Aggressive Chasing Car

By
Hai Chi
Zhe Ji

Final Report for ECE 445, Senior Design, Spring 2013
May 1, 2013
Project No. 38

Abstract
We designed and built a chasing scene, where a chasing car chases a running car. The running car is a toy car remotely controlled by us. The chasing car is driven by the microcontroller unit (MCU). MCU receives inputs from both the sensors set in front of it, and the signals from image processing component (IPC). IPC calculates the direction the chasing car should go based on the pictures it took. The camera is hung on the ceiling.

Table of Contents
1. Introduction & General Description………………..5
1.1 Motivation……...5
1.2 Objective and Scene Description...5
1.3 Features and Functionalities..6
1.4 Block Diagram…..7
1.5 Block Descriptions..9
2. Design …...11
2.1 Camera Component...11
2.2 Chasing Car Component..17
2.3 Running Car Component...21
2.4 Power Supply...21
3. Verifications...23
3.1 Completeness and Failures…..23
3.2 Testing Procedure……..23
4. Cost Analysis..29
5. Conclusion..30
5.1 Accomplishments..30
5.2 Uncertainties..30
5.3 Future Work...31
5.4 Ethical Considerations...31
5.5 Safety issues..32
6. References...33
7. Appendices...34
A. Requirement and Verification...34
B. Code Snippets...46
C. Calculation..47

[bookmark: _GoBack]
1. Introduction
We built a linkage system among a running car, a chasing car and a camera. The chasing car is driven by the microcontroller, which decides where to go by two modes: sensor mode and camera mode. Both modes involve an aggressive chasing algorithm, which, instead of chasing after the running car, it predicts the trajectory of the running car, estimates the impact point and drives toward it.

1.1 Motivation
When we were bouncing our ideas for the project, it seemed both of us like the idea of reproducing the chasing scenes we saw in action movies. We wanted to build a powerful policeman car that uses all kinds of high-end technology to locate and catch the running criminals. Originally we planned to have both sensors and camera on the chasing car. Due to the limited memory size of a microcontroller, we decide to put the camera on the ceiling to act as a satellite. The project does not have too much benefit for the society, but it is a start of making our ideas come true.

1.2 Objective and Scene Description
Our goal is to realize a chasing scene among a running car controlled by us, a chasing car driven by the microcontroller and the camera on the ceiling.
At first, the chasing car was behind the running car, it starts in sensor mode to chase it with a slightly higher speed. When the chasing car cannot detect the running car for no matter what reasons, it switches to camera mode. From the view above, the IPC will provide a direction command for the chasing car to overtake the running car. Once the chasing car spots the running car again, the chasing car should switch back to sensor mode. The game ends when the chasing car runs into the running car.

1.3 Features and Functionalities
MCU:
· Sensor detection
· Trajectory calculation and estimation.
· Wireless signal receiving and transmitting
· Microcontroller-driven motor module.
· Stable power consuming and supplying

IPC:
· Image recognition and processing.
· Trajectory calculation and interception coordinate estimation.
· Wireless signal receiving and transmitting

1.4 Design Block Diagram

High Level Block Diagram
[image: C:\Users\Cai\Dropbox\ece445\Block Diagram.jpg]

Data Flow in Sensor Mode
[image: C:\Users\Cai\Dropbox\ece445\mcu.png]
Data Flow in Camera Mode

[image: C:\Users\Cai\Dropbox\ece445\mcu2.png]

1.5 Block Descriptions

1.5.1 Camera Component
Camera
The camera is positioned on the ceiling. It takes photos and outputs to the IPC.

Image Processing Component (IPC)
Receiving photos from camera, IPC will filter out the background and estimate the center coordinate of both the running car and the chasing car. Using multiple points of the trajectories of both cars, IPC will apply a pursuit algorithm to calculate impact point of both cars and send direction instructions to chasing car.

Communication Module
The module is responsible for the wireless connection between MCU and IPC. It transmits data from/to both sides.

1.5.2 Chasing Car Component
Ultrasonic Sensors
The ultrasonic sensors are used to measure the distances of objects in front of the chasing car. Each sensor detects the object in its field of view, reads the distances and outputs into microcontroller.

Motor control module
This module is what physically drives the chasing car. It takes signals from microcontroller and turns the car as the command.

Microcontroller Unit (MCU)
The microcontroller collects data from sensors and communication unit, runs the pursuit algorithm and outputs the direction instruction to the motor controller. It has two detection modes: sensor mode and camera mode.

1.5.3 Running Car Component
The running car is a remote toy car controlled by player. It runs in front of the chasing car and makes every effort to shake it off.

1.5.4 Power Supply
There are two kinds of power supplies. IPC and camera are powered by outlet. Cars’ motors, MCU and sensors are powered by batteries.

2. Design
2.1 Camera Component
2.1.1 Camera
Input: The chasing scene.
Output: 30 fps 1280 * 720 jpeg pictures.
Design Description:
The camera purchased is Logitech c270 webcam. It has a maximum frequency of 30Hz and a resolution of 1280x720. The orientation of the camera will be vertically downward such that it is able to focus on the motions on the ground. It is positioned on the ceiling, which has a height of 94.9 inch (2.41 m). We use a 10 feet USB extension cable to connect between the camera and our laptop.

2.1.2 Image Processing Component (IPC)
Input: Multiple dimension 1280 * 720 jpeg pictures with the chasing scene in it.
	Disable/enable signal from Communication Module
Output: A direction signal for the chasing car.
Design Description:
In order to process high resolution pictures with a frequency as high as 30 Hz, the IPC is an actual computer. We use Eclipse as the software environment. The language we choose is java. We imported two additional open source libraries: xbee api and OpenCV. A copy of code can be found in Appendix. It first reads the photo from camera and turns the photo format from RGB to HSV. By using the HSV, we rearrange the geometry of the original RGB to be more intuitive, and the influence from lighting condition is minimized. Then we filter out all pixels outside our filter criterion. In order to get a good filtering result, we cover the running car with orange material and the chasing car with green. We use a BGR filter provided by OpenCV library with the criterion ranging from (0, 150, 150) to (20, 255, 255) for the running car and from (60,130, 135) to (90, 200, 185) for the chasing car. The next step is to filter out the noise points. Here we assume the largest cluster of the pixels is the target car, and we filter out the minor ones. In the real situation, the background has completely different colors so noise pixels are less than 1% (sometimes even zero), which can be easily determined by the distance from the center coordinate and simply removed.

