
1

University of Illinois at Urbana-Champaign

ECE 445 Spring 2013

Senior Design

Design Review

Aggressive Chasing Car

Group 38

Members: Hai Chi, Zhe Ji

TA: Mustafa Mukadam

2

Table of Contents

1. Introduction & General Description..4

1.1 Original Motivation...4

1.2 Objective and Scene Description...4

1.3 Features and Functions..5

1.4 Benefits and Practice...6

2. Design / Schematics...7

2.1 Design Block Diagram..7

2.2 MCU Logic Flow Chart...8

2.3 Camera Component...9

 2.3.1 Camera...9

2.3.2 Image Processing Component (IPC)..9

2.3.3 Communication Module...15

2.4 Chasing Car Component..16

 2.4.1 Sensors...16

2.4.2 Motors..19

2.4.3 Microcontroller Unit (MCU)..20

2.5 Running Car Component...21

2.6 Power Supply...22

3

3. Requirements & Verifications..26

3.1 Requirement and Verifications..26

3.2 Tolerance Analysis..39

4. Cost Analysis and Schedule..40

4.1 Cost Analysis...40

4.1.1 Labor Cost..40

4.1.2 Parts Cost..40

4.2 Schedule and Responsibilities...41

5. Ethics and Safety...43

5.1 Ethical Issues...43

5.2 Safety Issues..44

6. References...45

7. Appendices...46

A. IPC Code Snippet...46

B. Calculation..47

4

1. Introduction & General Description

1.1 Original Motivation

Senior design is a class where we make our dreams come true. The dream might not be

an ambitious one such as becoming a billionaire, but this is a critical start of everything before

our successful careers. Through the project we develop and improve our social and technical

skills, which are both very important to our future. For this project, when we were bouncing the

ideas of the project, we found out both of us have a keen on chasing running target. It seems that

both of us want to be the “good guys” and love classic movie scenes such as chasing the bad

guys. Luckily we have our idea approved, and now it’s the chance for us to direct a mini chasing

scene ourselves!

1.2 Objective and Scene Description

Our goal is to design a linkage system among a running car (the bad guys) remotely

controlled by us, a chasing car (the policeman car) driven by a microcontroller with an image

processing component and pursuit-evasion algorithm, and the camera on the ceiling (the satellite,

or the chopper).

At first, the chasing car hides itself in a hidden dark corner and monitors the cars passing

in front of it using sensors in front of it. Once it detects the target, the running car, it starts to

chase behind it with a relatively higher speed. It’s of course very possible that the chasing car

loses the running car in site, possibly because the running car has gone out of range, or blocked

by some obstacles. In either situation, the chasing car will call for help from a satellite or a

helicopter. From the view above, the camera will provide a general direction for the chasing car

to overtake the running car. But for the chasing car, it is its own job to decide which direction to

5

go, along with detecting the blocks and obstacles on its way and bypassing them. Once the

chasing car spots the running car again, the chasing car should switch back to sensor-based view.

The game ends when the chasing car surpasses the running car and stops in front of it.

1.3 Features and Functionalities

Running car:

● Wirelessly, manually controlled.

● Smart and cunning.

● It’s a Mustang!

Chasing car:

● Trajectory calculation and estimation.

● Wireless signal receiving and transmitting

● Microcontroller-driven movement.

● Obstacles dodging.

● Surpassing and intercepting.

Camera:

● Image recognition and processing.

● Trajectory calculation and interception coordinate estimation.

● Wireless signal receiving and transmitting

6

1.4 Benefits

 This is a project of our own interest. It does not provide any kind of benefit to our society.

But it is really a good experience and a strong bullet on our resume. It examines and integrates

what we learned in classes and put it into practice. It will help improve our abilities to design,

abilities to learn new things, debug, writing papers and documentation. It also teaches us how to

collaborate, communicate, help each other and share ideas. All of them mentioned above are the

very keys to our success in the future.

