

Emotional Intelligence Device

By

Jonathan Fouk

Matt Palmer

 Vivian Tseng

Final Report for ECE 445, Senior Design, Spring 2015

TA: Jacob Brian

6 May 2015

Project No. 41

ii

Abstract

Emotion detection was intended to be done with a combination of speech, heart rate, and skin
temperature sensors. The device was envisioned to be wearable and provide programmable text output
to the user via LCD screen as well as LED indicators for 4 emotional categories. Successes of the project
include meeting the design requirements for microphone, lithium-ion battery charging circuit, LCD
screen, LED lights, and speech accuracy. Design requirements were not met for SPI communication
between microcontroller and DSP chip, heart rate detection, implementation of speech
algorithm/system classifier on chips, and overall device size.

iii

Contents
1. Introduction .. 1

1.1 Statement of purpose ... 1

2. Design .. 1

2.1 Block Diagrams .. 1

2.2 Data Collection .. 2

2.2.1 Microphone .. 2

2.2.2 Temperature .. 6

2.2.3 Heart Rate Monitor .. 7

2.3 User Interface ... 7

2.3.1 LCD Display ... 7

2.3.2 LED light indicator .. 7

2.3.3 Switch ... 7

2.4 Power Systems .. 7

2.5 Microcontroller and Processing .. 9

2.6 Emotion Classification ... 10

2.6.1 Data Set .. 11

2.6.2 Feature Extraction .. 11

2.6.3 Support Vector Machines .. 13

2.6.4 Classification .. 15

3. Design Verification .. 16

3.1 Data Collection .. 16

3.1.1 Microphone .. 16

3.1.2 Temperature ... 16

3.1.3 Heart Rate monitor .. 16

3.2 User Interface ... 16

3.2.1 LCD Display ... 16

3.2.2 LED Light Indicator ... 17

3.2.3 Switch ... 17

3.3 Power Systems .. 17

3.4 Microcontroller and Processing .. 17

3.5 Emotion Classification ... 17

iv

4. Costs .. 18

4.1 Parts .. 18

4.2 Labor ... 19

4.3 Grand Total ... 19

5. Conclusion ... 19

5.1 Accomplishments .. 19

5.2 Uncertainties ... 19

5.3 Ethical considerations ... 19

5.4 Future work ... 20

5.4.1 Emotion Classification .. 20

5.4.2 Interfacing between modules .. 20

References .. 21

Appendix A Requirement and Verification Table ... 23

Appendix B Detailed Parts Cost Table .. 25

Appendix C Circuit Schematics ... 26

Appendix D PCB Layout .. 30

Appendix E Codes ... 30

1

1. Introduction

1.1 Statement of purpose
We live in a digital world where people can become lost in their devices, decreasing the daily amount of
personable social interaction. As a result, their communication skills deteriorate; specifically, their ability
to identify and express their own emotions in a constructive manner becomes more difficult. There are
also people with medical disorders that are unable to identify emotions in their peers, such as people
with autism.
 To address this problem, we designed a wearable device that will help people identify their
emotions, give the option to display their emotions, and provide constructive suggestions to the users to
help alleviate stressful social situations. Our device aims to help someone explore the root cause of their
feelings as well as offer the ability to display his/hers broad emotional state to help others identify with
him/her. This concept would allow people to effectively communicate their emotional state, leading to
less conflict on a daily basis and a better quality of life for all involved.

2. Design

2.1 Block Diagrams

Figure 1. High Level Block Diagram for System

Figure 2. Block Diagram Data Collection

2

Figure 3. Block Diagram User Interface

Figure 4. Block Diagram Power Supply

2.2 Data Collection

2.2.1 Microphone

The purpose of the microphone circuit is to record the speech, amplify the speech, and then pass it

through a filter. Table 1 lists the defining output characteristics of our microphone, the ICS-40300 from

its datasheet in [1]. From Table 1, the 94 dB SPL corresponds to the Vrms of speech spoken directly into

the microphone. Converting to Vpp, that is approximately 20 mVpp. Given that the DSPs have a 12 bit ADC

converter with 17 channels, the equation for finding the bit resolution is listed in Equation 1.

(1)

where ∆Vres is the voltage step a bit respresents, Vpp is the largest voltage peak-to-peak the ADC is set to

analyze, and n is the number of bits dedicated to the ADC. Utilizing this resolution and the maximum Vpp

amplitude of a person speaking into the microphone, we only use approximately 5 bits out of the 12 to

resolve the voice. An amplifier is required to increase the number of bits we can use to represent the

speech signal. From the datasheet in [2] a typical amplifier is suggested with an OP-AMP shown in

Table 1. Output Information for ICS-40300 Microphone

Output Impedance 200 Ω

Output DC Offset 0.8 V

1 kHz 94 dB SPL Maximum -43 dBV

3

Figure 5. . LTSpice Mic + OP-AMP Simulator and Circuit Diagram

Figure 5, but it requires a decoupling capacitor grounded to replace the Vref on IN- stage. The gain can be

approximated as shown in Equation 2. The chosen OP-AMP for this application was the LM321 which is a

single OP-AMP version of the LM324/NS, which has small phase noise and operates at 3.3 V. It's

datasheet is listed in [2].

(2)

where R1 and R2 correspond to the resistors R1 and R2 shown in Figure 5. The goal was to have an

amplification of approximately 50 due to the maximum speech signal being 20 mVpp. The output at 60

Hz is shown in Figure 6, where Vref is the voltage reference and MICIN is the simulated microphone

signal at 60 Hz.

Figure 6. LTSpice simulation of Figure 5 LTSpice Schematic with Green as the micin signal, blue as Vout, and red as Vref.

It is important to get the DC offset from the microphone circuit such that it is approximately

equal the reference voltage for the DSP. The reference voltage can be set using an input pin on the DSP

chips, which are depicted in the datasheet in [3].

4

In order to reduce the amount of computational responsibility of the DSPs, an analog filter was

implemented to reduce the DSP computational requirement. An analog implementation of MFCC filters

was investigated by [4], but required eight 4th order bi-quad filters or a custom IC chip to implement.

The bi-quad filters required too much area which resulted in the LPF being the only analog option to

decrease computational responsibility of the DSP, which is a third order LPF from OUT port to Vout shown

in Figure 5.

The first aspect of the filter that was considered is the impedance seen by the ADC12. According

to microchip's ADC guide in [5] for the 12 bit converter a maximum value of 2.5 kΩ should be used as

the input impedance into the DSP but to meet our samples per second requirement and provide some

flexibility in samples per second, 400 Ω is desired as the total filter impedance to the input. Each IIR filter

and bi-quad filter was analyzed, but each had a significant draw back in either area or phase noise,

which is supported by [6].

The standard RC filter was investigated with up to 4 cascades, 4th order, in MATLab due to its

robust phase noise through the passband. The frequency response requirements for the filter are an

attenuation of 20 dB at 10 kHz and a maximum of 0.5 ms delay. Due to the cascade and requiring an

output impedance of 400 Ω, the resistance value at each stage was found using

(3)

where Rcasc is the impedance at each stage, Rout is the total impedance of the filter, and n is the order of

the filter. Rcasc was used to find the stage capacitance with

(4)

where ω is the frequency in rad/s, Rout is the total filter impedance, C is the capacitance of each stage,

and n is the order of the filter. A 3rd order filter was found and its values shown in Figure 5 from

Equation 3 and Equation 4. The order of the filter is determined by the number of cascaded RC

equivalents, which have a magnitude calculated by

(5)

where ω is the frequency in rad/s, R is the resistance of each stage, and C is the capacitance of each

stage. A -6 dB cutoff with respect to the magnitude was desired at 8 kHz as well as a 0.5 ms time delay.