A Sample of Image Processing Procedure
[image: C:\Users\Cai\Downloads\me1.jpg]

RGB to HSV
[image: C:\Users\Cai\Downloads\me1_HSV.jpg]

Running Car Result
[image: C:\Users\Cai\Downloads\me1_thresh.jpg]

Chasing Car Result
[image: C:\Users\Cai\Downloads\me2_thresh.jpg]

Then, IPC estimates the center coordinate of the car. Since the speed of light is much faster than the cars, we are going to assume there’s no movement for the cars between the time that the scene is taken, and the time that the camera receives the picture. We also ignore the distance distortion caused by the different angles between cars and camera. This is because we are only going to send out an estimated direction signal. An error within 10 degrees is fine since IPC will rectify the command as the cars moving.
Lastly, with multiple center coordinates and the time difference (1/30s for each two pictures), we can estimate the direction and the average speed of the cars. IPC will send a direction signal which tells the chasing car that, with such a speed, should the chasing go straight, or make a turn to catch the running car. Though we cannot adjust the turning angle, the IPC will rectify the command so finally the chasing will run into the running car. IPC will always compute the average of the last four points the camera took. Note that we do not really need to know the actual speed of the cars. We only need to know the relative speed of the cars. Thus, we only need to use pixels as the distance unit.
The more detailed calculation equations are followed.

Calculation:
Given multiple coordinates of both cars, we can find out the relative speed of both cars. Define the running car’s speed as Vr, and chasing car’s speed as Vc. Using pixels as distance unit, we can have an (almost) linear trajectory.
Define the last four center coordinates of the running car as (Xr1, Yr1), (Xr2, Yr2), (Xr3, Yr3), (Xr4, Yr4). Define the last four center coordinates of the chasing car as (Xc1, Yc1), (Xc2, Yc2), (Xc3, Yc3), (Xc4, Yc4). We can find out the approximate average speed

And similarly we can calculate Kc by the corresponding coordinates. We now have two equations for two unknowns, impact coordinates X and Y:
1.
The impact point should be on the running car’s trajectory. Use last detected coordinate (Xr4, Yr4) as the reference.
2.
The time used by both cars to travel to the impact point should be the same. Here we assume the chasing car does not slow down when making turns.
After getting the coordinates(X, Y), we should be able to calculate the new direction that the chasing car should go . With the original direction the chasing car is going, we can find out the angle difference between these two directions.

 In our implementation, if the angle difference is between -25 to 25 degrees, the chasing car keeps straight; from -135 to -25, the chasing car will turn left; similarly from 25 to 135, chasing car goes right; for any other angles, we consider impossible for chasing car to turn, and thus it stops. See appendix for detailed graphical explanation.

2.1.3 Communication Module
Input: Direction data from/to IPC
Output: Direction data from/to MCU
Design Description:
In camera mode, it will keep transmitting direction signal that processed by IPC. The XBee board directly connects to the MCU, and its power also comes from MCU. It receives a one-byte signal transmitted from IPC and outputs the data to MCU through port pin2/DOUT. And port DIN receives the same type of signal from MCU and sends to IPC.
For the XBee board that connects to IPC, we use the USB interface board that comes along with XBee. In order to use XBee in Eclipse, we imported xbee api, an open source library. An example of xbee code is in the appendix.

Pin Configuration for XBee on MCU
[image:]

2.2 Chasing Car Component
2.2.1 Ultrasonic Sensors
Input: The information detected by ultrasonic wave
Output: Digital output for detecting the presence of objects
Design Description:
The sensor converts the distance in length into three different types of outputs through the pins. The output we are using is the voltage output with a proportion of Vcc/512 V/inch. On condition of 5V Vcc, the output voltage is in a range from 80 mV to 2480 mV. This analog data will be sent to MCU’s A/D converter, which will determine the distance and relative velocity by the equation

In a sample simulation, we put the object (our hands) at a distance of 20 inches and 15 inches. And the sensor successfully output a voltage of 199.75 mV and 150.00 mV. The sensors are put on a daughterboard of microcontroller with an input voltage of 5V (see datasheet). And its PW pin is connected to the microcontroller to enable/disable the sensor. The interference between sensors is critical and cannot be ignored. So we decided to enable each sensor one by one. Each sensor takes more than 10 ms to measure a correct reading. So with 5 sensors in series, it takes about 0.05 sec to finish one cycle of detection. The sensors output waves at 20,000Hz with a detection range of more than 20 feets. We used mechanical parts to fix the angle that sensors face to. The field of view has about 120 degrees at front.

[image:]

Pin configuration of Ultrasonic Sensors on MCU
[image: C:\Users\Cai\Dropbox\ece445\ultra.png]

2.2.2 Motor control module
Input: Direction signal from MCU
Output: The actual movement and turning of the chasing car
Design Description:
We preserved the physical turning mechanism of the toy car. There are two motors in the car, one in the back for forward and backward movement and the other in the front for left and right turn. In addition we will add an input signal from MCU. It uses a H-bridge circuit to control the front motor and turns the front wheels to turn left or right. And it uses a MOSFET to control the back motor. Although 3 bits are enough, we still use 4 bits for convenient. It turns forward right when it receives 0101 signal and turns left direction when it receives 1001. It keeps going straightforward when 1101 is received. Under this circumstance, the motor brakes when receiving 1111. Code can be found in Appendix.

[image:]
H-Bridge Circuit
2.2.3 Microcontroller Unit (MCU)
Input: 	The digital output from ultrasonic sensors,
	The direction signal from communication module
Output: The movement signal to the motor control module
	Signals to Communication Module to enable/disable IPC
Design Description:
The sensor-based detection is used when the chasing car is able to detect the running car with its onboard ultrasonic sensors. The sensors can return good distance measurements of all objects in its FOV. We use an array of variables to record 5 previous detection distances (25 values in total). Based on the distances, the algorithm should be able to predict the possible position of running car in the next 6 detection cycle by estimate the trajectory of the running car. After the trajectory calculation, the chasing car can perform an aggressive pursuit algorithm. Instead of following the running car, MCU directs the chasing car to the point that may possibly encounter the running car after a few seconds.
The camera-based detection is only used when the ultrasonic sensors can no longer detect the running car. It means the running car is already out of sight. MCU will send a signal through the Communication Unit to activate IPC, which should be able to return a direction signal. The MCU will follow the instruction and control the Motor Control Component until the ultrasonic sensors catch the running car again. After that, MCU disables IPC and switches back to sensor-based detection. MCU code is attached in the appendix.

