ECE 445 Spring 2013

Music Response Light Show

Design Review Andy Groesch TA: Lydia Majure February 25, 2013 **Table of Contents**

- 1 Introduction
 - 1.1) Project Summary
 - 1.2) Objectives
 - 1.2.1) Goals
 - 1.2.2) Functions
 - **1.2.3) Benefits**
 - 1.2.4) Features
- 2 Design
 - 2.1) Block Diagram
 - 2.2) Block Description Summary
 - 2.2.1) Microphone
 - 2.2.2) Low Pass Filter
 - 2.2.3) High Pass Filter
 - 2.2.4) Band Pass Filter
 - 2.2.5) Arduino Microcontroller
 - 2.2.6) Arduino Power Supply
 - 2.2.7) Four Channel LED Driver Shield
 - 2.2.8) 24V Power Supply
 - 2.2.9) LED Strand
 - 2.2.10) Beat Detecting Algorithm
 - 2.3) Schematics, Calculations, & Simulations
- 3 Requirements and Verification
 - **3.1)** Requirements and Verification Tables
 - 3.1.1) Microphone
 - 3.1.2) Low Pass Filter
 - 3.1.3) High Pass Filter
 - 3.1.4) Band Pass Filter
 - 3.1.5) Arduino Microcontroller
 - 3.1.6) Arduino Power Supply
 - 3.1.7) Four Channel LED Driver Shield
 - 3.1.8) 24V Power Supply
 - 3.1.9) LED Strand
 - **3.1.10) Beat Detecting Algorithm**
 - 3.2) Tolerance Analysis
- 4 Cost & Schedule
 - 4.1) Cost Analysis
 - 4.2) Schedule
- 5 Safety
- 6 Ethics
- 7 References

1.0 Introduction

1.1 Project Summary

The intent of this project is to make a lighting system that responds to music that is heard through the air. The microphone will detect the sonic signal and convert it into an analog signal. Then, the signal will be filtered based on the low, middle, and high frequency components. These signals will then be passed through a beat detection algorithm that will then pass data to a series of LED Driver Shields. These shields will control four strands of LEDs each, for a total of twelve LED arrangements.

1.2 Objectives

1.2.1 Goals:

- Split audio signal into three frequency bands
- Uses Beat Detection algorithm to identify beats in audio
- LED strands strobe based on output signal from

1.2.2 Functions

- Separates frequencies based on cutoff values determined from common instrument ranges
- LEDS strobe operate based on pressure fluctuations
- Different combinations of LEDs turn on based beat detection ouputs

1.2.3 Benefits

- Provides visual component to music entertainment
- Helps to understand concepts of harmonic frequency and electronic music
- Easily replicable

1.2.4 Features

- Autonomous light control; doesn't require user input
- LEDs strobe to the beat of each of the frequency bands
- Automatically enables combinations of lights based on different frequency spectra

2.0 Design 2.1 Block Diagram

2.2 Block Description Summary

The microphone detects an audio signal from the air and converts it into an analog one. Then, a DC offset is added such that the signal is entirely positive. This signal is then sent through three filters (low pass, band pass, and high pass) such that these frequency bands are extracted. Then, these signals are sent into the through a beat detection algorithm. The beat detection algorithm then outputs a digital signal that is sent to the 4 Channel LED Driver that indicates when the LEDs should oscillate between On and Off states.

2.2.1 Microphone

This is used to detect an audio signal and convert it into an analog sinusoid representing the pressure fluctuations. The ADMP504 microphone is used in this design. It possesses maximum output voltage amplitude of .25 V; the microcontroller accepts voltage inputs ranging from 0 to 5 volts, and as such the output voltage of the microphone needs to be amplified with a gain of 10. The V_{DD} range is from 1.6 V to 3.3 V and is powered by the Arduino Uno.