The time delay was calculated in MATLab with

(6)

where td is the time delay in seconds, φ(f) is the phaseshift at frequency f in radians, and f is the

frequency. Equation 5 and Equation 6 were used to calculate the magnitude frequency response and

time delay for first to fourth order filters shown in Figure 7 and Figure 8, respectively.

5

Figure 7. Magnitude Frequency Response of orders 1-4 Cascaded RC Filters

Figure 8. Time Delay (ms) vs Frequency of each Order Filter

From Figure 7 and Figure 8, it is clear that the 3rd order filter is a good compromise between all design

requirements previously mentioned for the filter. It uses a little more area and has a little more time

delay, but it is on approximately the same order as the 1st and 2nd time delays as well as having similar

attenuation as the 4th order filter. The speech frame of 25 ms and with a maximum phase delay of

approximately 0.1 ms for the 3rd order filter, the delay is less than 0.5% of the speech window.

Theoretically, we can assume approximately no time delay throughout the speech frequencies of

interest (< 8 kHz) with respect to the window. The frequency response and phase delay of the

microphone amplifier system from LTspice is shown in Figure 9.

6

Figure 9. Frequency Sweep Simulation of amplified and filtered output to the DSP. Dashed line and solid line are the phase
delay and magnitude response, respectively.

From Figure 9, it can be seen that we meet the requirements for time delay and amplification for most

of the frequency range. There is approximately 15 dB lost at 8 kHz, but this is acceptable because the

speech signal is mostly less than 1 kHz. Section 3.1.1 contains the test and verification procedure as well

as the results for the microphone circuit.

2.2.2 Temperature

The temperature sensor part make use of two thermistors. One thermistor will be measuring the

ambient temperature of the whole device, and the other will be in close contact with the user’s skin.

The thermistors are connected to the Analog Digital Converter (ADC) I/O port of the microcontroller.

The microcontroller will then calculate temperature with the input data at an interval of 1 seconds.

 The thermistor used in the project is US sensor PS103J2. This senor was chosen because of its

higher sensitivity compared to most other thermistors, it has an accuracy of ±0.1C. After reading in the

data through the ADC port of the microcontroller, a mathematical formula is used to calculate the

surrounding temperature. Equation 7 and Equation 8 were used to find the resistance of the thermistor

at the moment, and then Equation 9 is used to find the temperature at the given moment.

(7)

where R2 is the resistance of the resistor, R1 is the resistance of the thermistor, and Vin is the voltage

supplied, which will be 3.3V in this case. Vout is the voltage sent to ADC.

(8)

where Rthermistor is the resistance of the thermistor, and Vout is the voltage to the ADC pin.

(9)

7

where B is the thermistor parameter constant, Tn is the standard temperature (298.15K), RT is the

measured resistance of the thermistor, and RN is the standard resistance of the thermistor, 10kΩ in this

case.

 To increase the accuracy in this process, the value of the resistor in this circuit is measured with

a multimeter. The value of the resistor will be used for the final calculation of temperature in the

microcontroller. It is also found that there is a delay in reading the ADC value, this might due to the heat

retained inside and on the surface of the thermistor. This factor is noted in the final algorithm

implementation.

2.2.3 Heart Rate Monitor

The heart rate sensor uses an analog front end chip, AFE4400, to perform measurement and

computation of the heart rate of the user. This component communicates with the microcontroller using

Serial Peripheral Interface (SPI). The Master Out Slave In (MOSI), Master In Slave Out (MISO), Slave

Select (SS) and clock signal (SCLK) will be used for this interface. To calculate the heart rate, the three

beat average calculation as shown in Equation 10 is used and implemented in the microcontroller:

𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒 =
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 60 ∗ 3

𝑛𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 3 𝑏𝑒𝑎𝑡𝑠

(10)

where sampling frequency is determined in the code, and number of samples in 3 beats can be counted

by the microcontroller.

2.3 User Interface

2.3.1 LCD Display

The LCD screen uses a standard 16x2 LCD Display. There will be two rolls of text and 16 characters per

row. The display module is designed to display the calculated emotion state of the user. This LCD

display is designed to be placed at the bottom of the wrist of the user.

2.3.2 LED light indicator

Other than the LCD screen for display, the device is also designed to have 3 LED lights for display. They

will be used for a non-discrete display of emotion. The connection of these 3 LEDs are connected to the

microcontroller through General Purpose Input/ Output (GPIO) pins. An npn transistor will be used to

control the current to protect the microcontroller from burning out.

2.3.3 Switch

Slide Switches are used for turning things on and off in the design. A total of three switches are used in

our design. One is used for the LCD Display, one for the LED lights, and last one for the whole system.

Switches are connected to 3.3 V voltage supply and ground, with the middle pin connected to the

corresponding component.

2.4 Power Systems
The power system supplies the power to all of the modules in the device. Lithium-Ion Polymer (LiPo)

battery was chosen due to the extremely light weight as well as the energy capacity per unit volume.

There are some safety concerns, which are outlined in greater detail in Section 5.3. But, in order to help

8

mitigate any issues during operation, the LTC3553 buck convert and single cell LiPo charger was selected

because of its ability to monitor the temperature, voltage, and charge/discharge rate of the battery.

 Table 2 lists the power requirements for every component on the device. The mA-hr is

calculated for each device and the efficiency of the buck converter on the LTC3553 charger is used to

approximate the energy capacitance required for the battery. Ideally, the design requires a minimum life

of approximately 5 hours.

Table 2. Power Requirements

Component Operating Voltage Range Maximum Current

LEDs 3.3 V 30 mA

AFE Rx 3-5.25 V 25 mA

AFE Tx 2-3.6 V 0.67 mA

Microphone 1.5-3.63 V 0.22 mA

Temperature Sensor 3.3 V 0.65 mA

OLED Display 2.4 or 3.3 V 5 mA with backlight, 0.14 mA st

IC Charger 3.3 V 0.12 mA

MSP430F6635 MCU 1.8 to 3.6 V 1.84 mA @ 8 mHz

dsPIC33EP512 3 to 3.6 V 42 mA @ Maximum operation

Total mA @ 3.3 V: 105.5

From Table 2, it is observed that a LiPo battery with approximately 650 mA-hr at 3.7 V would power the

device for 5 hours. This assumes a 90% down conversion loss for 5 hours of operation without any

power conservation techniques. The Schematic for the IC charger is shown in Figure 10. The values for

the capacitors and NTC thermister were specified in the datasheet, shown in [7]. Ideally, the thermister

will rest on the LiPo battery while the device is in operation.