2.3 Running Car Component
Input: Signals from control panel.
Output: Movement with constant speed and various directions
Design Description:
We did not modify the running car’s motor too much. But in order to lower the speed to 0.3m/s - 0.5m/s, we added a 12 Ohm resistor to the circuit supplied by the battery. Thus the motor receives lower voltage and the speed decreases to our ideal range.

2.4 Power Supply
Input: 9V High Power Battery
Outlet
Output: Stable power supplies for our cars’ motors, wireless devices, camera, IPC and MCU.
Description:
	The power to the laptop is from the outlet. It provides a stable voltage source for the laptop and the camera.
The 9V battery is the power source for both MCU and motor. We use a 2.1mm DC power jack to connect the MCU.
A step-down voltage converter scale the voltage to 6V is used to fit the requirements of our motor. We use an LM2574 Buck converter to do the scaling. As the voltage is calculated by the equation, we set the resistors as 2k Ohm and 8.2k Ohm which outputs a voltage of 6.273V.
[image:]
[image:]
Step-down/buck converter with LM2574

3. Requirements & Verifications
3.1 Completeness and failures
We have several failures in our project, which prevents us from finishing the project as proposed.
The detection range of the camera is very limited due to the height of the ceiling and its focal length. The cars cannot make a full cycle without stepping outside the range.
The delay in camera mode is very severe. To generate a direction signal, it takes too many steps in transmission. Processing each picture three times, calculating coordinates, updating velocity, estimating impact point, making decision, sending out direction signal, MCU receiving the signal, commanding motor and motor reacting have to be done in each detection cycle. The total delay is about 0.3 to 0.4s, which is not tolerable in real time chasing.
	Sensors can only detect distances, and they are very unstable and sensitive. We need to ensure they do not interference, do not detect ground or walls. There are too many uncertainties and we cannot always guarantee the behavior in sensor mode as we proposed.
Due to the delay in camera mode, we cannot find a proper algorithm to switch between modes and thus the project is not finished as proposed.

3.2 Testing procedures
3.2.1 Camera Component
Camera
The camera uses USB cable to connect to the laptop. The power source is stable within range. We set the resolution to 1280*720 and print out the height and width which give us correct values. The camera is 30 fps thus it satisfies the frequency requirements. We print out the OpenCV frequency parameter to check whether it is correct.
	However, we did not fulfill the range requirements. We use measuring tape to measure the height of the ceiling. Its height is 2.41m but the requirement needs 3m. Thus we only have 78 inch * 57 inch. We cannot guarantee that neither car goes outside the range.

Image Processing Component (IPC)
IPC uses outlet power. Its power voltage is always within range. The USB cable gives a 100% connection between IPC and camera. We print out photos at each step during filtering. These photos showed that the filtering functions well. 100% of background pixels are filtered out. More than 96% of car’s pixels are preserved. We easily recognized both the chasing car and the running car. The actual coordinate points are within our requirement range of 10%. As one requirement in camera fails, we have to use a new test plan that uses mock data to test the calculation. We manually input sets of coordinate data and output the impact points. The impact points are accurate as we expected. Then the output direction signals are also correct.
[image:]
Sample Test

Communication Module
We used multimeter to test the power source and recorded the power from arduino board is 3.35V which is within the range of our requirements. As XBee is a simple and user-friendly communication tools, we skipped the basic tests and directly headed to the final test. The results satisfy our requirement. Both sides of communication work perfectly with zero error in a distance of 5m. All requirements are fulfilled.

3.2.2 Chasing Car Component
Sensors
We used multimeter and measured the voltage source from arduino is 4.95V. The mechanical parts guarantee that the sensors never detect ground surface and sensors have a 120 degree FOV. The sensors we used have a detection range of 6.4m and tests showed a correct reading when we put an object 5m away. We tested all 5 sensors and each of them gave correct reading of the certain object. Thus the sensor did not interference each other. Each sensors need at least 10ms to take measurement (shows in our code) and this is much less than 50ms in our requirement. We did several tests to test the accuracy. Below are table of our result.
Sensor Simulation
[image:]
	Distance (m)
	Sensor reading (mV)
	Measured Distance (m)

	0.4
	147
	0.381

	0.6
	227
	0.588

	0.8
	312
	0.809

	1.0
	378
	0.980

	1.5
	570
	1.48

	2.0
	765
	1.98

	2.5
	965
	2.50

	3.0
	1150
	2.98

	4.0
	1490
	3.86

Sensor test readings

Motors Control Module
We use high power battery to ensure 3 hour duration. Although we did not follow the test plan, we passed the requirement when we worked overnight to test and debug our project. The speed was measured using measure tape and timer. The chasing car went 3.52m in 10s and the running car 3.23m in 10s. So they all passed the requirement. We followed the test plan and sent signal from MCU. The chasing car turned correctly. Since we did not modify the running car, the running car turned correctly.

Microcontroller Unit (MCU)
We passed all MCU tests. The pursuit algorithm for sensor worked perfectly. We used the same way to test it as we test the IPC. MCU output expected direction signal when inputting sets of mock data. MCU also printed out correct signals in camera mode. As we don’t have an obstacle algorithm, we did not test the requirement for it. We failed the obstacle requirement.