2.2.2 Low Pass Active Filter

This circuit only allows low frequencies to pass as it attenuates the larger ones. This allows some of the lights to be mapped only to the lower frequencies. This typically includes the bass band and instruments like the kick drum, toms, bass, and tuba. The cutoff point of 160 Hz was chosen to ideally exclude the singer's voice.

2.2.3 High Pass Active Filter

This circuit only allows high frequencies to pass as it attenuates the smaller ones. This allows some of the lights to be mapped only to these higher frequencies. The cutoff frequency was chosen to be 1000 Hz

2.2.4 Band Pass Filter

This circuit allows frequencies between a desired range of cutoff frequencies to pass. For this design, the cutoff frequencies of 60 Hz and 1000 Hz were chosen.

2.2.5 Arduino Uno Microcontroller

The microcontroller is powered by the Arduino Uno Power Supply. It accepts an analog audio input from the microphone circuit, and detects voltage input ranges from 0 to 5 Volts. The microcontroller first separates the signal into three different frequency ranges by the way of a low pass, band pass, and high pass filter. These three signals are then analyzed by the beat detection algorithm on the data. The output data is then dispatched to the 4 Channel High Power LED Driver.

2.2.6 Arduino Uno Power Supply

The power supply delivers 9V of DC voltage with a 650 mA current to the Arduino Microcontroller.

2.2.7 4 Channel High Power LED Driver Shield

This shield accepts any voltage range from 8 to 27 Volts. A 24 Volt power supply was chosen o power the Driver Shield. This value was chosen because the amount of LEDs is related to the

applied voltage; thus, as the applied voltage increases, more LEDs can be powered by the Driver Shield. Each shield will have four LED strands connected to its output terminals.

2.2.8 24V Power Supply

This device was chosen to power the 4 Channel High Power LED Driver Shield. It is capable of a maximum output current of 1.1 A corresponding to a maximum power output of 26.4 W.

2.2.9 LED Strands

Four strands of LEDs will be affixed to each of the Driver Shields, totaling 12 strands total. These LED strands will be mounted on a 42" tomato cage, with the low band LED string on the lowest rung, the mid band LED string on the middle rung, and the band LED string on the highest rung.

2.2.10 Beat Detection Algorithm

From Frederic Patin, "Beat Detection Algorithms"

The algorithm detects beats by first computing the average sound energy, comparing it to the instantaneous sound energy, and indicating a detected beat once the instantaneous energy exceeds the average energy.

The electret microphone can detect frequencies up to 2000 Hz; therefore, the minimum sampling rate (by the Nyquist criterion) is equal to (2*2,000) = 4kHz

First, the algorithm performs the Fast Fourier Transform on the input signal 'a(t)' to get A[f]. To obtain the energy, these values are squared and stored in a buffer named B containing 256 data entry positions. Then, the buffer is divided into 16 sub-bands of 16 values. The instantaneous energy is calculated by summating the 16 different energy values that were sampled. Thus, the value of the instantaneous energy in each subband 'I' will be calculated by the following formula:

Es[i] = 16/256*Sum(B[k]) from k = i*16 to k = (i+1)*16

Following this is an 'energy history buffer' named Ei, which is a data storage element holding the previous sixteen values for instantaneous energy in each subband 'i'. The 'average energy' is calculated by the following formula:

<E>=1/16*Sum(Ei[k]) from k=0 to k =15

Then, the sound energy history buffer Ei is shifted one index to the right to make room for new data; the oldest data is pushed out of the buffer. Then, a new energy value Es[i] is entered into the first spot of the buffer at place Ei[0].

Then, the model computes the Variance of the Energies in order to compare the instantaneous energy value to the average energy value:

 $V(Ei)=1/16*Sum(Ei[k] - (Ei))^2$ for k = 0 to k = 15

Then, compute the 'C' constant for comparison with the instantaneous energy value C = (-.0025714*V)+1.5142857

This new energy value at Ei[0] is compared to the average energy from the past 16 iterations times the constant C to determine if a beat was detected.