Figure 10. IC Charger Circuit for LiPo Battery

9

This IC charger a buck converter and LDO implemented with it. The LDO convert will be used to drive the

3.3 V line while the sw/buck_fb converter will drive the OP-AMP VCC/2 terminals at 1.7 V. The maximum

current from the combined LDO and buck terminals is 500 mA. The voltage for each terminal, while

referencing Figure 10, is set by

(11)

where Vbuck is the desired output voltage for LDO or buck converter, R1 is the resistor in parallel to the

capacitor(s) and R2 is the resistor in series from buck_FB to GND or from LDO_FB to GND terminals. The

calculated resistor values using Equation 11 are shown in Figure 10 for the buck and LDO converters. The

charge current is set by the resistor at the Prog terminal, which is given by

(12)

where Ic is the charge current in A, and Rprog is the impedance into the Prog [7]. Using Equation 12, and

500 mA as the desired charge current, Rprog was found to be 1.5 kΩ. The charge current is also regulated

by HPWR port. When it is set to 3.3V, the charge current is IC and when it is set to 0 V, the charge

current becomes 100 mA. This signal is controlled by the microcontroller. The results for this circuit and

testing procedure are summarized in Section 3.3.

2.5 Microcontroller and Processing
The MSP430F6xx and F5x series has built in USB port capability. There is no need for an external JTAG or

OTG chip to interface USB to SPI or UART with the MCU. The MSP430F6635 was chosen as our MCU due

to the number of SPI connections available as well as extended memory capabilities. The design of the

resistors and capacitors is explained in detail in [8] and [9]. A snip from the schematic is shown in Figure

11 from the USB interface circuit.

The crystal is necessary to control the USB 2.0 transfer rate. The faster the crystal, the faster the USB 2.0

can transfer data. Data rate is not really a concern with our application, therefore a 4 MHz crystal was

chosen to reduce power consumption. The USB power line will come directly from the Power System

section. The diode is there to ensure that current is not driven back to the power system/USB per USB

2.0 specifications, [8]. The capacitor values were selected from the suggested values listed in the

datasheet in [9]. Electrostatic discharge protection is provided by the TPD2E001 chip shown connected

to the data lines of the USB. The switch is used to indicate to the MCU that it should expect to be

programmed from USB.

 SPI was used to connect the MCU with the heart rate sensor and DSP with independent SPI

ports on the MCU with the MCU being the master in both instances, the temperature sensors were

connected to the MCU ADC10 channels, and the GPIO ports were used for the lines to the IC charger and

User Interface.

 Originally, the design did not have a DSP component. After researching the complexities of the

speech algorithms, it was decided that a separate component was necessary. The requirements were

low footprint, 3.3 V power and moderate current draw. The dsPIC33EP512GM304 was selected as the

DSP because it met the requirements with only 44 pins. The amplified microphone out was connected to

10

the ADC12 input and the voltage reference was inputted into the default port. The schematics for the

MCU and DSP are depicted in Appendix A.

Figure 11. USB to MCU Connection

the ADC12 input and the voltage reference was inputted into the default port. The schematics for the

MCU and DSP are depicted in Appendix A.

2.6 Emotion Classification
The emotion detection algorithm is the way our machine will be able to determine what emotion the

user is feeling. It contains a few steps throughout our device; first, in the sensor block, the data from

each specific sensor is processed and the features we want are extracted in our digital signal processor.

Next, these features are sent to our microcontroller, from where we classify what emotions the user is

feeling from the data we just received. After an emotion is determined, that data is then sent to our

user interface block where the emotion is displayed onto our LCD screen.

11

2.6.1 Data Set

After extensive research, it was decided that the data points we would use were speech, heart rate, and

skin temperature. The main factors behind this decision were that these were the data points that had

the most impact on emotion detection while being the most portable and easy to fit into a wrist band.

The heart rate and skin temperature sensors would fit right into the band and press against the skin,

while the microphone would face the user and pick up any speech data from the user.

 For the emotion detection algorithm to work, we need a training set with which we can

compare the user data with to determine the current emotion. Mordkovich et al, a group which

achieved ~85% accuracy with their emotion detection from speech algorithm, used the Emotional

Prosody Speech and Transcripts obtained from the Linguistic Data Consortium. With such promising

results, we decided to develop our algorithm with the same training set [10]. However, we were not

able to find the complete data set online, so we are using a couple samples from the data set at the

moment. We were also unable to find a suitable emotional biosensor dataset. We believe that finding a

full dataset with more samples will greatly increase the accuracy of our algorithm.

2.6.2 Feature Extraction

When our microphone receives a speech signal, we want to keep only the features of the signal that

best describe the emotion the user is feeling. According to multiple papers on the topic, the mel-

frequency cepstral coefficients (MFCCs for short), the pitch, and the deltas of those features most

accurately represent the frequencies of a speech signal. These features proved to be sufficient for our

purposes, though more features such as pulsing and jitter of the speech signal would have improved our

accuracy.

2.6.2.1 Mel-Frequency Cepstral Coefficients

The mel-frequency cepstral coefficients (MFCCs) are a feature set widely used in speech processing. It

involves calculating the power spectrum of the speech signal, and converting that to the mel scale using

Equation 13, then taking the logarithm of those energies, and finally the discrete cosine transform of the

log energies. What this serves to do is create a representation of the speech signal on a scale that is

similar to the signals our ears receive when we hear somebody talk. The mel-scale helps relate the pitch

of a signal to its actual measured frequency, and since humans are better at discerning changes in pitch

at low frequencies, this scale makes our signal better match what a human ear would hear [12] . The

formula for converting to the mel-scale is

 (13)

where f is the frequency we want to convert to the mel-scale [12].

2.6.2.2 Pitch

The pitch of a speech signal commonly refers to the fundamental frequency of the speech signal. This

correlates to how high or low a person’s voice sounds, and contains speaker specific information [13].

However, if we analyze the pitch of the speaker in specific intervals, we are able to see the changes in

pitch corresponding to their emotion. For example, an excited person might raise their pitch when

speaking, while a bored person’s pitch will drop slightly below their normal pitch. A graph depicting the

pitch contour is shown in Figure 12, taken from a random segment of speech from our data set.

12

Figure 12. Pitch Contour Plot

In order to calculate the pitch, we use the autocorrelation method to find the fundamental

frequency of the speech signal. The autocorrelation of the speech signal is found by

(14)

where τ is the time delay and x(t) is the speech signal [14].

The autocorrelation function takes a signal, and multiplies it by a time delayed version of the

same signal. The time delayed signal is then delayed again, until the whole signal has been shifted

through once. The resulting graph shows how much the signal correlated with itself at each time delay.

The first peak of the autocorrelation sequence corresponds to the zero lag signal, so it will always have

the highest amplitude. Since speech can be treated as a periodic signal in short segments [13], the signal

will roughly repeat itself at a certain time delay, which is represented in the autocorrelation sequence as

the second largest peak. This is the fundamental frequency or pitch of the speech signal. A graph

depicting a voice signal and the auto correlation sequence is shown in Figure 13.

13

Figure 13. The top graph shows a speech signal, and the bottom graph shows the autocorrelation sequence. At time delay 0,
we can see the highest peak of the signal, since we are correlating a signal with itself. At approximately 5 ms, we can see the

second larges

2.6.2.3 Deltas

The deltas of the above features represent the change in those features over time. This shows us the

speed of the speech and the rate at which the pitch is changing. This is useful because the rate of speech

and pitch can tell us useful information about the user’s emotion. For example, if the user is excited, the

rate of speech will go up, while if the user is bored, the rate of speech will drop back down to normal

levels. The formula we used to calculate the deltas is

(15)

where N is the window size, and t is the frame count [12].