4. Cost Analysis and Schedule
4.1 Labor Cost
	Name
	Rate
	Hours
	Hours * 2.5
	Total ($)

	Hai Chi
	30/hr
	20/week
	500
	15,000

	Zhe Ji
	30/hr
	20/week
	500
	15,000

	Total
	
	
	
	30,000

4.2 Parts Cost
	Item Name
	Unit Cost ($)
	Quantity
	Total Cost ($)

	Logitech c270 webcam
	30
	1
	30

	LV-MaxSonar-EZ4
	30
	5
	150

	Laptop
	300
	1
	300

	Toy Cars
	30
	2
	60

	Arduino Mega 2560
	59
	1
	59

	9V Battery
	5
	1
	5

	XBee®802.15.4
	25
	2
	50

	Resistors
	0.1
	5
	0.5

	PNP
	0.5
	4
	2

	Total
	
	
	666.5

4.3 Grand Total

	Labor
	Parts
	Grand Total

	$30,000.00
	$666.5
	$3,0666.5

5. Conclusion
5.1 Accomplishment
Throughout the semester, we have had many great accomplishments. Once we complete our request for approval, we started schedule our time and begin to design our car. The first successful part is the XBee wireless communication. We spent whole to debug and final we can communicate from both side of XBee. The other major accomplishment is image processing component. We used the powerful OpenCV library. There are many examples online for OpenCV. But most of them are written by c language. We spent days to research the java library in OpenCV. In the end, we perfectly filter out all the background and recognize the object. In order to test our camera mode, we then decided to do the motor control module. The circuit is simply. The movement control was easily accomplished. Then we started doing sensor mode. We mainly focus on how to avoid interference between each sensors. After we got rid of the interference, the sensor mode was accomplished.
	Overall, all of the debugging paid off. We learned a lot along the way. This project is fun. Although we could not finish the whole project and make the project into a game, we still accomplished functional project and most importantly we are enjoying this project.

5.2 Uncertainties
	The biggest uncertainty is the behavior of the sensors. They have too many potential problems that we may not be able to debug. Since the chasing car bumps to things all the time, it is possible that the angle of the sensors in front of the chasing car change. They may detect ground, or overlap with other sensors and thus leave a blind spot in the field of view. The accuracy is only tested when sensor is not moving. We do not know how much influence it will have when moving. And because we have so many sensors, it is really hard to read all the results and compare to the real data. Since the car does not have a screen, we have to print out the results through XBee, which may have additional potential problems.

5.3 Future Work
Find a better camera with a better focal length to solve the view range problem. We can also set multiple cameras.
Carry out a decent algorithm for sensors to separate moving objects and still objects. Technically MCU should be able to recognize both if we have several previous cycles’ data.
If we can find a good algorithm for the sensor, we should be able to dodge the objects. We can paint the obstacles another different color such that both mode will still work.
Find a way to minimize the delay in camera mode. Professor Carney and our TA Mustafa has suggested some good ways to reduce the delay time, such as pre-match the background into points such that we do not need to process the pictures point by point every time. Also OpenCV is a huge library, we should be able to explore it and find out some solutions.
If we solve the delay in camera mode properly, we can finish the mode switching algorithm as proposed.

5.4 Ethics issues
We agree to uphold the IEEE Code of Ethics, and will address any relevant ethical concerns about our project. The ones related to our project are the followings:
3. to be honest and realistic in stating claims or estimates based on available data;
5. to improve the understanding of technology; its appropriate application, and potential consequences;
7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit properly the contributions of others;
8. to treat fairly all persons regardless of such factors as race, religion, gender, disability, age, or national origin;
9. to avoid injuring others, their property, reputation, or employment by false or malicious action;
10. to assist colleagues and co-workers in their professional development and to support them in following this code of ethics.

5.5 Safety issues
	The power voltage of each part on both cars is below 12V so it does not have any potential harm to human body. But we need to be aware to properly handle the power of the computer and camera.
	The running car is controlled by us and it weighs less than 500 grams and the maximum speed is below 0.3m/s. It would not be able to make any kind of harm even to a baby (as long as he does not eat it). The chasing car has a weight below 1 kilogram and the maximum speed is below 0.5m/s. It also has a focus only on the running car so it will dodge anything that’s not yellow and running. We promise to keep our cars away from children.

6. References
Pursuit-Evasion Algorithm
http://vp.dei.ac.in/wiki/index.php/The_Monomial_Basis
http://en.wikipedia.org/wiki/Pursuit-evasion
Arduino Mega 2560 Data Sheet
http://www.atmel.com/Images/doc2549.pdf
XBee Communication
ftp://ftp1.digi.com/support/documentation/90000991_B.pdf
Ultrasonic Sensor
http://www.maxbotix.com/documents/MB1010_Datasheet.pdf
H-bridge
http://en.wikipedia.org/wiki/H_bridge
Soldering safety
http://naples.cc.sunysb.edu/Admin/HRSForms.nsf/pub/EHSD0348/$File/EHSD0348.pdf
IEEE Code of Ethics
http://www.ieee.org/about/corporate/governance/p7-8.html
LM2574 Buck Converter
http://www.ti.com/lit/ds/symlink/lm2574.pdf
XBee api library

https://code.google.com/p/xbee-api/

OpenCV library
http://docs.opencv.org/

7. Appendices
A. Requirement and Verification Table
	Requirements
	Verifications

	Camera
The camera outputs pictures to the IPC with a frequency of 7.5Hz.

1. Power Supply: Guarantee the input voltage is in its standard range, which is 8 to 30 VDC.

2. Dimension: Each picture is of dimension 1280 * 720.

3. Frequency: Each second it should output 30 pictures each second. If the frequency has an error frame rate of 2 or more, we cannot guarantee the accuracy of the direction signal anymore.

4. Range:
a. The height from the ground to the camera is about 3 meters.

b. With this height, we test the real radius of range of the camera. Make sure neither car goes outside the range.
	

1. Use USB 2.0 port to connect the computer and the camera.

2. Using Windows photo viewer and check the property.

3. Output every picture that it generates along with the time that the photo is created. Carefully counted in each second how many pictures are generated.

4.
Measure it with the measuring tape. 94.9 inch

Mark the edges on the ground by checking the image of the camera and measure with measuring tape. 57 * 78 (inch by inch).

	Image Processing Component
The IPC should resolve the center locations of the two cars. And based on multiple coordinates, it continuously sends direction signal to the microcontroller for the chasing car to turn.
1. Power Supply: Since IPC is a computer, we always assume it functions properly given power from the outlet. Nothing will be checked. If the computer is not working well, we can tell by its function.

2. Prerequisite: Each picture always contains both cars.

3.Transmission: Guarantee the connection between IPC and the camera is 100% successful.