If E_i [0]> C*<Ei> then a beat is detected

If E_i [0]< C*<Ei> then a beat is not detected

Histogram of Instantaneous Energy

From: Bass Detection Algorithms, page 13

Samples : 641655 Time : 14.550 s			FF	T Width unter :	: 4096 641655					
Frames per second				unter ()		40988				
Number of s			50	und Engi		oc !				
Deat Detec			30	ana Ener	.gg varu	es .				
Instant E/(E) : BandWidth : Subband Number :	6.152 BP = 2 #0	2.949 BP = 2 #1	2.917 BP = 3 #2	5.525 BP = 3 #3	1.004 BP = 3 #4	0.192 BP = 3 #5	1.986 BP = 3 #6	45.404 BP = 3 #7	3.692 BP = 3 #8	3.471 BP = 3 #9
Instant E/(E) : BandWidth : Subband Number :	14.341 BP = 3 #10	17.026 BP = 3 #11	2.579 BP = 3 #12	0.819 BP = 3 #13	13.780 BP = 4 #14	4.369 BP = 4 #15	2.957 BP = 4 #16	11.481 BP = 4 #17	0.919 BP = 4 #19	4.626 BP = 4 #19
Instant E/(E) : BandWidth : Subband Number :	5.711 BP = 4 #20	$\frac{27.509}{BP} = 4$ #21	2.633 BP = 4 #22	6.017 BP = 4 #23	5.367 BP = 4 #24	2,958 BP = 4 #25	6.000 BP = 4 #26	2.661 BP = 5 #27	<mark>25.444</mark> BP = 5 #28	23.574 BP = 5 #29
Instant E/ <e> : BandWidth : Subband Number :</e>	12.233 BP = 5 #30	7.656 BP = 5 #31	4.565 BP = 5 #32	5.338 BP = 5 #33	10.090 BP = 5 #34	25.377 BP = 5 #35	4.174 BP = 5 #36	13.660 BP = 5 #37	13.293 BP = 5 #38	9.651 BP = 5 #39
Instant E/(E) : BandWidth : Subband Number :	6.237 BP = 6 #40	7.682 BP = 6 #41	10.244 BP = 6 #42	11.973 BP = 6 #43	7.783 BP = 6 #44	4.156 BP = 6 #45	7.688 BP = 6 #46	5.486 BP = 6 #47	12.488 BP = 6 #48	$\frac{24.175}{BP} = 6$ #49
Instant E/ <e> : BandWidth : Subband Number :</e>	9.163 BP = 6 #50	9.671 BP = 6 #51	14.882 BP = 7 #52	11.293 BP = 7 #53	6.828 BP = 7 #54	16.133 BP = 7 #55	11.559 BP = 7 #56	5.419 BP = 7 #57	9.674 BP = 7 #58	21,412 BP = 7 #59
Instant E/ <e> : BandWidth : Subband Number :</e>	29.762 BP = 7 #60	14.833 BP = 7 #61	8.444 BP = 7 #62	6.239 BP = 7 #63	13.659 BP = 7 #64	9.269 BP = 8 #65	18.571 BP = 8 #66	10.588 BP = 8 #67	14.267 BP = 8 #68	12.864 BP = 8 #69
Instant E/ <e> : BandWidth : Subband Number :</e>	4.947 BP = 8 #70	14.182 BP = 8 #71	11.133 BP = 8 #72	8.350 BP = 8 #73	58.133 BP = 8 #74	31.467 BP = 8 #75	49.297 BP = 8 #76	16.438 BP = 8 #77	15.739 BP = 9 #78	21.579 BP = 9 #79
Instant E/ <e> : BandWidth : Subband Number :</e>	<mark>19.176</mark> BP = 9 #80	11.636 BP = 9 #81	18.667 BP = 9 #82	13.842 BP = 9 #83	12.423 BP = 9 #84	5.040 BP = 9 #85	23.512 BP = 9 #86	19.786 BP = 9 #87	11.429 BP = 9 #88	10.370 BP = 9 #89
Instant E/(E) : BandWidth :	6.581 BP = 10	13.065 BP = 10	9.833 BP = 10	10.692 BP = 10	$\frac{11.160}{BP} = 10$	8.517 BP = 10	7.519 BP = 10	2.756 BP = 10	8.563 BP = 10	13.759 BP = 10
Subband Number :	#90	#91	#92	#93	#94	#95	#96	#97	#98	#99
Instant E/(E) : BandWidth :	BP = 10	1.256 BP = 10	3.054 BP = 10	9.604 BP = 11	BP = 11	BP = 11	BP = 11	BP = 11	$\frac{8.333}{BP} = 11$	9.038 BP = 11
Subband Number :	#100	#101	#102	#103	#104	#105	#106	#107	#108	#109
BandWidth :		BP = 11	BP = 11	BP = 11		BP = 11	BP = 12	BP = 12	$\mathbf{BP} = 12$	BP = 12
Subband Number :	#110	#111	#112	#113	#114	#115	#116	#117	#118	#119
BandWidth : Subband Number :	BP = 12 #120	BP = 12 #121	$\frac{BP}{\#122} = 12$	BP = 12 #123	$\frac{BP}{#124} = 12$	$\frac{BP}{H125} = \frac{12}{125}$	$\frac{BP}{H126} = 12$	$\frac{BP}{#127} = 12$		