7

2. Design / Schematics

2.1 Design Block Diagram

8

2.2 MCU Logic Flow Chart

9

2.3 Camera Component

2.3.1 Camera

Input: The chasing scene.

Output: 30 fps 640 * 480 jpeg pictures.

Description: The camera purchased is a Fire-i digital camera. It has a maximum frequency of

30Hz and a resolution of 640x480. The camera will communicate with the CVS (compact vision

system) via a FireWire connection. It will be positioned on the ceiling. The orientation of the

camera will be vertically downward such that it is able to focus on the motions on the ground.

2.3.2 Image Processing Component (IPC)

Input: Multiple dimension 640 * 480 jpeg pictures with the chasing scene in it.

Output: A direction signal for the chasing car.

10

Description: Given multiple points of the trajectories of both cars, IPC will process each picture

twice (once for the running car and once for the chasing car).

11

Firstly it filters out the background, leaving only the pixels with car’s color in it.

12

Secondly it filters out the noise.

13

Here we assume the largest cluster of the pixels is the target car. And we filter out the minor ones.

For the actual implementation, we will use obstacles with completely different colors such that

noise pixels are less than 1% (or even zero), which can be easily determined by the distance from

the center coordinate and simply removed.

Thirdly, it estimates the center coordinate of the car. Since the speed of light is much

faster than the cars, we are going to assume there’s no movement for the cars between the time

that the scene is taken, and the time that the camera receives the picture. We also ignore the error

caused by the different distances from cars to the camera. This is because we are only going to

send out an estimated direction signal and we did not consider how to dodge the obstacles (this is

done by the microcontroller and the sensors on the car). Even an error within 20 degrees should

be fine since microcontroller needs to dodge the obstacles either way.

Lastly, with multiple center coordinates and the time difference (1/30s for each two

pictures), we can estimate the direction and the average speed of the cars. IPC will send a

directional signal which tells the chasing car that, with such a speed, how many degrees (0 ~ 360)

should the chasing car turns counterclockwise in order to catch the running car. IPC will always

compute the average of the last five to ten points the camera took, depending on the actual

behavior of the car and the wireless device. Note that we do not really need to know the actual

speed of the cars. We only need to know the relative speed of the cars. Thus, we only need to use

pixels as the distance unit.

Detailed calculation: Given multiple coordinates of both cars, we can find out the relative

speed of both cars. Define the running car’s speed as r, and chasing car’s speed as c. Using

pixels as distance unit, we can have an (almost) linear trajectory.

14

Define the last several center coordinates of the running car as (r , r), (r , r), (r ,

 r). Define the last several center coordinates of the chasing car as (c , c), (c , c), (c ,

 c). We can find out the approximate average slope r
 r r

 r r

 r r

 r r
 and c by the

corresponding coordinates. We now have two equations with two unknowns: impact coordinates

 and :

1.
 r

 r
 r The impact point should be on the running car’s trajectory. Use last

detected coordinate (r , r) as the reference.

2. t
√ r

 r

 r

√ c
 r

 c
 The time used by both cars to

travel to the impact point should be the same. Here we assume the chasing car does not slow

down when making turns. We can modify the details when simulating it.

After getting the coordinates(X, Y), we should be able to calculate the new direction that

the chasing car should go c

 c

 c
. With the original direction the chasing car is going, we

can find out the turning angle between these two directions. arctan c
 arctan

c
 . See

appendix for detailed graphical explanation.

Here the IPC is an actual computer connected to the camera. This is because we found

most cheap boards do not have enough memory (usually 256KB) to store even one image, let

alone to process multiple of them every second. And the ones that have such large memory are

generally above $1000. We are using windows 7 system and openCV libraries to do the image

processing. Language is C++. We also attached a simple code snippet we used for the sample

images, using easyBMP library.