4.Filtering: For each colorful picture of the car, IPC should be able to recognize a cluster of points with the color of the car.
a. Make sure 95+% of the pixels of the background are filtered out.
b. Make sure 95+% of the pixels of the car are preserved.

5. Recognition: Only the car’s pixels should be preserved. All the outside pixels should be filtered out (at least all the ones with a distance greater than the length of the car).
a. All the dummy points should be recognized and filtered out.
b. 99+% of the real points should be preserved.

6. Calculations: The IPC will output the directional signal.
a. Given a processed picture, IPC should calculate the center coordinates for each processed picture. This is calculated by the computer and should not have any error. The error between the calculation and the reality should be within 1 cm.

b. With multiple coordinates IPC should be able to find out the speed and direction.
The error between the calculation and the reality should be within 10%.

c. With the speed, direction, and the latest coordinate, we should be able to predict the impact point. The error between calculation and the reality should be within 0.2m.

d. With the impact point estimation, we should be able to get the turning angle for the chasing car. The error between calculation and the reality should be within 0.2m.

Challenge and Failure:
	FAIL: The delay is preventing the chasing car from going to the right position. Though every part of it works well, it does not fulfill the proposal we proposed.

1. PASS. Test: All the time, with or without charging.

2. PASS. Tests: All the time.
In the program, we output “cannot locate the chasing car/running car” if IPC cannot find the cars insight. There are times where cars run out of range and we stop the program if so. This happens only when we drive the running car out of sight.

3. PASS. Tests: All the time
Connected with USB 2.0 cable with another USB 2.0 extension cable. The computer recognizes the camera all the time, and it outputs pictures whenever it gets requests. We have an exception protection which outputs information if picture not transmitted successfully. We do not see any error when processing the image. So we can surely say the connection is 100% successful.

4. PASS. Tests: All the time
a and b. There will always be broken pixels, or even broken pictures no matter what the lighting condition is. But those are minimal and we have algorithm that can ignore it. We printed out the transformed pictures and check the color of the car. Adjust the filtering criterion when lighting condition changes. The OpenCV function we used is called “momentarea”, it actually filters out 100% of the background, and it also filters out part of the car. We measure the length and width of the car and assume it is a rectangle. Count the preserved pixels and do the calculation. Depending on the lighting condition, about 90% of the pixels of both cars are preserved.

5. PASS. Tests: All the time.
a and b: We did not expect OpenCV to be so powerful that this part is done by the previous function. Depending on the criterion we set carefully, no dummy points are left in the picture. Thus 100% of what’s left is real points.

6. PASS. Tests: 200 or more
a. PASS. Tests: 200 or more.
We actually implemented it in length of pixels, instead of real length. This is because we are only calculating the relative speed and location inside the camera. It does not make sense if we transform the result into real length and transform it back into calculation. Depending on the light condition and other factors such as the angle error of the camera and the missing pixels of the cars, the error between calculation and the reality is within a radius of 3 inch, which is measured by the measuring tape. The IPC only sends the turning command for arduino board, not the actual location of the running car.

b. PASS. Tests: 200 or more.
The accuracy is caused by a lot of unpredicted factors. Since the previous calculation cannot guarantee the accuracy of the location, the accuracy of the speed and direction is affected greatly. We use a lot of algorithms to make this up, such as calculating the average, dumping the extreme sample and predicting location in advance. Luckily we manage to keep the error within 10% for more than 95% of the tests. This is measured by printing out the speed and direction in the console and we compare it with the actually velocity, which is measured by timer and measuring tape.

 c. PASS. Tests: 200 or more.
Using the calculation detailed explained in the design review, the impact point is calculated within 0.2m error. This is measured by the measuring tape. The problem is the estimate point is usually out of the sight of the camera and thus IPC cannot rectify the estimate point. We confirmed it with our own observation.

d. PASS. Tests: 200 or more.
The results come out quiet well as the chasing car turns properly. More than 99% of the tests the error is within 0.2m. This is measured by the measuring tape between the actual impact point and expected impact point.

FAIL. Something unexpected is the delay between taking picture and reacting on the command is horrible. Pictures taken are transferred to computer and computer needs to process each 720p picture four times and then update the speed and direction. After which it calculates the result and sends it wirelessly. When arduino receives the signal it sends out signal to the turning wheel and the whole process takes too much time while the action is in real time. We are really not sure how to solve this for our system. This problem has caused the chasing car to drive toward the impact point after it missed the best chance. And it always reaches a point about 0.1m away to the impact point.

	Communication Module
It is used by the IPC to send direction data to the microcontroller, and used by the microcontroller to send signals to IPC to switch to mode on/off.

1. Power Supply: Guarantee the voltage input is stable at 3.3±0.1V.
a. Guarantee the power voltage supplied by IPC is 3.3±0.1V.
b. Guarantee the power voltage supplied by MCU is 3.3±0.1V

2. Connection: Guarantee the connection between the component and XBee.
a. Make 100% successful connection between the IPC and XBee
b. Make 100% successful connection between the MCU and Xbee

3 Communication: Module has 99.9% accuracy of transmitting data.
a. Transmission from IPC to MCU is 99.9% successful.
b. Transmission from MCU to IPC is 99.9% successful.

4. Distance: The maximum distance between MCU and the laptop is more than 10m indoor without big disturb.

5. Transmission Rate: Make sure more than 10000 signals can be transmitted every second.

	PASS. Wireless communication module is working fine all the time.

1. PASS. Tests: All the time.
The goal of this requirement is to guarantee the behavior of xbee. We did not measure the voltage since xbee is functioning well all the time.
a. The xbee is connected to the computer through xbee adapter with a USB 2.0 cable. Xbee performs well all the time.
b. The xbee is connected to the arduino board and the power is supplied by the arduino board. Xbee performs normally so we treat this as a pass for this requirement.

2. PASS. Tests: All the time.
The goal of this requirement is to make sure Xbee is not the main problem of the whole project. We are printing out the exception from xbee, if there’s any, in the console on both arduino board and the computer. No error is printed and the connection between both units is successful all the time.

3. PASS. Tests: All the time.
We print data to the console whenever we receive it. And we have compared and tested the results throughout the project and it did not mismatch even once. The transmission is 100% successful on both sides.

4. PASS. Tests: 5
We send and print the received data to the console on both sides. Move the computer to outside of the room and tried multiple times. We measured the distances by measuring tape.

