.05 

Display LEDs - 3 0.25 0.75 

NPN Transistor DSC2A01T0L 1 0.06 0.06 

Microphone InvenSense ICS-40300 1 3.50 3.50 

LCD Display Basic 16x2 Character LCD 1 14.95 14.95 

MCU MSP430F6635 1 5.39 10.78 

DSP dsPIC33EP512G304 1 3.15 6.84 

ESD EPD 1 0.07 0.45 

CoinCell Battery 3 V 10mm Coincell P031-ND 1 0.57 1.10 

Op-Amp LM321 1 0.10 0.61 

CoinCell Holder Keystone Coil Cell Battery 
Holder 

1 0.02 0.10 

USB Connector Conn USB MICRO B SMT 1 0.23 0.46 

LiPo Battery 650 mA 3.7 V LiPo Battery 1 17.46 17.46 

IC Charger LTC3553 1 2.73 3.22 

  Total 53.15 84.20 
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Appendix C  Circuit Schematics 

 

Figure 16. Microcontroller Schematic 
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Figure 17. Digital Signal Processor Schematic 

 

Figure 18. AFE4400 Chip and LCD display circuit schematic 
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Figure 19. LiPo Charger, part of IOBoard 
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Figure 20. Microphone and OP Amp with LED circuits 
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Appendix D  PCB Layout 

 

FIGURE_F5. Bottom Board layout 

Appendix E  Codes  
 

%% Emotion Detection 

%written by Jonathan Fouk 

%init libraries 

%suppress nonIntegerIndex warnings 

warning_id = 'MATLAB:colon:nonIntegerIndex'; 

warning('off',warning_id); 
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%% extract dataset 

display('Extracting speech segments...'); 

[speech_set, Fs] = read_audio_data('Data'); 

display('Dataset extracted!'); 

 

%% feature extraction 

display('Extracting features...'); 

speech_set = extract_features(speech_set,Fs); 

display('Features extracted!'); 

 

 

%% convert to libsvm format 

[all_labels, all_attributes, speech_set] = export_as_libsvm(speech_set, 

'data_set.txt'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

function [audioVector,Fs ] = read_audio_data( file_directory ) 

%read_audio_data  

%   opens up file_directory and extracts all data into 2 cells 

%   audioVector: contains audio data 

%   Fs: contains frequency data 

 

%% Extract Audio Features 

orig = pwd; 

cd(file_directory);  

 

[audio, Fs] = audioread('LDC2002S28.wav'); %read the audio data 
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fileID = fopen('LDC2002S28.txt'); 

 

% process text 

%data contains start time in data{1,1}, end time in data{1,2}, and category 

%in data{1,3} 

data = textscan(fileID, '%f %f A: %s %*[^\n]', 'HeaderLines', 1); 

copy = cell(size(data)); 

%check string to clean up unnecessary lines 

numSamp = size(data{1,1},1); 

iter = 1; 

for i = 1:numSamp 

    string = data{1,3}{i}; 

    if not((string(1) == '[') || (string(1) == '(')) 

        temp = strsplit(string,','); 

        copy{1,1}{iter,1} = data{1,1}(i); 

        copy{1,2}{iter,1} = data{1,2}(i); 

        copy{1,3}{iter,1} = temp(1); 

        iter = iter + 1; 

    end 

end 

 

numSamp = size(copy{1,1},1); 

%extract speech from text 

%ex of how to pull out a slice of audio 

%test_sample = audio(42.26*Fs:43.28*Fs); 

audioVector = cell(numSamp,2); 

for i = 1:numSamp 

    start_time = (copy{1,1}{i}); 

    end_time = (copy{1,2}{i}); 

    speech = audio(copy{1,1}{i}*Fs:copy{1,2}{i}*Fs); 

    audioVector{i,1} = copy{1,3}{i}; 

    audioVector{i,2} = speech; 

end 

 

 

cd(orig); 

 

 

 

 

 

 

function [ set] = extract_features( set,Fs ) 

%extract_features  

%   extracts mfcc, pitch, deltas, mean and covariance 

 

% calculate features 

 

for i = 1:size(set,1) 

    %disp(['length of set = ', num2str(length(set))]) 

    speech = set{i,2}; 

     



33 
 

    %calculate mfcc 

    mfcc = melfcc(speech,Fs, 'wintime',0.025, 'hoptime', 0.01); 

    mm = mfcc(2:13,:);          %omit first coeff 

    set{i,3} = mm; 