Sound Energy Value Calculations

From: Beat Detection Algorithms, page 14

2.3 Schematics, Calculations, and Simulations

Arduino Uno

From http://arduino.cc/en/Main/arduinoBoardUno

Input Name	Function	Output Name	Connection
A0	Signal from LPF	D3	Output to Driver Shield 1
A1	Signal from BPF	D5	Output to Driver Shield 2
A2	Signal from HPF	D6	Output to Driver Shield 3
+5V	Power for Microphone		

HP LED Driver Shield

http://www.ethermania.com/shop/index.php?main_page=product_info&products_id=1176

Powered by 24 V Power Supply Data Input: from Arduino Uno PWM Digital Output Out1: LED Strand 1 Out2: LED Strand 2 Out3: LED Strand 3 Out4: LED Strand 4

Low Pass Circuit Schematic

Design Specifications

 $f_{low} = 1/(2*pi*R1*C_{low})$ $C_{low} = 1/(2*pi*R1*f_{low})$ $C_{low} = 1/(2*pi*1kOhm*60 Hz)$ $C_{low} = 265 nF$

Simulation

High Pass Filter Circuit Schematic

Design Specifications

Simulation

Band Pass Filter Circuit Schematic

Design Specifications

 $\begin{array}{l} f_{high} = 1/(2*pi*R1*\ C_{high}) \\ C_{high} = 1/(2*pi*R1*f_{high}) \\ C_{high} = 1/(2*pi*1kOhm*1000\ Hz) \\ C_{high} = 16\ nF \end{array}$

Simulation

Microphone Circuit

Design Specifications DC Offset = V2*(R1)/(R2+R1) Desired Offset = .25 V = .5 V(R1)/(R2+R1)R1 = 1kOhmR2 = 1kOhm

