ECE 445
Spring 2013

## Music Response Light Show

Design Review Andy Groesch<br>TA: Lydia Majure<br>February 25, 2013

## Table of Contents

1 Introduction
1.1) Project Summary
1.2) Objectives
1.2.1) Goals
1.2.2) Functions
1.2.3) Benefits
1.2.4) Features

2 Design
2.1) Block Diagram
2.2) Block Description Summary
2.2.1) Microphone
2.2.2) Low Pass Filter
2.2.3) High Pass Filter
2.2.4) Band Pass Filter
2.2.5) Arduino Microcontroller
2.2.6) Arduino Power Supply
2.2.7) Four Channel LED Driver Shield
2.2.8) 24V Power Supply
2.2.9) LED Strand
2.2.10) Beat Detecting Algorithm
2.3) Schematics, Calculations, \& Simulations

3 Requirements and Verification
3.1) Requirements and Verification Tables
3.1.1) Microphone
3.1.2) Low Pass Filter
3.1.3) High Pass Filter
3.1.4) Band Pass Filter
3.1.5) Arduino Microcontroller
3.1.6) Arduino Power Supply
3.1.7) Four Channel LED Driver Shield
3.1.8) 24V Power Supply
3.1.9) LED Strand
3.1.10) Beat Detecting Algorithm
3.2) Tolerance Analysis

4 Cost \& Schedule
4.1) Cost Analysis
4.2) Schedule

5 Safety
6 Ethics
7 References

### 1.0 Introduction

### 1.1 Project Summary

The intent of this project is to make a lighting system that responds to music that is heard through the air. The microphone will detect the sonic signal and convert it into an analog signal. Then, the signal will be filtered based on the low, middle, and high frequency components. These signals will then be passed through a beat detection algorithm that will then pass data to a series of LED Driver Shields. These shields will control four strands of LEDs each, for a total of twelve LED arrangements.

### 1.2 Objectives

1.2.1 Goals:

- Split audio signal into three frequency bands
- Uses Beat Detection algorithm to identify beats in audio
- LED strands strobe based on output signal from


### 1.2.2 Functions

- Separates frequencies based on cutoff values determined from common instrument ranges
- LEDS strobe operate based on pressure fluctuations
- Different combinations of LEDs turn on based beat detection ouputs


### 1.2.3 Benefits

- Provides visual component to music entertainment
- Helps to understand concepts of harmonic frequency and electronic music
- Easily replicable


### 1.2.4 Features

- Autonomous light control; doesn't require user input
- LEDs strobe to the beat of each of the frequency bands
- Automatically enables combinations of lights based on different frequency spectra


### 2.0 Design

### 2.1 Block Diagram



### 2.2 Block Description Summary

The microphone detects an audio signal from the air and converts it into an analog one. Then, a DC offset is added such that the signal is entirely positive. This signal is then sent through three filters (low pass, band pass, and high pass) such that these frequency bands are extracted. Then, these signals are sent into the through a beat detection algorithm. The beat detection algorithm then outputs a digital signal that is sent to the 4 Channel LED Driver that indicates when the LEDs should oscillate between On and Off states.

### 2.2.1 Microphone

This is used to detect an audio signal and convert it into an analog sinusoid representing the pressure fluctuations. The ADMP504 microphone is used in this design. It possesses maximum output voltage amplitude of .25 V ; the microcontroller accepts voltage inputs ranging from 0 to 5 volts, and as such the output voltage of the microphone needs to be amplified with a gain of 10. The $\mathrm{V}_{\mathrm{DD}}$ range is from 1.6 V to 3.3 V and is powered by the Arduino Uno.

### 2.2.2 Low Pass Active Filter

This circuit only allows low frequencies to pass as it attenuates the larger ones. This allows some of the lights to be mapped only to the lower frequencies. This typically includes the bass band and instruments like the kick drum, toms, bass, and tuba. The cutoff point of 160 Hz was chosen to ideally exclude the singer's voice.

### 2.2.3 High Pass Active Filter

This circuit only allows high frequencies to pass as it attenuates the smaller ones. This allows some of the lights to be mapped only to these higher frequencies. The cutoff frequency was chosen to be 1000 Hz

### 2.2.4 Band Pass Filter

This circuit allows frequencies between a desired range of cutoff frequencies to pass. For this design, the cutoff frequencies of 60 Hz and 1000 Hz were chosen.

### 2.2.5 Arduino Uno Microcontroller

The microcontroller is powered by the Arduino Uno Power Supply. It accepts an analog audio input from the microphone circuit, and detects voltage input ranges from 0 to 5 Volts. The microcontroller first separates the signal into three different frequency ranges by the way of a low pass, band pass, and high pass filter. These three signals are then analyzed by the beat detection algorithm on the data. The output data is then dispatched to the 4 Channel High Power LED Driver.