     

    %calculate pitch 

    [t, f0, avgF0] = pitch(speech,Fs); 

    set{i,4} = f0; 

     

    total = [mm;f0]; 

     

     

    %calculate delta 

    d = deltas(total,5); %window size of 5 

    total = [total;d]; 

    set{i,5} = total; 

   % disp(['i = ',num2str(i)]) 

     

    %flatten the matrix 

    flattened = reshape(total,[],1); 

    set{i,6} = flattened; 

     

    %calculate mean and variance 

    total_matrix = []; 

    temp_vector = []; 

    for j = 1:5:size(total,2) 

        endex = j + 10 -1; 

        if endex > size(total,2) 

            endex = size(total,2); 

        end 

        means = mean(total(:,j:endex),2); 

        vars = var(total(:,j:endex),0,2); 

        temp_vector = [means;vars]; 

        total_matrix = [total_matrix, temp_vector]; 

    end 

    set{i,9} = total_matrix; 

         

     

end 

 

end 

 

 

 

%Arousal Test 

%% Cross-validation 

results = {}; 

answer = []; 

expected = []; 

accuracies = []; 

answer_confidence = []; 

confusion_matrix_arousal = zeros(2,2); 

 

correct = 0; 
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tests = 0; 

%read in scaled data 

%[label_vector, instance_matrix] = libsvmread('training3.scale');  

 

%randomize order 

new_order = randperm(length(speech_set)); 

 

arousal_set = speech_set(new_order,:); 

 

%equalize training sets 

%equalize training sets 

second_set = {}; 

one_set = {}; 

rm_idx = []; 

count = 0; 

idx = 1; 

idx2 = 1; 

for i = 1:length(arousal_set) 

    if unique(arousal_set{i,11} == 2) 

        if count < 139 

            second_set(idx,:) = arousal_set(i,:); 

            rm_idx = [rm_idx i]; 

            count = count + 1; 

            idx = idx + 1; 

        end 

    elseif unique(arousal_set{i,11} == 1) 

        one_set(idx2,:) = arousal_set(i,:); 

        idx2 = idx2 + 1; 

    end 

end 

 

%remove 0 class 

for i = 1:length(arousal_set) 

    if i > length(arousal_set) 

        break; 

    end 

    if unique(arousal_set{i,11} == 0) 

        rm_idx = [rm_idx i]; 

    end 

end 

arousal_set(rm_idx,:) = []; 

%remix 

new_order = randperm(length(arousal_set)); 

arousal_set = arousal_set(new_order,:); 

 

zero = 0; 

one = 0; 

two = 0; 

for i = 1:length(arousal_set) 

    if arousal_set{i,11}(1) == 0 

        zero = zero + 1; 

    elseif arousal_set{i,11}(1) == 1 

        one = one + 1; 

    else 

        two = two + 1; 

    end 

end 
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display([num2str(zero),' classified as 0']); 

display([num2str(one),' classified as 1']); 

display([num2str(two),' classified as 2']); 

 

%split into groups 

N = 5; 

start_index = 1; 

 

i = 1; 

 

%check to see if at end of features 

for i = 1:N:length(arousal_set) 

%for i = 1 

    end_index = i+N-1; 

    if end_index > length(arousal_set) 

        end_index = length(arousal_set); 

    end 

    test_set = arousal_set(i:end_index,:); 

    training_set = arousal_set; 

    training_set(i:end_index,:) = []; 

     

     

    display('Exporting data_set..'); 

    test_labels = vertcat(test_set{:,11}); 

    test_instances = vertcat(test_set{:,8}); 

 

    training_labels = vertcat(training_set{:,11}); 

    training_instances = vertcat(training_set{:,8}); 

 

    libsvmwrite('arousal_test_set.txt',test_labels,test_instances); 

    

libsvmwrite('arousal_training_set.txt',training_labels,training_instances); 

 

    %scale 

    display('Scaling...'); 

    [status, cmdout] = unix('../libsvm-3.20/svm-scale -s arousal_scaling 

arousal_training_set.txt > arousal_training_set.scale'); 

    if(status) 

        display('scaling failed!'); 

        break; 

    end 

    [status, cmdout] = unix('../libsvm-3.20/svm-scale -r arousal_scaling 

arousal_test_set.txt > arousal_test_set.scale'); 

    if(status) 

        display('scaling failed!'); 

        break; 

    end 

    display('Scaling complete!'); 

 

 

    %training 

    display('Training...') 