5. NOT NECESSARY
Though this is a good strength for xbee, this is not a necessity for our project since we only need

	Ultrasonic Sensor Unit
The ultrasonic sensor should be able to detect the distance of objects that in front of the chasing car.
1. Power Supply: Guarantee the voltage input is stable at 5±0.1V.

2. Detection Range: The ultrasonic sensor should satisfy range requirements.
a. The sensor should never detect ground as an object.

b. The distance measured by single ultrasonic sensor should have ⋞ ±3cm error

c. The ultrasonic sensor should have ≽ 5m detection range

d. The sensors have a ≽120 degree field of view (FOV)

3. Interference: The ultrasonic sensors should avoid interference from each other.
a.The sensor should not send any ultrasonic wave 1ms after it’s disabled

b. The sensor will take correct distance reading within 50ms after enable signal sends.
	

1. Since we use a daughter board for the sensor, we first need to use multimeter to guarantee that circuit on the PCB is connected correctly. Then we can test the voltage supply for sensor using multimeter. If microcontroller functions well, the 5V port should output a stable voltage. If the sensor does not have power, we should put checking the functionality of MCU into consideration.

2. a. Mount the sensor on the car. With no object in front of the car, the sensor should return the longest reading. Adjust the car, the height of sensor and the direction of the sensor so that the sensor will not be able to detect ground surface. Now put an object in front of the car, it should be able to read the distance of the object. Now put away the object again, the received distance should go back to the longest reading again. Record the height and the angle of the sensor, make sure every sensor follows this requirement.

b. Measure an object with one sensor. This test should run in 5 different distances: 30cm, 50cm, 1m, 2m, 5m. First use ruler to make sure the distance is correct. Place the object directly in front of the sensor and take the distance reading. Then compare the two measures. After these tests have passed, we place the object that is to the left side a bit while keeping the distance the same. Do all these tests again, and compare the results. Then we place the object to the right side a bit and the tests again. The ultrasonic sensor should have readings that satisfied the requirement as long as the object is within its detection area. If these tests fail to meet the tolerance, we should consider buying more sensitive sensors since this is the lowest requirement for our project to work.

c. Measure an object in at least 5m distance. We put the sensor in the center. Then draw a circle with a 5m radius. Move the object along the line and record the reading. Plot the reading in graph. Check all the readings to see whether they all satisfy the requirement c.

d. We first test the detection width of one sensor. Use two symmetry objects to approach the sensor from both sides. These objects will be 4m away from the surface of sensor. Make them stop when the distance readings change. Then we can measure the ultrasonic wave detection width. With this width, we put sensors pointing in different direction. Then we move an object from left to right and test whether at least one of the sensors can always detect the object in the chasing car’s 120 degree FOV.

a. The enable/disable bit is controlled by MCU. Put two sensors with imbalanced positions to the object. We simultaneously activate two ultrasonic sensors. They should both have invalid readings due to the interference. Then at time 0, we disable one sensor and check the readings of the other active sensor. Record the time period when is the incorrect reading become correct. Mark it as time t. Then we check whether t is less than 1ms. Repeat this test 50 times with different sensors, objects and distances, the sensor disable time should not exceed 1ms. If it does exceed 1ms, we need to measure how long will it be safe the switch to another sensor. This will limit the valid reading frequencies every second. But it is always the first priority to make sure the measurements are correct.

b. We first disable the sensor. And then, at time 0, we activate it. Record the reading from 0 to 60ms. See whether the distance reading can become correct within 50ms. Do this test 50 times with different sensors, objects and distances, the sensor should satisfy this requirement every time. If not, we need to measure how long will it be safe to start re-reading the measurements. This will limit the valid reading frequencies every second. But it is always the first priority to make sure the measurements are correct.

	Microcontroller Unit
The microcontroller is the main controller on the chasing car. It receives the signal from sensors and communication unit, and it outputs correct movement instruction to the motor unit

1. Power Supply: Guarantee the voltage input is stable at 9±1V.

2. Prerequisite: We assume that the ground surface is flat, as assumed in camera part. The gaps between obstacles are larger than the length of the chasing car and the running car. The obstacle is high enough to be detected by the ultrasonic sensors, but low enough to not block the view of the camera. The number of obstacles (with gaps) in site is less than three so that MCU can handle the situation

3. Obstacles and moving object recognition: It separates the running car from obstacles.
a. It should record the distance of each obstacle that is in the FOV of chasing car. For each object it detects, MCU should keep track of their records until they are out of sight up to 8 detection cycles.

b. It predicts the new position of each object before the next detection cycle. The criterion should be within 5 cm.

c. It compares the new detection position to the predicted position.

d. It is able to recognize the running car as a new object if the distance of an object between the detected position and the predicted position is larger than a criterion.

4. The pursuit-evasion algorithm: It calculates the trajectory of the running car.
a. Based on several previous coordinates of the running car the sensors detected, it is able to predict the trajectory of the running car. The trajectory should have a tolerance within ±3 cm.

b. The pursuit algorithm should be able to point out a better path to chase the running car rather than following behind it. A better path means the it has shorter distance than the path of running car from the initial point to the intersection of these two paths.

c. The evasion algorithm should be able to adjust the path so that the chasing car will not bump into the obstacles. The car should never crash into obstacles.

5. Camera-based algorithm: The MCU will follow the order of IPC to drive the car when in the camera-base detection mode. The tolerance is 10 cm. At the same time, the sensors keep searching the running car. Once it finds the running car, MCU should disable the IPC data and goes back to sensor-based algorithm.

6. Motor Control: According to the calculation of the algorithm, the MCU will send the straight, left and right turn signal to the H-bridge circuit of the Motor.
	

1. The power source directly comes from the 9V battery. We use a voltage stable circuit to guarantee the voltage is within the range. We can test the voltage supply for MCU using multimeter. If battery functions well, the MCU should be able to have a stable voltage. If the it does not have power, then the battery is not qualified. We must replace it with a new and more powerful battery.

2. The ground surface should be flat. If it is not flat, then the sensors may incorrectly detect the ground surface as an obstacle. We already plan to test it indoor so this should not be a problem. Since ultrasonic sensor does not have the ability to detect the shape of an object, we can hardly find a way to decide whether the gap is large enough for the chasing car to go through. We will measure the gaps using measuring tape to ensure it. Also, the sensors should correctly return the distance of objects in front of the chasing car.