### 2.2.6 Arduino Uno Power Supply

The power supply delivers 9V of DC voltage with a 650 mA current to the Arduino Microcontroller.

### 2.2.7 4 Channel High Power LED Driver Shield

This shield accepts any voltage range from 8 to 27 Volts. A 24 Volt power supply was chosen o power the Driver Shield. This value was chosen because the amount of LEDs is related to the
applied voltage; thus, as the applied voltage increases, more LEDs can be powered by the Driver Shield. Each shield will have four LED strands connected to its output terminals.

### 2.2.8 24V Power Supply

This device was chosen to power the 4 Channel High Power LED Driver Shield. It is capable of a maximum output current of 1.1 A corresponding to a maximum power output of 26.4 W .

### 2.2.9 LED Strands

Four strands of LEDs will be affixed to each of the Driver Shields, totaling 12 strands total. These LED strands will be mounted on a 42 " tomato cage, with the low band LED string on the lowest rung, the mid band LED string on the middle rung, and the band LED string on the highest rung.

### 2.2.10 Beat Detection Algorithm

From Frederic Patin, "Beat Detection Algorithms"
The algorithm detects beats by first computing the average sound energy, comparing it to the instantaneous sound energy, and indicating a detected beat once the instantaneous energy exceeds the average energy.

The electret microphone can detect frequencies up to 2000 Hz ; therefore, the minimum sampling rate (by the Nyquist criterion) is equal to $(2 * 2,000)=4 \mathrm{kHz}$

First, the algorithm performs the Fast Fourier Transform on the input signal ' $a(t)$ ' to get $A[f]$. To obtain the energy, these values are squared and stored in a buffer named B containing 256 data entry positions. Then, the buffer is divided into 16 sub-bands of 16 values. The instantaneous energy is calculated by summating the 16 different energy values that were sampled. Thus, the value of the instantaneous energy in each subband ' $I$ ' will be calculated by the following formula:
$\mathrm{Es}[\mathrm{i}]=16 / 256^{*} \operatorname{Sum}(\mathrm{~B}[\mathrm{k}])$ from $\mathrm{k}=\mathrm{i}^{*} 16$ to $\mathrm{k}=(\mathrm{i}+1)^{*} 16$
Following this is an 'energy history buffer' named Ei, which is a data storage element holding the previous sixteen values for instantaneous energy in each subband ' $i$ '. The 'average energy' is calculated by the following formula:
$<\mathrm{E}>=1 / 16^{*} \operatorname{Sum}(\operatorname{Ei}[\mathrm{k}])$ from $\mathrm{k}=0$ to $\mathrm{k}=15$
Then, the sound energy history buffer Ei is shifted one index to the right to make room for new data; the oldest data is pushed out of the buffer. Then, a new energy value Es[i] is entered into the first spot of the buffer at place Ei[0].

Then, the model computes the Variance of the Energies in order to compare the instantaneous energy value to the average energy value:
$\mathrm{V}(\mathrm{Ei})=1 / 16^{*} \operatorname{Sum}(\operatorname{Ei}[\mathrm{k}]-\langle\operatorname{Ei}\rangle)^{\wedge} 2$ for $\mathrm{k}=0$ to $\mathrm{k}=15$

Then, compute the ' C ' constant for comparison with the instantaneous energy value $\mathrm{C}=(-.0025714 * \mathrm{~V})+1.5142857$

This new energy value at $\mathrm{Ei}[0]$ is compared to the average energy from the past 16 iterations times the constant C to determine if a beat was detected.

If $\mathrm{E}_{\mathrm{i}}[0]>\mathrm{C}^{*}<\mathrm{Ei}>$
then a beat is detected

If $\mathrm{E}_{\mathrm{i}}[0]<\mathrm{C}^{*}<\mathrm{Ei}>$
then a beat is not detected