    [training_labels, training_instances] = 

libsvmread('arousal_training_set.scale');  

    model = svmtrain(training_labels,training_instances); 

    display('Trained!'); 
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    %testing 

    display('Testing...'); 

    [testing_labels, testing_instances] = 

libsvmread('arousal_test_set.scale'); 

    display('Predicted!'); 

    [predicted_label, accuracy, decision_values] = svmpredict(testing_labels, 

testing_instances, model); 

    accuracies = [accuracies;accuracy(1)]; 

    %% Accuracy 

    startdex = 1; 

 

    for j = 1:size(test_set,1) 

        enddex = startdex + size(test_set{j,9},2)-1; %sparse matrices 

        group = predicted_label(startdex:enddex); 

        total = 0; 

        for k = 0:14 

            results{j,k+1} = length(find(group == k)); 

            total = total + results{j,k+1}; 

        end 

        answer = [answer; mode(group)]; 

        answer_confidence = [answer_confidence; 

results{j,mode(group)+1}/total]; 

        expected = [expected; testing_labels(startdex)]; 

         

        if testing_labels(startdex) == mode(group) 

            correct = correct + 1; 

        end 

        confusion_matrix_arousal(testing_labels(startdex),mode(group)) = 

confusion_matrix_arousal(testing_labels(startdex),mode(group)) + 1; 

        tests = tests + 1; 

        startdex = enddex + 1; 

         

    end 

    display(['Correct: ', num2str(correct), '\n Total: ', num2str(tests)]); 

end 

     

     
 

 

 

 

 

% Valence Test 

%% Cross-validation 

results = {}; 

answer = []; 

expected = []; 

accuracies = []; 

answer_confidence = []; 

correct = 0; 

tests = 0; 

confusion_matrix_valence = zeros(2,2); 
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%read in scaled data 

%[label_vector, instance_matrix] = libsvmread('training3.scale');  

 

%randomize order 

new_order = randperm(length(speech_set)); 

 

ordered_set = speech_set(new_order,:); 

 

%equalize training sets 

second_set = {}; 

one_set = {}; 

rm_idx = []; 

count = 0; 

idx = 1; 

idx2 = 1; 

for i = 1:length(ordered_set) 

    if unique(ordered_set{i,7} == 2) 

        if count < 90 

            second_set(idx,:) = ordered_set(i,:); 

            rm_idx = [rm_idx i]; 

            count = count + 1; 

            idx = idx + 1; 

        end 

    elseif unique(ordered_set{i,7} == 1) 

        one_set(idx2,:) = ordered_set(i,:); 

        idx2 = idx2 + 1; 

    end 

end 

 

%remove 0 class 

for i = 1:length(ordered_set) 

    if i > length(ordered_set) 

        break; 

    end 

    if unique(ordered_set{i,7} == 0) 

        rm_idx = [rm_idx i]; 

    end 

end 

ordered_set(rm_idx,:) = []; 

%remix 

new_order = randperm(length(ordered_set)); 

ordered_set = ordered_set(new_order,:); 

 

zero = 0; 

one = 0; 

two = 0; 

for i = 1:length(ordered_set) 

    if ordered_set{i,7}(1) == 0 

        zero = zero + 1; 

    elseif ordered_set{i,7}(1) == 1 

        one = one + 1; 

    else 

        two = two + 1; 

    end 

end 

display([num2str(zero),' classified as 0']); 
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display([num2str(one),' classified as 1']); 

display([num2str(two),' classified as 2']); 

 

%split into groups 

N = 5; 

start_index = 1; 

 

i = 1; 

 

%check to see if at end of features 

for i = 1:N:length(ordered_set) 

%for i = 1 

    end_index = i+N-1; 

    if end_index > length(ordered_set) 

        end_index = length(ordered_set); 

    end 

    test_set = ordered_set(i:end_index,:); 

    training_set = ordered_set; 

    training_set(i:end_index,:) = []; 

     

     

 

    test_labels = vertcat(test_set{:,7}); 

    test_instances = vertcat(test_set{:,8}); 

 

    training_labels = vertcat(training_set{:,7}); 

    training_instances = vertcat(training_set{:,8}); 