Simulation

3.0 Requirements and Verification

3.1.1 Microphone	
Requirement	Verification
Microphone Powered and Grounded	1) Play audio signal possessing frequency
1) Microphone powered with V_{DD} range	of 1000 Hz. Using a volt-meter, find
from 1.6 V to 3.3V +/- 20%	the voltage difference at the
2) Microphone grounded to 0 Volts	microphone output and display on the
	oscilloscope.
	2) Using a volt-meter, measure the voltage
	at the ground pin to ensure that it
	equals 0 V +/25 V
Microphone detects audio signal	1) Play audio signal possessing frequency
1) Vout from microphone has range of -	of 1000 Hz. Using a volt-meter, find
.25 V to .25V +/- 50%	the voltage difference at the
	microphone output and display on the
	oscilloscope.
Maximum output voltage amplitude level	1) Apply 1000 Hz signal of amplitude =
maintained by Gain factor of 1+/- 40%	.25 V with function generator to Vin
1) Measure input voltage range range [25	terminal. Using a volt-meter, measure
V, .25 V] +/-20%	input voltage from filter. Display on
2) Measure output voltage range range [-	oscilloscope.
.25 V, .25 V] +/-20%	2) Using a volt-meter, measure output
3) Compute the average input voltage [3	voltage from filter. Display on
V, .3 V] +/-20%	oscilloscope.
4) Compute the average output voltage [-	3) (Vin Max+Vin Min)/2
.3 V, .3 V] +/-20%	4) (Vout Max+Vout Min)/2
5) Gain = 1 +/- 40%	5) Divide the average output voltage by
	the average input voltage
DC Offset shifts signal	1) Probe the V++ pin with voltmeter to
1) Offset Circuit Powered	ensure that it receives 5 V +/- 20%
2) Offset Circuit Grounded	2) Probe the V pin with voltmeter to
3) Vout from Offset Circuit between [0,	ensure that it receives -5 V +/- 20%
.5] V +/2V	3) Input 1000 Hz signal with voltage
	amplitude = $.25$ V. Measure the output
	with a voltmeter and display output on
	oscilloscope to ensure signal range is
	from [0, .5] V +/20 V

3.1.2 Low Pass Filter

This device is intended to pass frequencies below 60 Hz

Requirement	Verification		
Gain = 10	Apply 40 Hz signal of amplitude = 2.5 V with		
1) Measure Vout range [-2.5 V, 2.5 V] +/-	function generator to Vin terminal.		
20%	1) Using a volt-meter, measure output		
2) Compute Vout average [-2.5 V, 2.5 V]	voltage range from filter. Display on		
+/-20%	oscilloscope		
3) Measure Vin range [25V, ,25 V] +/-	2) (Vout Max+Vout Min)/2		
20%	3) Using a volt-meter, measure input		
4) Compute Vin average [25 V, .25 V]	voltage range from filter. Display on		
+/-20%	oscilloscope		
5) $Gain = 10 + -50\%$	4) (Vin Max+Vin Min)/2		
	5) Divide average Vout by average Vin.		
Frequency below 60 Hz passed	Apply 40 Hz signal of amplitude = 2.5 V with		
Vout = Vin + / - 20%	function generator to Vin terminal. Using a		
	volt-meter, measure output voltage range from		
	filter. Display on oscilloscope		
Frequency above 60 Hz attenuated	Apply 100 Hz signal of amplitude = 2.5 V with		
Vout = $0 +5$ V	function generator to Vin terminal. Using a		
	volt-meter, measure output voltage from filter.		
	Display on oscilloscope		

3.1.3 High Pass Filter This device passes the frequencies above 1000 Hz

Requirement	Verification		
Gain = 1	Apply 1000 Hz signal of amplitude = 2.5 V		
1) Measure Vout range $[-2.5 V, 2.5 V] +/-$	with function generator to Vin terminal.		
20%	1) Using a volt-meter, measure output		
2) Compute Vout average [-2.5 V, 2.5 V]	voltage range from filter. Display on		
+/-20%	oscilloscope		
3) Measure Vin range [25V, .25 V] +/-	2) (Vout Max+Vout Min)/2		
20%	3) Using a volt-meter, measure input		
4) Compute Vin average [25 V, .25 V]	voltage range from filter. Display on		
+/-20%	oscilloscope		
5) Gain = $10 + -50\%$	4) (Vin Max+Vin Min)/2		
	5) Divide average Vout by average Vin.		
Frequency below 1000 Hz attenuated	Apply 40 Hz signal of amplitude $= 2.5$ V with		
Vout = 0 +5 V	function generator to Vin terminal. Using a		
	volt-meter, measure output voltage from filter.		
	Display on oscilloscope		
Frequency above 1000 Hz passed	Apply 1200 Hz signal of amplitude = 2.5 V		
Vout = Vin+/- 20%	with function generator to Vin terminal. Using		
	a volt-meter, measure output voltage from		
	filter. Display on oscilloscope		