Histogram of Instantaneous Energy


From: Bass Detection Algorithms, page 13
Sound Energy Value Calculations

|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Instant } \mathrm{I} /\langle\mathrm{E}\rangle: \\ & \text { Bandwidth : } 14.341 \\ & \text { Subband Number : }{ }^{110} \end{aligned}$ |  | $17.026$ | 2.579 | 0.819 | 13.780 | 4.369 | 2.957 | 11.481 | 0.919 | 4.626 |
|  |  | \#11 | \#12 | \#13 | \#14 | \#15 | \#16 | \#17 | \#18 | \#19 |
| Instant E/<E> : 5.711Bandwidth inden : \#2aSuhband Numben |  | $27.509$ | 2.633 | 6.017 | 5.367 | 2.958 | 6.000 | 2.661 | 25.444 | 23.574 |
|  |  | \#21 | \#22 | \#23 | \#24 | \#25 | \#26 | \#27 | \#28 | \#29 |
| $\begin{aligned} & \text { Instant E/<E〉: } 12.233 \\ & \text { Banduidth } \begin{array}{l} \text { E } \\ \text { Suhband Numbon : } \end{array}=3.0 \end{aligned}$ |  | $7.656$ | 4.565 | 5.338 | 10.090 | 25.377 | 4.174 | 13.660 | 13.293 | 9.651 |
|  |  | \#31 | \#32 | \#33 | \#34 | \#35 | \# | \#37 | 13 | \#39 |
| Instant $\mathrm{E} /\langle\mathrm{E}\rangle$ : 6.237Bandwidth :Subhand Numbon : \#49 |  | $\begin{aligned} & 7.682 \\ & { }_{H 41} \end{aligned}$ | 10.244 $\# 42$ $\# 4$. | 11.973 \#43 118 | 7.783 ${ }_{\text {\# }}^{\text {7. }}$ | 4.156 $\# 45$ | 7.688 \#46 | 5.486 \#47 | 12.488 <br> H48 <br> 18 | 24.175 \#49 $\# 49$ |
| $\begin{aligned} & \text { Instant } \mathrm{E} /\langle\mathrm{E}\rangle \text { : } \\ & \text { Bandwidth } \\ & \text { Subband Number : } \end{aligned}$ | $9.163$ | 9.671 | 14.882 | 11.293 | 6.828 | 16.133 | 11.559 | 5.419 | 9.674 | 21.412 |
|  | \#59 | \# ${ }^{19} 1$ | \#52 | 53 | \#54 | \#55 | \#56 | \#5? | \#58 | \#59 |
| $\begin{aligned} & \text { Instant } E /\langle E\rangle \text { : } \\ & \text { Bandwidth } \\ & \text { Subband Number : } \end{aligned}$ | $29.762$ | 14.833 | 8.444 | 6.239 | 13.659 | 9.269 | 18.571 | 10.588 | 14.26? | 12.864 |
|  | \#60 | \#61. | \#62 | \#63 | \#64 | \#65 | \#66 | \#6 7 | \#168 | \#69 |
| Instant $\mathbf{E} /\langle\mathrm{E}\rangle$ :BandWidthu:Subband Number : | 4.947 | 14.182 | 11.133 | 8.350 | 58.133 | 31.46 ? | 49.297 | 16.438 | 15.739 | 21.579 |
|  | \#70 | \#11 | \#72 | \#73 | \#74 | \#75 | \#76 | \#77 | \#18 | \#79 |
| $\begin{aligned} & \text { Instant } \mathrm{E} /\langle\mathrm{E}\rangle \text { : } \\ & \text { Bandwidth } \\ & \text { Subband Number : } \end{aligned}$ | 19.176 | 11.636 | 18.667 | 13.842 | 12.423 | 5.040 | 23.512 | 19.786 | 11.429 | 10.370 |
|  |  | \#B1 | \#82 | \#83 | \#84 | \#85 | \#86 | \#87 | \#188 | \#89 |
| $\begin{aligned} & \text { Instant } \mathbf{E} /\langle E\rangle \text { : } \\ & \text { Banduid } \\ & \text { Subband Number : } \end{aligned}$ | 6.581 | 13.065 | 9.833 | 10.692 | 11.160 | 8.517 | 7.519 | 2.756 | 8.563 | 13.759 |
|  | \#90 | \#11 | \#92 | \#93 | \#94 | \#95 | \#96 | \#97 | \#198 | \#99 |
| $\begin{aligned} & \text { Instant } \mathrm{E} /\langle\mathrm{E}\rangle \text { : } \\ & \text { Bandwidth } \\ & \text { Subband Number : } \end{aligned}$ | 7.967 | 1.256 | 3.054 | 9.604 | 8.265 | 17.051 | 8.893 | 8.206 | 8.333 | 9.038 |
|  | \#100 | \#101 | \#1ø2 | \#103 | \#104 | \#105 | \#106 | \#107 | \#108 | \#109 |
| Instant $\mathrm{E} /\langle\mathrm{E}\rangle$ : <br> BandWidth : <br> Subband Number : | 16.778 | 5.382 | 11.822 | 9.280 | 17.529 | 11.043 | 20.143 | 8.468 | 18.476 | 12.611 |
|  | \#110 | \#111 | \#112 | \#113 | \#114 | \#115 | \#116 | \#117 | \#118 | \#119 |
| $\begin{aligned} & \text { Instant } \mathrm{E} /\langle\mathrm{E}\rangle \text { : } \\ & \text { Bandwidth : } \\ & \text { Subband Number : } \end{aligned}$ | 5.935 | 20.400 | 3.692 | 9.727 | 17.851 | 1.360 | 3.723 | 2.243 |  |  |
|  | \#120 | \#121 | \#122 | \#123 | \#124 | \#125 | \#126 | \#127 |  |  |