2.6.2.4 Biosensor Data

For the heart rate and skin temperature data, we take the mean of the raw signals and the standard

deviation of the raw signals. This data can help characterize an emotion based on how fast a heart is

beating or how warm their skin feels. For example, if the user is excited, the heart rate will increase, or if

the user is frightened, their skin temperature will usually decrease. We were not able to find a good

data set with enough samples to train a sufficient model for biosensor readings based on emotion, so

we were not able to test how well our biosensor features categorized emotion.

2.6.3 Support Vector Machines

For our classification method, we chose support vector machines (SVM). SVM is a machine learning

algorithm that tries to find the maximum distance plane between 2 or more classes. Once this plane

14

(can be linear or non-linear) is found, any new data that we want to test is compared with the plane to

see which side the new test data falls under. For multi-class problems, we use the one vs one strategy,

where our test data is compared with every pair of classes to see which class the test data is closest to.

Another common method is the one vs rest strategy, where each class is trained against all the rest of

the classes combined. The winning class is then picked by which training plane is closest to the test

point. The maximum distance plane is found by optimizing the following equation

(16)

where x is the label vector, y is the feature vector, and w is the normal vector to the hyperplane [15].

The kernel parameters will be optimized in a following step. To better illustrate the maximum distance

plane separating two classes, Figure 14 shows a binary SVM. The hyperplanes H1 and H2 represent the

boundary of class 1 and 2 respectively. We then find the maximum distance between those two lines to

find our hyper plane.

Figure 14. Maximum distance boundary plane between two classes [16]

2.6.3.1 Procedure

In order to speed up our testing process, we used an open source library LIBSVM [17]. This library

provides functions that help us train our classifiers, and also predict what class a test speech segment

falls under. Before training our feature sets, we first scaled the features so that the whole feature set

was within [-1, 1]. This prevents features in a larger numeric scale from dominating features in a smaller

numeric scale. Scaling was done with

(17)

15

where [A,B] is the range we are converting from, and [C,D] is the range we are scaling to. In our case,

[C,D] is equal to [-1,1]. It is important to remember to scale both the training set features and the

testing set with the same constant for the most accurate result.

Next, we pick a kernel, which maps our feature vectors into a higher dimensional space. We

picked the Radial Basis Function kernel (RBF) because it non-linearly maps our feature vectors into a

higher dimension. That way, our kernel will still be able to map a plane if the maximum distance

between two classes is nonlinear [15]. The equation for the RBF kernel is

(18)

where x are the training vectors and  is a kernel parameter [15].

Once we have our kernel picked, LIBSVM has a function svmtrain that trains the scaled feature

data. We then pass in our test feature vectors for a classification result. As of now we have not

optimized the kernel parameters for the training function, but that is something we can do in the future

to improve our accuracy.

2.6.4 Classification

The data set we used provided us with speech samples for 15 emotions: hot anger, panic, anxiety,

disgust, sadness, contempt, cold anger, shame, despair, boredom, neutral, elation, pride, interest, and

happy. Our initial tests classified each individual emotion with a result of 27.53% accuracy. While this

result was better than guessing randomly between the 15 emotions, we wanted a better result from our

algorithm.

With the same data set, Mordkovich et al tested the accuracy of the data set using grouped

emotions for better results [10]. Since emotion can be classified in two dimensions by valence

(positivity) and arousal (excitability), we are able to split the emotion into a two dimensional space as

shown in Table 3. We tried the same emotion grouping, and labeled each emotion group in Table 3 as its

own emotion category. Using these new emotion groups as the classes, the accuracy of our algorithm

increased to 42.53%. This is testing between 6 different classes, so our results were slightly better than

random.

 Table 3. Emotion Classification by Arousal/Valence [10]

16

In order to further improve the accuracy of our algorithm, we treat the emotion classification as

a two dimensional binary problem. Instead of classifying individual groups of emotions in Table 3, we

first test whether an emotion is classified as high valence or low valence. Then we test whether the

emotion is classified as high arousal or low arousal. In this way, we can predict the valence and arousal

values of an emotion and be able to guess which emotion group it belongs in. Using these new arousal

and valence classes, we achieved approximately 66.9% accuracy along the valence axis and

approximately 71.8% accuracy along the arousal axis.

3. Design Verification

3.1 Data Collection

3.1.1 Microphone

The microphone functionality was verified with an electret microphone because the MEMS microphone

had some complications with soldering to the board. The gain was adjusted to 8 V/V due to the electret

output amplitude. The DC offset parameter was verified with DC coupling on the oscilloscope and the

gain parameter was verified by comparing the amplitude of the input signal with the amplitude of the

output signal with AC coupling.

3.1.2 Temperature

The temperature sensing module functionality was verified by using an external thermometer. The

calculated value from the microcontroller is printed out and the values were cross verified. The results

showed that the thermistors are working. The circuit is also tested by placing hand over the thermistor,

and seeing if the reading changes as expected.

3.1.3 Heart Rate monitor

The functionality of the Heart Rate monitor was not verified because of problem concerning the SPI

connection with the microcontroller. During debugging process, the first microcontroller was burnt, and

the SPI communication stopped on the second microcontroller. It is concluded that the second

microcontroller fails on SPI connection because no clock signal was seen on the oscilloscope, therefore,

signals were not able to be shifted in and out of the microcontroller. To verify the soldering of the AFE

chip on the PCB, multimeter was used to detect for short circuits, and none were detected. The AFE also

has sign of life after powered on, which was verified using suggestions from the Texas Instruments

website. [11]

3.2 User Interface

3.2.1 LCD Display

The LCD Display uses a 16x2 LCD. The functionality of this LCD is verified by writing strings of word in the

microcontroller and see if the display outputs the design words. This function worked as expected. One

of the pins on the LCD Display adjusts the brightness of the backlight based on the voltage input, instead

of using a potentiometer for this pin, a 1kΩ resistor is used between power supply and this pin to

provide a suitable brightness.

17

 This component is tested again after the switch is implemented, the words display is reset and

does not distort after power supply turned off and on.

Figure 15. Words display on LCD Screen

3.2.2 LED Light Indicator

The LED lights were first tested its individually for the functionality. After seeing that the LED lights light

up and does not overheat over a long period of time then it is tested to see if it lights up in the right

order as corresponds to the LCD. This component is tested again after the switch is implemented, the

words display is reset and does not distort after power supply turned off and on.

3.2.3 Switch

The switches were verified using a power supply and multimeter. The multimeter set to voltage reading

and is connected to the output of the switch. The result is as expected, output is 3.2V ±0.1V when the

switch is at high, and 0V when low. It is also then connected to an oscilloscope to observe any

debouncing behavior and it is not noticeable on the oscilloscope and did not affect functionality of

circuit.

3.3 Power Systems
The voltage ripple was verified by connecting a two watt 33 Ω resistor as the load across the 3.3V output

line, to simulate 100 mA current draw. The signal across the resistor was measured with AC coupling on

the oscilloscope to measure the peak to peak voltage, which was approximately 100 mVpp. The DC

signal was observed with a multimeter under the 100 mA load. The charge current was tested for both

100 and 500 mA, utilizing two Watt 40 Ω and 8 Ω resistors, respectfully, in series with a 100 Ω 15 turn

potentiometer. The potentiometer was adjusted such that the voltage across the series capacitors went

over 4.1 V and charging was observed to stop.