3.1.4 Band Pass Filter

Circuit passes frequencies between 60 Hz and 1000 Hz

Requirement	Verification		
Gain = 10	Apply 500 Hz signal of amplitude = 2.5 V with		
1) Measure Vout range [-2.5 V, 2.5 V] +/-	function generator to Vin terminal.		
20%	1) Using a volt-meter, measure output		
2) Compute Vout average [-2.5 V, 2.5 V]	voltage range from filter. Display on		
+/-20%	oscilloscope		
3) Measure Vin range [25V, .25 V] +/-	2) (Vout Max+Vout Min)/2		
20%	3) Using a volt-meter, measure input		
4) Compute Vin average [25 V, .25 V]	voltage range from filter. Display on		
+/-20%	oscilloscope		
5) $Gain = 10 + -50\%$	4) (Vin Max+Vin Min)/2		
	5) Divide average Vout by average Vin.		
Frequency below 60 Hz attenuated	Apply 40 Hz signal of amplitude = .25 V with		
Vout = $0 +5$ V	function generator to Vin terminal. Using a		
	volt-meter, measure output voltage from filter.		
	Display on oscilloscope		
Frequency above 1000 Hz attenuated	Apply 1200 Hz signal of amplitude = .25 V		
Vout = $0 +5$ V	with function generator to Vin terminal. Using		
	a volt-meter, measure output voltage from		
	filter. Display on oscilloscope		
Frequencies between 60 Hz & 1000 Hz passed	Apply 500 Hz signal of amplitude = $.25$ V with		
Vout = Vin + / - 20%	function generator to Vin terminal. Using a		
	volt-meter, measure output voltage from filter.		
	Display on oscilloscope		

3.1.5 Arduino Microcontroller

Requirement	Verification		
Device is powered	1) Probe supply terminal of Arduino Uno		
1) Voltage Supplied to Arduino Uno is	with a volt-meter. Display signal on		
between [7,12] Volts	oscilloscope.		
Device accepts signal from analog input	1) Apply 500 Hz signal of amplitude = 2.5		
1) Analog input detects range of [0, 5] V	V and DC offset 2.5 V with function		
	generator to analog input 1. Graph		
	input data in Arduino programming		
	module		
Device outputs to digital PWM pins	1) Apply 500 Hz signal of amplitude = 2.5		
1) Ensure that pins D3,D5, D6 output	V and DC offset 2.5 V with function		
dispatch signal	generator to analog input 1. Measure		
	output on digital pins D3, D5, & D6		
	using oscilloscope.		

3.1.6 Arduino Power Supply

Requirement	Verification
Device supplies proper voltage to the Arduino	1) Probe Arduino Uno's voltage input port
Microcontroller	with a volt-meter. Display signal on
1) Voltage Supplied between [7, 12] Volts	oscilloscope.
Supplied Current is Acceptable	1) Place a resistor in series between the Power
1) Applied current remains between 0 A and	Supply and the Arduino Uno. Use Ammeter to
1.0A	measure current

3.1.7 Four Channel High Power LED Driver Shield

Requirement	Verification		
Driver receives correct voltage	1) Probe output of battery voltage port		
1) Voltage Supplied between [7, 27] Volts	with a volt-meter. Display signal on		
	oscilloscope.		
Driver receives signal from Arduino Uno	1) Probe input of Driver Shield with a		
1) Output signal from Arduino Data Pins	ammeter. Display signal on		
between [0, 40] mA +/- 20%	oscilloscope.		
Driver powers LED strands	1) Input square wave function with 50%		
1) With input signal, LEDs become	Duty Cycle. Observe visible		
distinguishably on	illumination		