From: Beat Detection Algorithms, page 14

### 2.3 Schematics, Calculations, and Simulations

## Arduino Uno



From http://arduino.cc/en/Main/arduinoBoardUno

| Input Name | Function | Output Name | Connection |
| :---: | :---: | :---: | :---: |
| A0 | Signal from LPF | D3 | Output to Driver Shield 1 |
| A1 | Signal from BPF | D5 | Output to Driver Shield 2 |
| A2 | Signal from HPF | D6 | Output to Driver Shield 3 |
| +5 V | Power for Microphone |  |  |

## HP LED Driver Shield


http://www.ethermania.com/shop/index.php?main_page=product_info\&products_id=1176
Powered by 24 V Power Supply
Data Input: from Arduino Uno PWM Digital Output
Out1: LED Strand 1
Out2: LED Strand 2
Out3: LED Strand 3
Out4: LED Strand 4

## Low Pass Circuit Schematic



Design Specifications
$\mathrm{f}_{\text {low }}=1 /\left(2^{*} \mathrm{pi}^{*} \mathrm{R} 1^{*} \mathrm{C}_{\text {low }}\right)$
$\mathrm{C}_{\text {low }}=1 /\left(2 * \mathrm{pi} * \mathrm{R} 1 * \mathrm{f}_{\text {low }}\right)$
$\mathrm{C}_{\text {low }}=1 /\left(2 * \mathrm{pi}^{*} 1 \mathrm{kOhm} * 60 \mathrm{~Hz}\right)$
$\mathrm{C}_{\text {low }}=265 \mathrm{nF}$

## Simulation



## High Pass Filter Circuit Schematic



## Design Specifications

$\mathrm{f}_{\text {high }}=1 /\left(2^{*} \mathrm{pi}^{*} \mathrm{R}^{*} \mathrm{C}_{\text {high }}\right)$
$\mathrm{C}_{\text {high }}=1 /\left(2 * \mathrm{pi} * \mathrm{R} 1 * \mathrm{f}_{\text {high }}\right)$
$\mathrm{C}_{\text {high }}=1 /\left(2 * \mathrm{pi}^{*} 1 \mathrm{kOhm} * 1000 \mathrm{~Hz}\right)$
$\mathrm{C}_{\text {high }}=16 \mathrm{nF}$

## Simulation



## Band Pass Filter Circuit Schematic



Design Specifications
$\mathrm{f}_{\text {low }}=1 /\left(2 * \mathrm{pi} * \mathrm{R} 1 * \mathrm{C}_{\text {low }}\right)$
$\mathrm{C}_{\text {low }}=1 /\left(2 * \mathrm{pi} * \mathrm{R} 1 * \mathrm{f}_{\text {low }}\right)$
$\mathrm{C}_{\text {low }}=1 /\left(2 * \mathrm{pi}^{*} 1 \mathrm{kOhm} * 60 \mathrm{~Hz}\right)$
$\mathrm{C}_{\text {low }}=265 \mathrm{nF}$
$\mathrm{f}_{\text {high }}=1 /\left(2 * \mathrm{pi}^{*} \mathrm{R}^{*} \mathrm{C}_{\text {high }}\right)$
$\mathrm{C}_{\text {high }}=1 /\left(2 * \mathrm{pi} * \mathrm{R} 1 * \mathrm{f}_{\text {high }}\right)$
$\mathrm{C}_{\text {high }}=1 /\left(2 * \mathrm{pi}^{*} 1 \mathrm{kOhm} * 1000 \mathrm{~Hz}\right)$
$\mathrm{C}_{\text {high }}=16 \mathrm{nF}$

Simulation


## Microphone Circuit



## Design Specifications

DC Offset = V2*(R1)/(R2+R1)
Desired Offset $=.25 \mathrm{~V}=.5 \mathrm{~V}(\mathrm{R} 1) /(\mathrm{R} 2+\mathrm{R} 1)$
$\mathrm{R} 1=1 \mathrm{kOhm}$
$\mathrm{R} 2=1 \mathrm{kOhm}$
Simulation