3.4 Microcontroller and Processing
The MCU was capable of being programmed through the USB and was able to turn on LEDs and accept

switch input signals. The DSP was programmable with pickit3 and was able to accept data from the

microphone as well as turn on LEDs. The SPI communication failed to work between the MCU and DSP,

because the master clock was not being generated by either chip. Failure of the SPI made algorithm

integration not possible.

3.5 Emotion Classification
In order to test our emotion detection by speech algorithm, we used a v-fold cross validation method.

We first divide our data set into v subsets of equal size. Then for each subset, we train the remaining v-1

subsets and test the subset we left out against this classifier. We do this v times, until each subset has

been tested once. The accuracy of this is then averaged over all v cases to find the overall accuracy of

our algorithm.

18

 Using 5-fold cross validation, we achieved approximately 66.9% accuracy along the valence axis

and approximately 71.8% accuracy along the arousal axis. We created confusion matrices shown in

Table 4 to further analyze the performance of our algorithm. Each column contains our predicted

classes, which is the class our algorithm picked, while each row contains the actual class the emotion fell

under. In this way we can observe any bias in our algorithm and see if any class is favored over the

other. We also calculated sensitivity and specificity values for high valence and high arousal in Table 5 to

show the performance of our algorithm.

Table 4. Confusion Matrixes for Valence and Arousal

 Predicted High Valence Predicted Low Valence

Actual High Valence 32 48

Actual Low Valence 5 75

 Predicted High Arousal Predicted Low Arousal

Actual High Arousal 41 23

Actual Low Arousal 13 51

From Table 4, we observe that our algorithm tends to pick the low valence class over the high

valence class. The algorithm will only classify correctly 40% of the time when the emotion is high

valence, but will classify correctly 93.75% of the time when the emotion is low valence. This could be

due to our small number of training samples in our data set, or the features we choose to extract. In the

future, we can include more features to extract from speech to try and improve the accuracy of our

algorithm.

 We can also see that our algorithm slightly favors the low arousal class over the high arousal

class. The second confusion matrix in Table 4 shows that our algorithm will classify correctly when the

emotion is high arousal 64.1% of the time, and will classify correctly when the emotion is low arousal

79.7% of the time. While these values are not ideal, they form a good basis from which to improve in the

future.

Table 5. Statistical Measures of Performance for Valence/ Arousal

Sensitivity Specificity Precision

Negative
Predictive Value

High Valence 40.00% 93.75% 86.50% 61.00%

High Arousal 64.10% 79.70% 75.90% 68.90%

4. Costs

4.1 Parts
Table 9 is the parts cost table and is listed in Appendix B due to its size. It does not include breakout

board parts or other prototyping costs.

19

4.2 Labor
Table 6. Labor Cost Approximation

Name Hourly Rate Total
Hours(hr)

Total ($)
= 2.5*(Hourly Rate)*(Hours)

Jonathan Fouk 30 150 11,250

Matthew Palmer 30 150 11,250

Vivian Tseng 30 150 11,250

Total

33,750

4.3 Grand Total
Table 7. Total Cost

Section Total ($)

Parts 83.20

Labor 33,750.00

Grand Total 33,833.20

5. Conclusion

5.1 Accomplishments
We have successfully designed and tested most of the components in the project. The display module,

biosensors, microphone and amplifying circuit, power supply all worked as designed. We were able to

design an algorithm that can extract emotion information from speech, which is a great proof of concept

to our project.

5.2 Uncertainties
Because of the malfunction with the SPI communication at the microcontroller, the digital signal

processor's functionality could not be fully tested. The algorithm worked well in MATLAB, but since it

could not be tested on the microcontroller, it is uncertain how accurate the functionality of the whole

system is.

5.3 Ethical considerations
All members in the team are aware of the IEEE Code of Ethics. Our device is designed to help people
with social disability express their emotions.

1. to accept responsibility in making decisions consistent with the safety, health, and welfare of the
public, and to disclose promptly factors that might endanger the public or the environment;

 We will ensure that the power supply from the lithium polymer battery is connected safely and
in addition we will monitor the temperature and shut down the device if the temperature of the
battery is over 50 C.

3. to be honest and realistic in stating claims or estimates based on available data;

20

 We will calculate the battery life of the device and report the battery life in the specifications as
measured

 We will test the device on different users and determine the percentage of accuracy our device
is. We will not exaggerate the accuracy of the system in our final report.

5. to improve the understanding of technology; its appropriate application, and potential consequences;
 This product helps us understand how our body react and changes with our changing emotion.

We see a lot of potential future development in this product and growth by adding different
combinations biosensors and having more advance audio processing technology.

6. to maintain and improve our technical competence and to undertake technological tasks for others
only if qualified by training or experience, or after full disclosure of pertinent limitations;

 We are continuously seeking more in depth knowledge in the areas of engineering covered in
this project. Research notes were taken throughout the process.

7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to
credit properly the contributions of others;

 Through design review and TA meeting sessions, we take advice from our peer and mentors to
improve the design of our system, and we will credit their contributions

9. to avoid injuring others, their property, reputation, or employment by false or malicious action;
 We will design a good algorithm for determining the user emotion, and if the detected result

has a high percentage of uncertainty, it will inform the user. We will also state the limitations of
the product for potential users.

5.4 Future work

5.4.1 Emotion Classification

We want to further test our emotion classifier and improve the accuracy. This can be done by extracting

and testing extra features from the speech and biosensor data. We also want to conduct more testing

on the biosensor data and either find a data set that correlates emotion and biosensor data, or create

our own data set. Then we can train a new model that includes more biosensor data. Finding a better

speech data set will also help to improve the accuracy of our algorithm.

5.4.2 Interfacing between modules

The SPI between the microcontroller, heart rate module and the digital signal processor needs to be

fixed. This will be done step by step, first testing the functionality of SPI with the microcontroller being

the master and reading the signal output using an oscilloscope. This would help debugging and finding

out what is wrong before going too far.

21

References

[1] High SPL Analog Microphone with Extended Low Frequency Response, datasheet, InvenSense, Inc.,

2000. Available at: http://www.invensense.com/mems/microphone/documents/ICS-40300_DS.pdf

[2] LM321 Low Power Single Operational Amplifier, datasheet, Texas Instruments, Inc., 2014, Available

at: http://www.ti.com/lit/ds/symlink/lm321.pdf

[3] 16-Bit Digital Signal Controllers with High-Speed PWM, Op Amps, and Advanced Analog Features,

datasheet, Microchip, Inc., 2014, Available at:

http://ww1.microchip.com/downloads/en/DeviceDoc/70000689d.pdf

[4] Y. Deng, S. Chakrabartty, and G. Cauwenberghs, "Analog auditory perception model for robust

speech recognition", 2004 IEEE International Joint Conference Proceedings, vol. 3, no. 1, pp 1705-

1709, July 2004.

[5] Analog-to-Digital Converters, Microchip, Inc., Chandler, AZ, 2013, Available at:

http://ww1.microchip.com/downloads/en/DeviceDoc/adc.pdf

[6] A.B. Williams and F.J. Tayler, "Low-Pass Filter Design," in Electronic Filter Design Handbook, 4th ed.,

New York, NY: McGraw-Hill, 2006, pp. 89-128.