3.1.8 24V Power Supply

Requirement	Verification
Device supplies proper voltage to the LED	1) Probe LED Driver Shield's voltage input
Driver Shield	port with a volt-meter. Display signal on
1) Voltage Supplied between [7, 27] Volts	oscilloscope.
Supplied Current is Acceptable	1) Place a resistor in series between the Power
1) Applied current remains between 0 A and	Supply and the Arduino Uno. Use Ammeter to
1.5A	measure current

3.1.9 LED Strand

Requirement	Verification
Voltage over LEDs fluctuates with time	Apply 2 Hz square wave signal of amplitude =
1) LEDs receive voltage difference	2.5 V with function generator to Vin terminal.
between [0,3.0] +/- 20% V	1) Using a volt-meter, measure input
2) Calculate Vout Average [0,3.0] +/-	voltage range over LEDs. Display on
20% V	oscilloscope
3) LEDs turn on/off	2) (Vout Max+Vout Min)/2
	3) Using a volt-meter, measure output
	voltage range from filter. Display on
	oscilloscope
LEDs receive proper current	Apply 2 Hz square wave signal of amplitude =
1) LEDs receive current between [250	2.5 V with function generator to LED strip
mA, 450 mA] +/- 20%	input terminal.
	1) Using an ammeter, measure input

current range from filter. Display on
oscilloscope

3.1.10 Beat Detecting Algorithm			
Calculates Fast Fourier Transform	Apply data series of 16 data points into Fast		
	Fourier Transform component of Algorithm.		
	Compare algorithm output with expected		
	Fourier Transforms of data inputs. Find the		
	ratio of each 'Algorithm Output' to		
	'Calculated Fast Fourier Transform s'		
Calculates the sum of a series	Apply data series of 16 data points into Sum		
	component of Algorithm. Calculate expected		
	value for the sum. Find ratio of 'Algorithm		
	Output' to 'Calculated Sum'. Ratio = $1+/-20\%$		
Variance between Instantaneous Energy and	Enter values for Instantaneous Energy and		
Average Energy Calculated	Average Energy. Compare output value with		
	calculated value. Find ratio of 'Algorithm		
	Output' to 'Calculated Variance'. Ratio = 1 +/-		
	20%		
Comparison Value Calculated	Enter value for Variance. Compare output		
	value with calculated value. Find ratio of		
	'Algorithm Output' to 'Calculated C". Ratio =		
	1 +/- 20%		
Comparison between Instantaneous Energy	1) Enter values for Instantaneous Energy,		
and Average Energy Calculated	Average Energy, and 'C' that indicate a		
1) Beat Detected	beat is detected. Ensure that algorithm		
2) No Beat Detected	indicates that a beat has been detected		
	with '1' output.		
	2) Enter values for Instantaneous Energy,		
	Average Energy, and 'C' that indicate a		
	beat is not detected. Ensure that		
	algorithm indicates that a beat has been		
	detected with '0' output.		

3.2 Tolerance Analysis

The beat detection algorithm should correctly detect beats such that the lights correctly follow the auditory beat signature. If the beat detection algorithm detects too few beats, then the lights will seem slow and uneven compared to the audio signal and thus will provide an unacceptable light show. If the beat detection algorithm detects too many beats (as in it detects non), the LEDs will respond too fast and possibly keep the remain in a superposition of On/Off states; this is also unacceptable performance. An analysis of calculated beat frequency versus expected beat frequency will be conducted by dividing the former by the latter. The target ratio is 1.00, with 25% error permissible on each end providing an acceptable error range of [.75, 1.25].