### 3.0 Requirements and Verification

### 3.1.1 Microphone

| Requirement | Verification |
| :---: | :---: |
| Microphone Powered and Grounded <br> 1) Microphone powered with $V_{D D}$ range from 1.6 V to $3.3 \mathrm{~V}+/-20 \% \backslash$ <br> 2) Microphone grounded to 0 Volts | 1) Play audio signal possessing frequency of 1000 Hz . Using a volt-meter, find the voltage difference at the microphone output and display on the oscilloscope. <br> 2) Using a volt-meter, measure the voltage at the ground pin to ensure that it equals $0 \mathrm{~V}+/-.25 \mathrm{~V}$ |
| Microphone detects audio signal <br> 1) Vout from microphone has range of .25 V to $.25 \mathrm{~V}+/-50 \%$ | 1) Play audio signal possessing frequency of 1000 Hz . Using a volt-meter, find the voltage difference at the microphone output and display on the oscilloscope. |
| Maximum output voltage amplitude level maintained by Gain factor of $1+/-40 \%$ <br> 1) Measure input voltage range range $[-.25$ V, .25 V$]+/-20 \%$ <br> 2) Measure output voltage range range $[-$ $.25 \mathrm{~V}, .25 \mathrm{~V}]+/-20 \%$ <br> 3) Compute the average input voltage $[-.3$ $\mathrm{V}, .3 \mathrm{~V}]+/-20 \%$ <br> 4) Compute the average output voltage $[-$ $.3 \mathrm{~V}, .3 \mathrm{~V}]+/-20 \%$ <br> 5) Gain $=1+/-40 \%$ | 1) Apply 1000 Hz signal of amplitude $=$ .25 V with function generator to Vin terminal. Using a volt-meter, measure input voltage from filter. Display on oscilloscope. <br> 2) Using a volt-meter, measure output voltage from filter. Display on oscilloscope. <br> 3) $($ Vin Max+Vin Min $) / 2$ <br> 4) $($ Vout Max+Vout Min) $/ 2$ <br> 5) Divide the average output voltage by the average input voltage |
| DC Offset shifts signal <br> 1) Offset Circuit Powered <br> 2) Offset Circuit Grounded <br> 3) Vout from Offset Circuit between [0, .5] $\mathrm{V}+/-.2 \mathrm{~V}$ | 1) Probe the V++ pin with voltmeter to ensure that it receives $5 \mathrm{~V}+/-20 \%$ <br> 2) Probe the V-- pin with voltmeter to ensure that it receives $-5 \mathrm{~V}+/-20 \%$ <br> 3) Input 1000 Hz signal with voltage amplitude $=.25 \mathrm{~V}$. Measure the output with a voltmeter and display output on oscilloscope to ensure signal range is from $[0, .5] \mathrm{V}+/-.20 \mathrm{~V}$ |

### 3.1.2 Low Pass Filter

This device is intended to pass frequencies below 60 Hz

| Requirement | Verification |
| :---: | :---: |
| Gain $=10$ <br> 1) Measure Vout range $[-2.5 \mathrm{~V}, 2.5 \mathrm{~V}]+/-$ $20 \%$ <br> 2) Compute Vout average $[-2.5 \mathrm{~V}, 2.5 \mathrm{~V}]$ $+/-20 \%$ <br> 3) Measure Vin range $[-.25 \mathrm{~V},, 25 \mathrm{~V}]+/-$ $20 \%$ <br> 4) Compute Vin average $[-.25 \mathrm{~V}, .25 \mathrm{~V}]$ $+/-20 \%$ <br> 5) Gain $=10+/-50 \%$ | Apply 40 Hz signal of amplitude $=2.5 \mathrm{~V}$ with function generator to Vin terminal. <br> 1) Using a volt-meter, measure output voltage range from filter. Display on oscilloscope <br> 2) (Vout Max+Vout Min)/2 <br> 3) Using a volt-meter, measure input voltage range from filter. Display on oscilloscope <br> 4) $($ Vin Max+Vin Min) $/ 2$ <br> 5) Divide average Vout by average Vin. |
| Frequency below 60 Hz passed Vout $=$ Vin $+/-20 \%$ | Apply 40 Hz signal of amplitude $=2.5 \mathrm{~V}$ with function generator to Vin terminal. Using a volt-meter, measure output voltage range from filter. Display on oscilloscope |
| Frequency above 60 Hz attenuated $\text { Vout }=0+/-.5 \mathrm{~V}$ | Apply 100 Hz signal of amplitude $=2.5 \mathrm{~V}$ with function generator to Vin terminal. Using a volt-meter, measure output voltage from filter. Display on oscilloscope |