[7] Micropower USB Power Manager with Li-Ion Charger, LDO, and Buck Regulator, datasheet, Linear

Technology, Inc., 2010, Available at: http://cds.linear.com/docs/en/datasheet/3553fb.pdf

[8] Starting a USB Design Using MSP430 MCUs, Application Report, Texas Instruments, 2014, Available

at: http://www.ti.com/lit/an/slaa457a/slaa457a.pdf

[9] Mixed Signal Microcontroller for MSP430F663X Series, datasheet, Texas Instruments, Inc., 2013,

Available at: http://www.ti.com/lit/ds/symlink/msp430f6633.pdf

[10] Mordkovich Mordkovich, Alex, Kelly Veit, and Daniel Zilber, "Detecting Emotion in Human Speech,"

December 2011.

[11] AFE4400/ AFE4490/ AFE4403 FAQS, Texas Instruments, 2014, Avaliable at:

https://e2e.ti.com/support/applications/high_reliability/f/30/t/369445. Accessed April 2015.

[12] Lyons, James, "Mel Frequency Cepstral Coefficient (MFCC) Tutorial," Practical Cryptography.

Available at: http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-

frequency-cepstral-coefficients-mfccs/. Accessed April, 2015.

[13] "Estimation Of Pitch From Speech Signals," Sakshat Virtual Labs, Web page. Available

at: http://iitg.vlab.co.in/?sub=59&brch=164&sim=1012&cnt=1. Accessed April, 2015

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://iitg.vlab.co.in/?sub=59&brch=164&sim=1012&cnt=1

22

[14] "Pitch Detection Methods," Web page. Available

at: http://sound.eti.pg.gda.pl/student/eim/synteza/leszczyna/index_ang.htm#a3. Accessed April,

2015

[15] Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin, "A Practical Guide to Support Vector

Classification," National Taiwan University, Taipei 106, Taiwan April 2010.

[16] Fletcher, Tristan. "Support Vector Machines Explained." March 2009.

[17] "LIBSVM -- A Library for Support Vector Machines." LIBSVM -- A Library for Support Vector

Machines. Web page. Available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm/#nuandone. Accessed

April, 2015.

http://sound.eti.pg.gda.pl/student/eim/synteza/leszczyna/index_ang.htm#a3
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#nuandone

23

Appendix A Requirement and Verification Table
Table 8. System Requirements and Verifications

 Requirements Verification Verification

status (Y or N)

Power Supply a. Charge battery to 4.2
V ± 1% with maximum charge
current of 500 mA
b. Supply 3.3V with
ripple of +/- 0.20V with 150
mA load.
c. Supply 1.8V +/- 0.1 V
to Vcc/2

a. Use multimeter to measure
voltage difference across battery while
charging. Measure charge current with
separate multimeter. When fully
charged, record voltage across battery.
b. Use multimeter oscilloscope to
measure the voltage across the buck
converter output.

Y

Y

Microcontroller a. Print Text onto LCD
display
b. Correctly choose
suggestion words to display
onto LCD depending on the
detected emotion
c. Maximum
microcontroller temperature
will not exceed 60℃ when
operating at 8 MHz

a. Input strings of characters to
microcontroller and test it’s ability to
correctly display character on LCD
b. Program test cases into the
Microcontroller with every possible
emotion, then analyze the suggested
words and determine relevancy
c. Use an external temperature
sensor to measure the temperature of
the microcontroller when in use,
compare that to the internal
temperature

Y

Y

Y

DSP a. ADC correctly reads and
converts values

b. DSP can communicate with
the MCU through SPI

c. Extracts mel-frequency
coefficients, pitch, and
the deltas of the speech
signal

a. Connect photoresistor to ADC and
check that bright light and low light
are accurately converted to values
between -1 and 1

b. Send a specified value across SPI to
the MCU and display that value on
the PC

c. Send test speech signal into DSP to
extract features, then compare
feature vectors with the results in
MATLAB

Y

N

N

Temperature
Sensor

a. Determine
temperature of skin with an
accuracy error < ±1.0C

a. Using an external temperature
sensor (thermometer), compare
temperature readings and the difference
is less than ±1.0 C

Y

Heart Rate
Sensor

a. Determine the heart
rate (Beats per minute) of

a. Compare heart rate from sensor
with an external heart rate monitor and

N

24

user with an accuracy of 95%
i. accurate SPI

communication between chip
and MCU

calculate percentage error of our HRM

Microphone/
Audio

a. Able to record sound
from 1 cm distance and filter
out noise
b. Output Waveform DC
offset is 2.0V ± 0.2 V from
amplifier stage.

i. Amplitude gain for
amplifier must be 10±2 V/V
for a frequency sweep from
20 Hz to 10kHz

a. Hold microphone 1 cm from
mouth and speak in a regular tone.
b. Use signal generator to create a
25 mVrms sinewave w/ 0.8 V offset and
frequency sweep from 0 Hz to 10 kHz.
Input that into the amplifier stage and
record the output. Check the output
offset.

i. Record the microphone output
for a 80 dB noise with frequency
between 20 Hz and 22 kHz.

ii. From b check the gain as the
signal generator’s frequency is swept to
10 kHz from 20 Hz.

Y

Display a. LCD display words
that are preloaded onto the
microcontroller
b. LED light display will
be on or off depending on a
signal from the
Microcontroller

a. Program the display to show
characters on display
b. Send on and off commands to
the LED to check if it turns on and off

Y

Switches a. When ON state, the
buck and LDO converters
output 3.3V and 1.8V
approximately.

a. Connect multimeter to 3.3V line
and 1.8V line, read output when switch
is set to off and switch is set to on .

Y

Emotion
Classification
Algorithm

a. Identifies emotion with an
accuracy of 60% along
the valence and arousal
axes

a. Perform cross validation with the
data set for binary valence and
count number of correct
classifications

b. Perform cross validation with the
data set for binary arousal and
count number of correct
classifications

Y

Y

25

Appendix B Detailed Parts Cost Table
Table 9. Parts Costs

Item Part number Quantity Bulk Purchase
Cost ($)

Actual Cost ($)

Resistors (Surface Mount) - 30 0.20 6.00

Capacitors (Surface mount) - 50 0.20 10.00

Slide Switch NKK switches MS13ANW03 3 3.84 11.52

Thermistor PS103J2 2 3.19 6.38

Heart Rate Monitor AFE4400 1 8.42 8.42

Green LED APL3015MGC 1 0.58 0.58

photodiode QSB34CGR 1 1.05 1.05

Display LEDs - 3 0.25 0.75

NPN Transistor DSC2A01T0L 1 0.06 0.06

Microphone InvenSense ICS-40300 1 3.50 3.50

LCD Display Basic 16x2 Character LCD 1 14.95 14.95

MCU MSP430F6635 1 5.39 10.78

DSP dsPIC33EP512G304 1 3.15 6.84

ESD EPD 1 0.07 0.45

CoinCell Battery 3 V 10mm Coincell P031-ND 1 0.57 1.10

Op-Amp LM321 1 0.10 0.61

CoinCell Holder Keystone Coil Cell Battery
Holder

1 0.02 0.10

USB Connector Conn USB MICRO B SMT 1 0.23 0.46

LiPo Battery 650 mA 3.7 V LiPo Battery 1 17.46 17.46

IC Charger LTC3553 1 2.73 3.22

 Total 53.15 84.20

26

Appendix C Circuit Schematics

Figure 16. Microcontroller Schematic

27

Figure 17. Digital Signal Processor Schematic

Figure 18. AFE4400 Chip and LCD display circuit schematic

28

Figure 19. LiPo Charger, part of IOBoard

29

Figure 20. Microphone and OP Amp with LED circuits

30

Appendix D PCB Layout

FIGURE_F5. Bottom Board layout

Appendix E Codes

%% Emotion Detection

%written by Jonathan Fouk

%init libraries

%suppress nonIntegerIndex warnings

warning_id = 'MATLAB:colon:nonIntegerIndex';

warning('off',warning_id);