3. a. Based on the angles on the sensors and the speed assumption of itself, MCU can locate each object according to the distance readings. At first, its view has nothing. After it sees objects, it creates an array of empty locations to fill in. For each detection cycle it revises the updates the coordinate of that object (if it’s within a tolerance of the prediction). If it is not within that tolerance, we mark that object as ‘disappeared’. Keep on checking the next predicted area after 8 detection cycles (two seconds). If it still does not appear in the predicted area, delete that variable permanently.
When writing the algorithm, we can test this by connecting it to the computer and simulate the results. It will output all the objects it sees with their trajectories and show it on the screen. If it appears after several cycles and disappear again, we should mark it as ‘appear’ and ‘disappear’ again. And we rerun the algorithm mentioned above recursively.

b. Based on the angle of the sensor and the speed of the chasing car, we should be able to predict the object’s appearing area in the next cycle. For example, assume the sensor in the very front is detecting an object with distance 1 m, and assume the running car has a speed of 40 cm/s. Furtherly we assume the detection frequency is 4 Hz. The next appearing area for this object should be in front, with a distance of 90 cm. The tolerated area is a radius of 5 cm. We will test the accuracy with still obstacles above 100 times and adjust the tolerated radius accordingly.

c. Calculate the distance of the predicted coordinate with the actual coordinate use the distance equation mentioned in IPC verification.

d. If an object appears outside the appearing area, meanwhile the original object disappears, we count this as a “disappear-appear”. If this “disappear-appear” happens consecutively, with a reasonable pattern, we recognize it as the running car and start to predict the running car’s trajectory, using the last several “disappear-appear” locations.
We should heavily test this as this is the core of our project. Make sure the algorithm work well and it can accurately predict the running car with a tolerance of 10 cm each cycle.

4. a. We first use Matlab to simulate the algorithm. Then we code the MCU and print its output on laptop to see whether it works.The trajectory may not accurately predict the path of running car. But it can at least tell the direction of the running car in the next two detection cycles. To test this algorithm, we will have a long detection cycle. We now decide to use a 5s cycle. The sensor first does a reading. Then we move the running car to another position. This movement should follow a fixed curve of quadratic or cubic function. After 10 detection cycles, we compare the calculated trajectory and curve function we used. They should have close slope at each detection points. We run 10 different curves. If they are not similar, then we need to come up with a better algorithm.

b. A better path means the it has shorter distance than the path of running car from the initial point to the intersection of these two paths.
We also first simulate this in Matlab. Matlab should print out our pursuit path. We compare them with the trajectory of the running car and decide whether this path is better. Then we code them in MCU. And again, we use a 5s detection cycle. At each point, the algorithm should output the predicted trajectory and the pursuit path directions. We connect these directions into a curve manually or by Matlab. Then we decide whether this path is better. We will have no obstacle in this test. We do this test for 10 times. We will try to adjust the coefficients to gain a more aggressive algorithm.

c. The evasion algorithm is used to avoid obstacles. As we set the gaps larger than the car itself, it should be fine. We still begin our test in Matlab. Given the pursuit direction, the evasion algorithm will adjust the direction to one that could successfully avoid the obstacle. Then we code on MCU with a tentative detection cycle which is 0.25s. We use XBee communication module to send the path direction and drive the car towards or approaches an obstacle. Then we can decide whether this algorithm works. We do this test for 10 times. If the car successfully avoid all the obstacles, then we consider this requirement passed.

5. Instead of using camera and IPC, we manually test this requirement with the laptop. We give direction orders from laptop and drive the car around. If the car runs to the target within a tolerance of 10 cm, then first half of the requirement meets. Then we test the second part. We will control the running car to run around and give direction orders to the chasing car. We will add a LED on the MCU to tell if the sensors detect the running car. Our laptop should receive a disable signal when the LED lights up. There is no obstacle in this test and we will run this test 10 times. If anything goes wrong, then either the code has a bug, or the LED is built wrong.

6. We code the MCU a series of direction order. Then we run the chasing car and see if follows that path within a tolerance of 10 cm. We give 10 sets of different order series. If the car runs in wrong direction in any of these tests, then we need to check our code.

	Motor Control Module (Chasing car)
The motor control module can control the chasing car’s turning and it should provide a constant speed for the chasing car

1. Endurance: Make sure the car can run more than 3 hours.

2. Speed: Motor must be able to keep the running car at a speed of 0.3 m/s, and chasing car at 0.4 m/s. Both of them are within ±0.05m/s error.

3. Turn: The motor control module should be able to perform a turn either left or right in the direction provided by the MCU.
	

1. According to our calculation, the chasing car can run about 3.5 hours with the MCU in full operation. So it should run more than 3 hours with an idle MCU. Replace the battery with a brand new Varta High Energy 9V Battery. First make sure the voltage input is 4.5V by the multimeter. Then keep the MCU sending 0000 forever. Flip the chasing car with the roof on the ground so that the wheels are turning but the car puts still. Put it aside of me, pick a favorite movie and start to watch. Record the start time and the moment when the car starts to slow down. Check the time difference. If the time is shorter than 3 hours, we should re-measure and estimate the power dissipated in the components and come up with a better result.

2. Test the fully loaded vehicle with a fully operating MCU to ensure that the unit has the ability to run greater or equal to 0.3m/s. Visually observe if the average speed is about the same during the test. This will be taken directly from a distance over time relationship. The test should run in both running car and chasing car with 3 test distances: 5m, 10m, and 20m. If the error is too large, we should measure the power dissipated in the components. Also check if the voltage input is stable.

3. Given the turn signal from MCU, the vehicle should turn as expected. This only tests the direction that the car turns. Then, the MCU signal the motor back to go straight. The motor should be able to turn back to go straight. Take the same test with different energy left in the battery to test the loyalty of the motor. Remember the critical point and be aware to change battery when reaching that point.