### 3.1.3 High Pass Filter

This device passes the frequencies above 1000 Hz

| Requirement | Verification |
| :---: | :---: |
| Gain $=1$ <br> 1) Measure Vout range $[-2.5 \mathrm{~V}, 2.5 \mathrm{~V}]+/-$ $20 \%$ <br> 2) Compute Vout average $[-2.5 \mathrm{~V}, 2.5 \mathrm{~V}]$ $+/-20 \%$ <br> 3) Measure Vin range $[-.25 \mathrm{~V}, .25 \mathrm{~V}]+/-$ $20 \%$ <br> 4) Compute Vin average $[-.25 \mathrm{~V}, .25 \mathrm{~V}]$ $+/-20 \%$ <br> 5) Gain $=10+/-50 \%$ | Apply 1000 Hz signal of amplitude $=2.5 \mathrm{~V}$ with function generator to Vin terminal. <br> 1) Using a volt-meter, measure output voltage range from filter. Display on oscilloscope <br> 2) $($ Vout Max+Vout Min)/2 <br> 3) Using a volt-meter, measure input voltage range from filter. Display on oscilloscope <br> 4) $($ Vin Max+Vin Min) $/ 2$ <br> 5) Divide average Vout by average Vin. |
| Frequency below 1000 Hz attenuated $\text { Vout }=0+/-.5 \mathrm{~V}$ | Apply 40 Hz signal of amplitude $=2.5 \mathrm{~V}$ with function generator to Vin terminal. Using a volt-meter, measure output voltage from filter. Display on oscilloscope |
| Frequency above 1000 Hz passed Vout $=$ Vin $+/-20 \%$ | Apply 1200 Hz signal of amplitude $=2.5 \mathrm{~V}$ with function generator to Vin terminal. Using a volt-meter, measure output voltage from filter. Display on oscilloscope |

### 3.1.4 Band Pass Filter

Circuit passes frequencies between 60 Hz and 1000 Hz

| Requirement | Verification |
| :---: | :---: |
| Gain $=10$ <br> 1) Measure Vout range $[-2.5 \mathrm{~V}, 2.5 \mathrm{~V}]+/-$ $20 \%$ <br> 2) Compute Vout average $[-2.5 \mathrm{~V}, 2.5 \mathrm{~V}]$ $+/-20 \%$ <br> 3) Measure Vin range $[-.25 \mathrm{~V}, .25 \mathrm{~V}]+/-$ $20 \%$ <br> 4) Compute Vin average $[-.25 \mathrm{~V}, .25 \mathrm{~V}]$ $+/-20 \%$ <br> 5) Gain $=10+/-50 \%$ | Apply 500 Hz signal of amplitude $=2.5 \mathrm{~V}$ with function generator to Vin terminal. <br> 1) Using a volt-meter, measure output voltage range from filter. Display on oscilloscope <br> 2) (Vout Max+Vout Min)/2 <br> 3) Using a volt-meter, measure input voltage range from filter. Display on oscilloscope <br> 4) $($ Vin Max + Vin Min) $/ 2$ <br> 5) Divide average Vout by average Vin. |
| Frequency below 60 Hz attenuated Vout $=0+/-.5 \mathrm{~V}$ | Apply 40 Hz signal of amplitude $=.25 \mathrm{~V}$ with function generator to Vin terminal. Using a volt-meter, measure output voltage from filter. Display on oscilloscope |
| Frequency above 1000 Hz attenuated Vout $=0+/-.5 \mathrm{~V}$ | Apply 1200 Hz signal of amplitude $=.25 \mathrm{~V}$ with function generator to Vin terminal. Using a volt-meter, measure output voltage from filter. Display on oscilloscope |
| Frequencies between $60 \mathrm{~Hz} \& 1000 \mathrm{~Hz}$ passed Vout $=$ Vin+/- $20 \%$ | Apply 500 Hz signal of amplitude $=.25 \mathrm{~V}$ with function generator to Vin terminal. Using a volt-meter, measure output voltage from filter. Display on oscilloscope |

### 3.1.5 Arduino Microcontroller

| Requirement | Verification |
| :---: | :---: |
| Device is powered <br> 1) Voltage Supplied to Arduino Uno is <br> between [7,12] Volts | 1)Probe supply terminal of Arduino Uno <br> with a volt-meter. Display signal on <br> oscilloscope. |
| Device accepts signal from analog input <br> 1) Analog input detects range of [0, 5] V | 1)Apply 500 Hz signal of amplitude = 2.5 <br> V and DC offset 2.5 V with function <br> generator to analog input 1. Graph <br> input data in Arduino programming <br> module <br> Device outputs to digital PWM pins <br> 1) Ensure that pins D3,D5, D6 output <br> dispatch signal1)Apply 500 Hz signal of amplitude = 2.5 <br> V and DC offset 2.5 V with function <br> generator to analog input 1. Measure <br> output on digital pins D3, D5, \& D6 <br> using oscilloscope. |

### 3.1.6 Arduino Power Supply

| Requirement | Verification |
| :--- | :--- |
| Device supplies proper voltage to the Arduino | 1) Probe Arduino Uno's voltage input port |
| Microcontroller | with a volt-meter. Display signal on |
| 1) Voltage Supplied between [7, 12] Volts | oscilloscope. |
| Supplied Current is Acceptable | 1) Place a resistor in series between the Power |
| 1) Applied current remains between 0 A and | Supply and the Arduino Uno. Use Ammeter to <br> 1.0A |