31

%% extract dataset

display('Extracting speech segments...');

[speech_set, Fs] = read_audio_data('Data');

display('Dataset extracted!');

%% feature extraction

display('Extracting features...');

speech_set = extract_features(speech_set,Fs);

display('Features extracted!');

%% convert to libsvm format

[all_labels, all_attributes, speech_set] = export_as_libsvm(speech_set,

'data_set.txt');

function [audioVector,Fs] = read_audio_data(file_directory)

%read_audio_data

% opens up file_directory and extracts all data into 2 cells

% audioVector: contains audio data

% Fs: contains frequency data

%% Extract Audio Features

orig = pwd;

cd(file_directory);

[audio, Fs] = audioread('LDC2002S28.wav'); %read the audio data

32

fileID = fopen('LDC2002S28.txt');

% process text

%data contains start time in data{1,1}, end time in data{1,2}, and category

%in data{1,3}

data = textscan(fileID, '%f %f A: %s %*[^\n]', 'HeaderLines', 1);

copy = cell(size(data));

%check string to clean up unnecessary lines

numSamp = size(data{1,1},1);

iter = 1;

for i = 1:numSamp

 string = data{1,3}{i};

 if not((string(1) == '[') || (string(1) == '('))

 temp = strsplit(string,',');

 copy{1,1}{iter,1} = data{1,1}(i);

 copy{1,2}{iter,1} = data{1,2}(i);

 copy{1,3}{iter,1} = temp(1);

 iter = iter + 1;

 end

end

numSamp = size(copy{1,1},1);

%extract speech from text

%ex of how to pull out a slice of audio

%test_sample = audio(42.26*Fs:43.28*Fs);

audioVector = cell(numSamp,2);

for i = 1:numSamp

 start_time = (copy{1,1}{i});

 end_time = (copy{1,2}{i});

 speech = audio(copy{1,1}{i}*Fs:copy{1,2}{i}*Fs);

 audioVector{i,1} = copy{1,3}{i};

 audioVector{i,2} = speech;

end

cd(orig);

function [set] = extract_features(set,Fs)

%extract_features

% extracts mfcc, pitch, deltas, mean and covariance

% calculate features

for i = 1:size(set,1)

 %disp(['length of set = ', num2str(length(set))])

 speech = set{i,2};

33

 %calculate mfcc

 mfcc = melfcc(speech,Fs, 'wintime',0.025, 'hoptime', 0.01);

 mm = mfcc(2:13,:); %omit first coeff

 set{i,3} = mm;

 %calculate pitch

 [t, f0, avgF0] = pitch(speech,Fs);

 set{i,4} = f0;

 total = [mm;f0];

 %calculate delta

 d = deltas(total,5); %window size of 5

 total = [total;d];

 set{i,5} = total;

 % disp(['i = ',num2str(i)])

 %flatten the matrix

 flattened = reshape(total,[],1);

 set{i,6} = flattened;

 %calculate mean and variance

 total_matrix = [];

 temp_vector = [];

 for j = 1:5:size(total,2)

 endex = j + 10 -1;

 if endex > size(total,2)

 endex = size(total,2);

 end

 means = mean(total(:,j:endex),2);

 vars = var(total(:,j:endex),0,2);

 temp_vector = [means;vars];

 total_matrix = [total_matrix, temp_vector];

 end

 set{i,9} = total_matrix;

end

end

%Arousal Test

%% Cross-validation

results = {};

answer = [];

expected = [];

accuracies = [];

answer_confidence = [];

confusion_matrix_arousal = zeros(2,2);

correct = 0;

34

tests = 0;

%read in scaled data

%[label_vector, instance_matrix] = libsvmread('training3.scale');

%randomize order

new_order = randperm(length(speech_set));

arousal_set = speech_set(new_order,:);

%equalize training sets

%equalize training sets

second_set = {};

one_set = {};

rm_idx = [];

count = 0;

idx = 1;

idx2 = 1;

for i = 1:length(arousal_set)

 if unique(arousal_set{i,11} == 2)

 if count < 139

 second_set(idx,:) = arousal_set(i,:);

 rm_idx = [rm_idx i];

 count = count + 1;

 idx = idx + 1;

 end

 elseif unique(arousal_set{i,11} == 1)

 one_set(idx2,:) = arousal_set(i,:);

 idx2 = idx2 + 1;

 end

end

%remove 0 class

for i = 1:length(arousal_set)

 if i > length(arousal_set)

 break;

 end

 if unique(arousal_set{i,11} == 0)

 rm_idx = [rm_idx i];

 end

end

arousal_set(rm_idx,:) = [];

%remix

new_order = randperm(length(arousal_set));

arousal_set = arousal_set(new_order,:);

zero = 0;

one = 0;

two = 0;

for i = 1:length(arousal_set)

 if arousal_set{i,11}(1) == 0

 zero = zero + 1;

 elseif arousal_set{i,11}(1) == 1

 one = one + 1;

 else

 two = two + 1;

 end

end

35

display([num2str(zero),' classified as 0']);

display([num2str(one),' classified as 1']);

display([num2str(two),' classified as 2']);

%split into groups

N = 5;

start_index = 1;

i = 1;

%check to see if at end of features

for i = 1:N:length(arousal_set)

%for i = 1

 end_index = i+N-1;

 if end_index > length(arousal_set)

 end_index = length(arousal_set);

 end

 test_set = arousal_set(i:end_index,:);

 training_set = arousal_set;

 training_set(i:end_index,:) = [];

 display('Exporting data_set..');

 test_labels = vertcat(test_set{:,11});

 test_instances = vertcat(test_set{:,8});

 training_labels = vertcat(training_set{:,11});

 training_instances = vertcat(training_set{:,8});

 libsvmwrite('arousal_test_set.txt',test_labels,test_instances);

libsvmwrite('arousal_training_set.txt',training_labels,training_instances);

 %scale

 display('Scaling...');

 [status, cmdout] = unix('../libsvm-3.20/svm-scale -s arousal_scaling

arousal_training_set.txt > arousal_training_set.scale');

 if(status)

 display('scaling failed!');

 break;

 end

 [status, cmdout] = unix('../libsvm-3.20/svm-scale -r arousal_scaling

arousal_test_set.txt > arousal_test_set.scale');

 if(status)

 display('scaling failed!');

 break;

 end

 display('Scaling complete!');

 %training

 display('Training...')