B. IPC Code Snippet
Xbee code snippet
[image:]
Sensor code snippet
[image:]
IPC Code
[image:]
[image:]

C. Calculation
Power consuming calculation:
The power for a typical computer is about 100W. And the power for the camera is 1W max, 0.9W typical. The XBee connecting to IPC is also about 0.3135W. The running car’s power is 0.2A * 4.5V = 0.9W
So the total power of every component in our project is 100 + 0.3135 + 0.9 + 3.0095 = 104.223W
4
image3.png
1280%720
Picture

Green Filter
‘ (Chasing Car),
Red Filter
(Running Car)
Data
Buffering
Estimate

Find Point < Invalid Data

Direction Elimination

Camera RBG2HVS
Outputs Converter

Directions)
Calculation

image4.jpeg

image5.jpeg
Tt sl it W gl] P

image6.jpeg

image7.jpeg

image8.png
GND

image9.png

image10.png
POWER
T

w
MAXSONAR
e

image11.png
'
'
'
'
'
! ®
' 5 g s
: T T T
'
'
H i
i ! Inside
[l : Arduino.
h
! ! v+
' |\ g
' P Channel Fet P Channel Fet
H w2
H I
' ta e Q@ ¢
'
' [Res30 Res30 Bn
' ' F ou, o out
: Motor
! H weso |, N1/ RFS530
! e °
' | Q3 Q4
' 1]
'
' H N Channel Fet N Channel Fet
H I
| I L
! 4 GND
H I
H I
H -
L d

image12.png
Vi
N)

where Vper = 1.23V,
R1 between 1k & 5k.

%)

2
Vour = VRer (‘ +==

1

image13.png
Feedback

1
LM2574 Output L1

9V Battery
v Motor

image14.png
D XBeejava [Dopencytestjava [0 ApiSenderbxamplejava U b testava

&

1110t opency.
J/5ystemoout print Tn(Core VERSTON)
Systen.LoadL ibrary (Core.NATIVE LIEVARY NASE);
R - 9

Choze_tir = 0;
R Speed - Chase_speed - 05
g

Rt ion - Chaseraation - frlse;

< new snel1(50,5,50,50);
R = new ane[]{18,30,50.701
O - new snel1{50, 70,50,503;
= new anel1{25,35,15.551;

tpdatenunv();
UodateCrose();

Chase dir - 15;
Systen.out_princln(*Hunning Car's direction: " + fun_dir);
System.out printIn("Ruming Car's speed: * + fun_specd);

Systen.out_princln("Chasing Car's direction: " + Chase dir);

E b s 8 e WD Sowce Eiloer £35ippets B Comole 7

mintads B s v Apicton)Crogra s (136 a7 e (e 0,201 15653 P
Rumning Car's direction: 0.0

Rurmning Cor's Speed: 0. A54SA315454545453

Chasing Car's direction: 5.0

Choting Cor's Speed: 8. 716121732666125

o solutions Tound, check which one is further

Eupected inpact coordinate: (55, o)

I Showld turn: 0

image15.png

image16.png
I/private finsl static Logaer log ~ Logger. getLogger (piSenderxample.
public static void sbecSender(char dir) thraws Exception |

Xoee xbee - now XBec();

o (
71 ay coordinaton
e open("Co", 5600);
Sntl] paylosd = new intl) (6ir);
bechdiress1s deot ina ion - man Kieehddress16(6x60, 00);
TAReqURSEIS tx = new Taequestis(destination, payload);
b sendcynchronous (11);

)
Fananly

e close();
)

3

caze);

image17.png
ECE44S.

sz
e = ¢
It
e 1= o 4 < opete - 1
Torint 3 03 3 <85 9u8)

a0 < WeelIT + 11:

o a0yt
Gigtatin @M

ot {run_cycte - 11e 2,588 (o ogeean @nalogPE)/2);
gttt 6800

tine):
G o0

oyl - 130 2598 p(amalogP Y2
a1, Lo

o ety ttue);
aigttalyr (8 ATED;
alort);
ota2]{run_cyete - 1] - 2888 oo (aalegPurE N 2)s
gttt 100

"
ooy (aslay_tiae);
algttalur 1G9 AEGD;
lo;
a3 {run_oyete - 1] - 2505 e (alegPire) 2

image18.png
public static char TowardPoint(int x, int y)

double deltaX - x
double deltay - y -
Systes. out.println(”
double deltax = x -
double deltaY - y -

3#(Math. abs (deltax)
return 'S5

3#(1ChaseIntiot on)
return 5

double expected dir
1#(expected_dir < 0)
expected_dir
double current_dir
double angle_diff
System. out.printIn(
Systen.out. println("
3F (angle diff < 0)

Xnum_position - 11;

C¥lnum position - 1];

TowardPoint: (" +x + 7, " 4y +)");
O pred;

OV pred;

+ hath.abs(deltay) < 50)

Math. toDegrees (Math. atan2(delta¥, deltax));

0;
Chase_dir;

xpected dir - current_dir;
xpected dir: “sexpected dir+";
O pred: "+O preds™; "+CY_pred

‘current dir-

angle_diff += 360;

System. out. println("s

Angle difference is * + angle d

“scurrent_dir);

i

image19.png
public static Point CalculateEstimatePoint()
i
double XR, YR, XC, YC;//current positions of both cars
XR = Re(nim_position - 11;
YR = RY[num_position - 11;
XC = CX[num_position - 1];
YC = CY[num_position - 1];

XR = RX pred;

YR = RY pred;

XC = CCpred;

YC = O pred;

double KC = Chase_speed;
double KR = Run_speed;

double H = ((YR - RY[nun_position - 2]) / (XR - RX[num_position - 2]) + (YR - RY[num_position - 3]) / (XR - RX[num position - 3])) /
double A, B, C;

double T = (KC / KR) * (KC / KR) * (H * H +1);

A
B
c

ToHAH-1
FXC-2FHRFT 42 FXREFHEH - 2% H* (R - YO);
FXRF R - HTH MR TXR+ 2% HTXR T (YR - YO - (YR - YO) * (YR - YO) - XC % XG

double deltasqr =B * B - 4 % A * C;

image1.jpeg
Sensors

MeU 2] e <o |[Em] 2 (e
Motor Camera
Chasing Car Component Camera Component

Wireless
Signal

U

Motor

Running Car Component

image2.png
Data Flow

Sensor
Outputs

Directions

AnalogRead()

Data
Buffering

Analog
Signal

Direction