3.1.7 Four Channel High Power LED Driver Shield

| Requirement | Verification |
| :---: | :---: |
| Driver receives correct voltage <br> 1) Voltage Supplied between [7, 27] Volts | 1) Probe output of battery voltage port with a volt-meter. Display signal on oscilloscope. |
| Driver receives signal from Arduino Uno <br> 1) Output signal from Arduino Data Pins between [0, 40] mA +/- 20\% | 1) Probe input of Driver Shield with a ammeter. Display signal on oscilloscope. |
| Driver powers LED strands <br> 1) With input signal, LEDs become distinguishably on | 1) Input square wave function with $50 \%$ Duty Cycle. Observe visible illumination |

### 3.1.8 24V Power Supply

| Requirement | Verification |
| :--- | :--- |
| Device supplies proper voltage to the LED | 1) Probe LED Driver Shield's voltage input |
| Driver Shield | port with a volt-meter. Display signal on |
| 1) Voltage Supplied between [7, 27] Volts | oscilloscope. |
| Supplied Current is Acceptable | 1) Place a resistor in series between the Power |
| 1) Applied current remains between 0 A and | Supply and the Arduino Uno. Use Ammeter to |
| 1.5A | measure current |

### 3.1.9 LED Strand

| Requirement | Verification |
| :---: | :---: |
| Voltage over LEDs fluctuates with time <br> 1) LEDs receive voltage difference between $[0,3.0]+/-20 \% \mathrm{~V}$ <br> 2) Calculate Vout Average $[0,3.0]+/-$ $20 \%$ V <br> 3) LEDs turn on/off | Apply 2 Hz square wave signal of amplitude $=$ 2.5 V with function generator to Vin terminal. <br> 1) Using a volt-meter, measure input voltage range over LEDs. Display on oscilloscope <br> 2) $($ Vout Max+Vout Min)/2 <br> 3) Using a volt-meter, measure output voltage range from filter. Display on oscilloscope |
| LEDs receive proper current <br> 1) LEDs receive current between [ 250 $\mathrm{mA}, 450 \mathrm{~mA}]+/-20 \%$ | Apply 2 Hz square wave signal of amplitude $=$ 2.5 V with function generator to LED strip input terminal. <br> 1) Using an ammeter, measure input |


|  | current range from filter. Display on <br> oscilloscope |
| :--- | :--- |

3.1.10 Beat Detecting Algorithm

| Calculates Fast Fourier Transform | Apply data series of 16 data points into Fast Fourier Transform component of Algorithm. Compare algorithm output with expected Fourier Transforms of data inputs. Find the ratio of each 'Algorithm Output' to 'Calculated Fast Fourier Transform s' |
| :---: | :---: |
| Calculates the sum of a series | Apply data series of 16 data points into Sum component of Algorithm. Calculate expected value for the sum. Find ratio of 'Algorithm Output' to 'Calculated Sum'. Ratio $=1+/-20 \%$ |
| Variance between Instantaneous Energy and Average Energy Calculated | Enter values for Instantaneous Energy and Average Energy. Compare output value with calculated value. Find ratio of 'Algorithm Output' to 'Calculated Variance'. Ratio $=1+/-$ 20\% |
| Comparison Value Calculated | Enter value for Variance. Compare output value with calculated value. Find ratio of 'Algorithm Output' to 'Calculated C". Ratio = $1+/-20 \%$ |
| Comparison between Instantaneous Energy and Average Energy Calculated <br> 1) Beat Detected <br> 2) No Beat Detected | 1) Enter values for Instantaneous Energy, Average Energy, and 'C' that indicate a beat is detected. Ensure that algorithm indicates that a beat has been detected with ' 1 ' output. <br> 2) Enter values for Instantaneous Energy, Average Energy, and ' C ' that indicate a beat is not detected. Ensure that algorithm indicates that a beat has been detected with ' 0 ' output. |

### 3.2 Tolerance Analysis

The beat detection algorithm should correctly detect beats such that the lights correctly follow the auditory beat signature. If the beat detection algorithm detects too few beats, then the lights will seem slow and uneven compared to the audio signal and thus will provide an unacceptable light show. If the beat detection algorithm detects too many beats (as in it detects non), the LEDs will respond too fast and possibly keep the remain in a superposition of On/Off states; this is also unacceptable performance. An analysis of calculated beat frequency versus expected beat frequency will be conducted by dividing the former by the latter. The target ratio is 1.00 , with $25 \%$ error permissible on each end providing an acceptable error range of [.75, 1.25].