 [training_labels, training_instances] =

libsvmread('arousal_training_set.scale');

 model = svmtrain(training_labels,training_instances);

 display('Trained!');

36

 %testing

 display('Testing...');

 [testing_labels, testing_instances] =

libsvmread('arousal_test_set.scale');

 display('Predicted!');

 [predicted_label, accuracy, decision_values] = svmpredict(testing_labels,

testing_instances, model);

 accuracies = [accuracies;accuracy(1)];

 %% Accuracy

 startdex = 1;

 for j = 1:size(test_set,1)

 enddex = startdex + size(test_set{j,9},2)-1; %sparse matrices

 group = predicted_label(startdex:enddex);

 total = 0;

 for k = 0:14

 results{j,k+1} = length(find(group == k));

 total = total + results{j,k+1};

 end

 answer = [answer; mode(group)];

 answer_confidence = [answer_confidence;

results{j,mode(group)+1}/total];

 expected = [expected; testing_labels(startdex)];

 if testing_labels(startdex) == mode(group)

 correct = correct + 1;

 end

 confusion_matrix_arousal(testing_labels(startdex),mode(group)) =

confusion_matrix_arousal(testing_labels(startdex),mode(group)) + 1;

 tests = tests + 1;

 startdex = enddex + 1;

 end

 display(['Correct: ', num2str(correct), '\n Total: ', num2str(tests)]);

end

% Valence Test

%% Cross-validation

results = {};

answer = [];

expected = [];

accuracies = [];

answer_confidence = [];

correct = 0;

tests = 0;

confusion_matrix_valence = zeros(2,2);

37

%read in scaled data

%[label_vector, instance_matrix] = libsvmread('training3.scale');

%randomize order

new_order = randperm(length(speech_set));

ordered_set = speech_set(new_order,:);

%equalize training sets

second_set = {};

one_set = {};

rm_idx = [];

count = 0;

idx = 1;

idx2 = 1;

for i = 1:length(ordered_set)

 if unique(ordered_set{i,7} == 2)

 if count < 90

 second_set(idx,:) = ordered_set(i,:);

 rm_idx = [rm_idx i];

 count = count + 1;

 idx = idx + 1;

 end

 elseif unique(ordered_set{i,7} == 1)

 one_set(idx2,:) = ordered_set(i,:);

 idx2 = idx2 + 1;

 end

end

%remove 0 class

for i = 1:length(ordered_set)

 if i > length(ordered_set)

 break;

 end

 if unique(ordered_set{i,7} == 0)

 rm_idx = [rm_idx i];

 end

end

ordered_set(rm_idx,:) = [];

%remix

new_order = randperm(length(ordered_set));

ordered_set = ordered_set(new_order,:);

zero = 0;

one = 0;

two = 0;

for i = 1:length(ordered_set)

 if ordered_set{i,7}(1) == 0

 zero = zero + 1;

 elseif ordered_set{i,7}(1) == 1

 one = one + 1;

 else

 two = two + 1;

 end

end

display([num2str(zero),' classified as 0']);

38

display([num2str(one),' classified as 1']);

display([num2str(two),' classified as 2']);

%split into groups

N = 5;

start_index = 1;

i = 1;

%check to see if at end of features

for i = 1:N:length(ordered_set)

%for i = 1

 end_index = i+N-1;

 if end_index > length(ordered_set)

 end_index = length(ordered_set);

 end

 test_set = ordered_set(i:end_index,:);

 training_set = ordered_set;

 training_set(i:end_index,:) = [];

 test_labels = vertcat(test_set{:,7});

 test_instances = vertcat(test_set{:,8});

 training_labels = vertcat(training_set{:,7});

 training_instances = vertcat(training_set{:,8});

 libsvmwrite('test_set.txt',test_labels,test_instances);

 libsvmwrite('training_set.txt',training_labels,training_instances);

 %scale

 display('Scaling...');

 [status, cmdout] = unix('../libsvm-3.20/svm-scale -s scaling

training_set.txt > training_set.scale');

 if(status)

 display('scaling failed!');

 quit;

 end

 [status, cmdout] = unix('../libsvm-3.20/svm-scale -r scaling test_set.txt

> test_set.scale');

 if(status)

 display('scaling failed!');

 quit;

 end

 display('Scaling complete!');

 %training

 display('Training...')

 [training_labels, training_instances] = libsvmread('training_set.scale');

 model = svmtrain(training_labels,training_instances);

 display('Trained!');

 %testing

 display('Testing...');

 [testing_labels, testing_instances] = libsvmread('test_set.scale');

39

 display('Predicted!');

 [predicted_label, accuracy, decision_values] = svmpredict(testing_labels,

testing_instances, model);

 accuracies = [accuracies;accuracy(1)];

 %% Accuracy

 startdex = 1;

 for j = 1:size(test_set,1)

 enddex = startdex + size(test_set{j,9},2)-1; %sparse matrices

 group = predicted_label(startdex:enddex);

 total = 0;

 for k = 0:14

 results{j,k+1} = length(find(group == k));

 total = total + results{j,k+1};

 end

 answer = [answer; mode(group)];

 answer_confidence = [answer_confidence;

results{j,mode(group)+1}/total];

 expected = [expected; testing_labels(startdex)];

 if testing_labels(startdex) == mode(group)

 correct = correct + 1;

 end

 confusion_matrix_valence(testing_labels(startdex),mode(group)) =

confusion_matrix_valence(testing_labels(startdex),mode(group)) + 1;

 tests = tests + 1;

 startdex = enddex + 1;

 end

 display(['Correct: ', num2str(correct), '\n Total: ', num2str(tests)]);

end

%% Voice test

recObj = audiorecorder(Fs,8,1);

disp('Start speaking.')

recordblocking(recObj, 2);

disp('End of Recording.');

y = getaudiodata(recObj);

plot(y);

voice = cell(1,2);

voice{1,1} = {'happy'};

voice{1,2} = y;

40

%extract features

display('Extracting features...');

voice = extract_features(voice,Fs);

display('Features extracted!');

[voice_label, voice_instance, voice] = export_as_libsvm(voice,'voice.txt');

[status, cmdout] = unix('../libsvm-3.20/svm-scale -r scaling voice.txt >

voice.scale');

if(status)

 display('scaling failed!');

 break;

end

display('Scaling complete!');

[status, cmdout] = unix('../libsvm-3.20/svm-scale -r arousal_scaling

voice.txt > arousal_voice.scale');

if(status)

 display('scaling failed!');

 break;

end

display('Scaling complete!');

%testing

display('Testing...');

[testing_labels, testing_instances] = libsvmread('voice.scale');

[arousal_testing_labels, arousal_testing_instances] =

libsvmread('arousal_voice.scale');

display('Predicting...');

[v_predicted_label, v_accuracy, v_decision_values] =

svmpredict(testing_labels, testing_instances, valence_model);

[a_predicted_label, a_accuracy, a_decision_values] =

svmpredict(arousal_testing_labels, arousal_testing_instances, arousal_model);

va_accuracy = length(find(v_predicted_label ==

mode(v_predicted_label)))/length(v_predicted_label)*100;

ar_accuracy = length(find(a_predicted_label ==

mode(a_predicted_label)))/length(a_predicted_label)*100;

display(['Valence Voted: ',num2str(mode(v_predicted_label)), ', Confidence:

',num2str(va_accuracy),'%']);

display(['Arousal Voted: ',num2str(mode(a_predicted_label)), ', Confidence:

',num2str(ar_accuracy),'%']);