4.0 Cost & Schedule Cost Breakdown Labor 40 (\$/hr)* 200 (hrs) * 2.5 = 20,000 **Parts**

Part Type	Part Number	Cost	Quantity	Cost*Quantity
Arduino Uno	Uno R3	31.99	1	31.99
LED Driver Shield	HPLED1SH	36.43	3	109.29
Arduino Power Supply	TOL-00298	5.95	1	5.95
Power Supply	RS-25-24	14.95	3	44.85
Resistor	1 kOhm Resistor	.10	6	.60
	10 kOhm Resistor	.10	2	.60
Capacitor	.015 uF Cap	.39	2	.78
	.27 uF Cap	.89	2	1.78
Op Amp	LF412CD	.44	4	1.76
Microphone	ADMP504	1.95	1	1.95
LEDs	SMD5050	.80	12	9.60

Final Cost Breakdown	(in US Dollars)
Anticipated Parts Cost	209.15
Estimated Labor Cost	20,000
Total	20,209.15

4.2 Schedule

Date	Tasks to be Completed
2/11/2013	Research specific part numbers for components
2/18/2013	Test power supply with LEDs Buy parts
2/25/2013	Combine Modular circuit diagrams
3/4/2013	Begin implementing beat detection algorithm
3/11/2013	Configure LED Driver Shield
3/18/2013	Construct Microphone & Power Supply
3/25/2013	Connect and test LED Driver Shield with LEDs

4/1/2013	Fix design flaws, buy new replacement parts
4/8/2013	Assemble each module and connect them together
4/15/2013	Test Integrated system
4/22/2013	Fix Bugs related to system
4/29/2013	Test Final Project

5.0 Safety

This product must be safe to operate as it can cause bodily harm if not utilized correctly. The voltages (less than 24.0 V) and currents (less than 1.4 A) used are relatively small; thus, power dissipation that could cause harm within the circuit is not of large concern. In order to maintain this level of safety, the gains on the microphone amplifier and the filters must remain on the same order of magnitude. Resistors can vary wildly in magnitude; the ECE parts shop has resistors of at least 22 Mega Ohms in resistance magnitude. An increase in magnitude on the order of one million for the amplifiers would upset this balance and could cause injury.

6.0 Ethics

The IEEE Code of Ethics details guidelines upon which all members are supposed to act on. From the listed guidelines, this project makes pertinent the need to accept full responsibility for the claims that the project states it will perform. Furthermore, the data must support the design reasoning. Furthermore, circuit designs should be shared such that they can be tested, verified, and improved upon by the scientific community in the name of progress and the betterment of mankind. Any errors found must be corrected such that the intended outcome is realized. I fully understand my limitations and the extent of my knowledge when it comes to constructing circuits.

7.0 References

24 V Power Supply <u>http://www.mouser.com/ProductDetail/Mean-Well/RS-25-</u>24/?qs=pqZ7J9Gt/mpeEI49gnAroA==

4 Channel High Power LED Driver Shield: http://www.ethermania.com/shop/download/HPLedShield.pdf

ADMP504 Microphone <u>http://www.analog.com/en/audiovideo-products/mems-microphones/admp504/products/product.html</u>

Arduino Uno http://arduino.cc/en/Main/arduinoBoardUno

Arduino Power Supply https://www.sparkfun.com/products/298

Goto, Matasaka. An Audio-based Real-time Beat Tracking System for Music With

or Without Drum-sounds

National Semiconductor. *Op Amp Circuit Collection. Texas Instruments*. May 2004. Web. 11 Feb. 2013. <u>http://www.ti.com/lit/an/snla140a/snla140a.pdf</u>

National Semiconductor. LM102/LM302 Voltage Followers. November 1994. Web. 13 Feb. 2013. http://read.pudn.com/downloads107/ebook/440848/%E4%BB%AA%E8%A1%A8%E6%94%B E%E5%A4%A7%E5%99%A8%E7%94%B5%E8%B7%AF/LM102_IcpdfCom.pdf

Parchizadeh, Hassan. "Pulse Width Modulation." (n.d.): n. pag. Web. 15 Feb. 2013.

Patin, Frederic: Beat Detection Algorithms.

Tsai, Sung-Feng, & Gu, Hung-Yan: A Discrete-cepstrum Based Spectrum-envelope Estimation Scheme and Its Example Application of Voice Transformation