### 4.0 Cost \& Schedule

Cost Breakdown
Labor
$40(\$ / \mathrm{hr}) * 200(\mathrm{hrs}) * 2.5=20,000$
Parts

| Part Type | Part Number | Cost | Quantity | Cost*Quantity |
| :--- | :--- | :---: | :---: | :---: |
| Arduino Uno | Uno R3 | 31.99 | 1 | 31.99 |
| LED Driver Shield | HPLED1SH | 36.43 | 3 | 109.29 |
| Arduino Power Supply | TOL-00298 | 5.95 | 1 | 5.95 |
| Power Supply | RS-25-24 | 14.95 | 3 | 44.85 |
| Resistor | 1 kOhm Resistor | .10 | 6 | .60 |
|  | 10 kOhm Resistor | .10 | 2 | .60 |
| Capacitor | .015 uF Cap | .39 | 2 | .78 |
|  | .27 uF Cap | .89 | 2 | 1.78 |
| Op Amp | LF412CD | .44 | 4 | 1.76 |
| Microphone | ADMP504 | 1.95 | 1 | 1.95 |
| LEDs | SMD5050 | .80 | 12 | 9.60 |


| Final Cost Breakdown | (in US Dollars) |
| :--- | :--- |
| Anticipated Parts Cost | 209.15 |
| Estimated Labor Cost | 20,000 |
| Total | $20,209.15$ |

4.2 Schedule

| Date | Tasks to be Completed |
| :---: | :--- |
| $2 / 11 / 2013$ | Research specific part numbers for components |
| $2 / 18 / 2013$ | Test power supply with LEDs <br> Buy parts |
| $2 / 25 / 2013$ | Combine Modular circuit diagrams |
| $3 / 4 / 2013$ | Begin implementing beat detection algorithm |
| $3 / 11 / 2013$ | Configure LED Driver Shield |
| $3 / 18 / 2013$ | Construct Microphone \& Power Supply |
| $3 / 25 / 2013$ | Connect and test LED Driver Shield with LEDs |


| $4 / 1 / 2013$ | Fix design flaws, buy new replacement parts |
| :---: | :--- |
| $4 / 8 / 2013$ | Assemble each module and connect them together |
| $4 / 15 / 2013$ | Test Integrated system |
| $4 / 22 / 2013$ | Fix Bugs related to system |
| $4 / 29 / 2013$ | Test Final Project |

### 5.0 Safety

This product must be safe to operate as it can cause bodily harm if not utilized correctly. The voltages (less than 24.0 V ) and currents (less than 1.4 A ) used are relatively small; thus, power dissipation that could cause harm within the circuit is not of large concern. In order to maintain this level of safety, the gains on the microphone amplifier and the filters must remain on the same order of magnitude. Resistors can vary wildly in magnitude; the ECE parts shop has resistors of at least 22 Mega Ohms in resistance magnitude. An increase in magnitude on the order of one million for the amplifiers would upset this balance and could cause injury.

### 6.0 Ethics

The IEEE Code of Ethics details guidelines upon which all members are supposed to act on. From the listed guidelines, this project makes pertinent the need to accept full responsibility for the claims that the project states it will perform. Furthermore, the data must support the design reasoning. Furthermore, circuit designs should be shared such that they can be tested, verified, and improved upon by the scientific community in the name of progress and the betterment of mankind. Any errors found must be corrected such that the intended outcome is realized. I fully understand my limitations and the extent of my knowledge when it comes to constructing circuits.

### 7.0 References

24 V Power Supply http://www.mouser.com/ProductDetail/Mean-Well/RS-2524/?qs=pqZ7J9Gt/mpeEI49gnAroA==

4 Channel High Power LED Driver Shield:
http://www.ethermania.com/shop/download/HPLedShield.pdf
ADMP504 Microphone http://www.analog.com/en/audiovideo-products/memsmicrophones/admp504/products/product.html

Arduino Uno http://arduino.cc/en/Main/arduinoBoardUno
Arduino Power Supply https://www.sparkfun.com/products/298
Goto, Matasaka. An Audio-based Real-time Beat Tracking System for Music With
or Without Drum-sounds

National Semiconductor. Op Amp Circuit Collection. Texas Instruments. May 2004. Web. 11 Feb. 2013. http://www.ti.com/lit/an/snla140a/snla140a.pdf

National Semiconductor. LM102/LM302 Voltage Followers. November 1994. Web. 13 Feb. 2013.
http://read.pudn.com/downloads107/ebook/440848/\�\�\�\�\�\�\�\�\%B E\%E5\%A4\%A7\%E5\%99\%A8\%E7\%94\%B5\%E8\%B7\%AF/LM102_IcpdfCom.pdf

Parchizadeh, Hassan. "Pulse Width Modulation." (n.d.): n. pag. Web. 15 Feb. 2013.
Patin, Frederic: Beat Detection Algorithms.

Tsai, Sung-Feng, \& Gu, Hung-Yan: A Discrete-cepstrum Based Spectrum-envelope Estimation Scheme and Its Example Application of Voice Transformation