 

    libsvmwrite('test_set.txt',test_labels,test_instances); 

    libsvmwrite('training_set.txt',training_labels,training_instances); 

 

    %scale 

    display('Scaling...'); 

    [status, cmdout] = unix('../libsvm-3.20/svm-scale -s scaling 

training_set.txt > training_set.scale'); 

    if(status) 

        display('scaling failed!'); 

        quit; 

    end 

    [status, cmdout] = unix('../libsvm-3.20/svm-scale -r scaling test_set.txt 

> test_set.scale'); 

    if(status) 

        display('scaling failed!'); 

        quit; 

    end 

    display('Scaling complete!'); 

 

 

    %training 

    display('Training...') 

    [training_labels, training_instances] = libsvmread('training_set.scale');  

    model = svmtrain(training_labels,training_instances); 

    display('Trained!'); 

 

    %testing 

    display('Testing...'); 

    [testing_labels, testing_instances] = libsvmread('test_set.scale'); 
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    display('Predicted!'); 

    [predicted_label, accuracy, decision_values] = svmpredict(testing_labels, 

testing_instances, model); 

    accuracies = [accuracies;accuracy(1)]; 

    %% Accuracy 

    startdex = 1; 

 

    for j = 1:size(test_set,1) 

        enddex = startdex + size(test_set{j,9},2)-1; %sparse matrices 

        group = predicted_label(startdex:enddex); 

        total = 0; 

        for k = 0:14 

            results{j,k+1} = length(find(group == k)); 

            total = total + results{j,k+1}; 

        end 

        answer = [answer; mode(group)]; 

        answer_confidence = [answer_confidence; 

results{j,mode(group)+1}/total]; 

        expected = [expected; testing_labels(startdex)]; 

         

        if testing_labels(startdex) == mode(group) 

            correct = correct + 1; 

        end 

        confusion_matrix_valence(testing_labels(startdex),mode(group)) = 

confusion_matrix_valence(testing_labels(startdex),mode(group)) + 1; 

        tests = tests + 1; 

        startdex = enddex + 1; 

 

    end 

    display(['Correct: ', num2str(correct), '\n Total: ', num2str(tests)]); 

end 

     

     
 

 

 

 

 

 

%% Voice test 

recObj = audiorecorder(Fs,8,1); 

disp('Start speaking.') 

recordblocking(recObj, 2); 

disp('End of Recording.'); 

y = getaudiodata(recObj); 

plot(y); 

voice = cell(1,2); 

voice{1,1} = {'happy'}; 

voice{1,2} = y; 
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%extract features 

display('Extracting features...'); 

voice = extract_features(voice,Fs); 

display('Features extracted!'); 

 

[voice_label, voice_instance, voice] = export_as_libsvm(voice,'voice.txt'); 

 

[status, cmdout] = unix('../libsvm-3.20/svm-scale -r scaling voice.txt > 

voice.scale'); 

if(status) 

    display('scaling failed!'); 

    break; 

end 

display('Scaling complete!'); 

[status, cmdout] = unix('../libsvm-3.20/svm-scale -r arousal_scaling 

voice.txt > arousal_voice.scale'); 

if(status) 

    display('scaling failed!'); 

    break; 

end 

display('Scaling complete!'); 

 

%testing 

display('Testing...'); 

[testing_labels, testing_instances] = libsvmread('voice.scale'); 

[arousal_testing_labels, arousal_testing_instances] = 

libsvmread('arousal_voice.scale'); 

display('Predicting...'); 

[v_predicted_label, v_accuracy, v_decision_values] = 

svmpredict(testing_labels, testing_instances, valence_model); 

[a_predicted_label, a_accuracy, a_decision_values] = 

svmpredict(arousal_testing_labels, arousal_testing_instances, arousal_model); 

 

va_accuracy = length(find(v_predicted_label == 

mode(v_predicted_label)))/length(v_predicted_label)*100; 

ar_accuracy = length(find(a_predicted_label == 

mode(a_predicted_label)))/length(a_predicted_label)*100; 

display(['Valence Voted: ',num2str(mode(v_predicted_label)), ', Confidence: 

',num2str(va_accuracy),'%']); 

display(['Arousal Voted: ',num2str(mode(a_predicted_label)), ', Confidence: 

',num2str(ar_accuracy),'%']); 
 

 

 