15

2.3.3 Communication Module

Input: Direction data from Image Process Component

 Enable signal from Microcontroller

Output: Direction data to Microcontroller

 Enable signal to Image Process Unit

Description: For communication module, we use XBee®DigiMesh® 2.4. It is responsible of the

wireless connection between the MCU and the IPC. It transmits the serial data generated by the

IPC and the signal by MCU. The module should hibernate when the MCU is in sensor-based

detection mode. And it can be signaled to activate by the MCU on demand. In camera-based

detection mode, it will keep transmitting direction signal that processed by the IPC until the

MCU puts it into sleep again. The XBee board directly connects to the MCU, and its power also

comes from MCU. It receives an one-byte signal transmitted from the laptop and outputs the data

to MCU through port pin2/DOUT. And port DIN receives the same type of signal from MCU

and sends to the IPC. For the XBee board that connects to laptop, we use the USB interface

board that comes along with XBee.

Pin Configuration for XBee on MCU

16

8-bits signal waveform that transmitted by XBee

2.4 Chasing Car Component

2.4.1 Ultrasonic Sensors

Input: The information detected by ultrasonic wave

Output: Digital output for detecting the presence of objects

Description: We use LV-Maxsonar-EZ1 as the ultrasonic sensor. The ultrasonic sensor is used

to measure the distance of objects in front of the chasing car. The sensor detects the object in its

area of view and read the distance. It then converts the distance in length into three different

types of outputs through the pin AN. The output we are using is the voltage output with a

proportion of Vcc/512 V/inch. On condition of 5V Vcc, the output voltage is in a range from 80

mV to 2480 m . This analog data will be sent to MCU’s A/D converter, which will determine

the distance and relative velocity by the equation

distance
 cc

 0 0 m

In the simulation, we put the object (our hands) at a distance of 20 inches and 15 inches. And the

sensor successfully output a voltage of 199.75 mV and 150.00 mV. The sensors will be put on a

17

daughterboard of microcontroller with an input voltage of 5V (see datasheet). And its PW pin

connected to the microcontroller to enable/disable the sensor. When we use multiple sensors, we

decide to enable each sensor one by one in order to prevent the interference among the sensors.

Each sensor takes 50 ms to take and receive a reading. So with 5 sensors in series, it takes about

0.25 sec to finish one cycle of detection. The sensors will output waves at 20,000Hz with a

detection range of more than 20 feet. Further tests are needed to determine the accurate positions

of sensors in order to guarantee the field of view has at least 120 degree angle at front.

Pin configuration of Ultrasonic Sensors on MCU

Simulation with object at a 15-inch distance

18

Sensor voltage drop when an object comes in with a distance of 12-inch

19

2.4.2 Motor control module

Input: Direction signal from MCU

Output: The actual movement and turning of the chasing car

Description: This module is what physically drives the chasing car. We will preserve the

physical turning mechanism of the toy car. In addition we will add an input signal from MCU. It

uses a H-bridge circuit to control the motor and turns the front wheels to turn left or right. It turns

right when it receives 1001 signal and turns in the opposite direction when it receives 0110. It

keeps going straightforward when no signals received, or 0000 is received. The motor brakes

when receiving 1010/0101.

 Control signal

H-Bridge Circuit

20

2.4.3 Microcontroller Unit (MCU)

Input: The digital output from ultrasonic sensors,

 The direction signal from communication module

Output: The movement signal to the motor control module

 The enable/disable signal to the IPC

Description: The microcontroller is the key component of the chasing car. We choose Arduino

Mega 2560. It collects data from sensors and communication unit, runs the pursuit-evasion

algorithm and outputs the direction instruction to the motor controller. This MCU is the most

important component of the whole system. It has two control modes/programs: sensor-based

detection and camera-based detection.

The sensor-based detection is used when the chasing car is able to detect the running car

with its onboard ultrasonic sensors. The sensors can return good distance measurements of all

objects in its FOV. We guarantee that the chasing car has a fairly constant average speed that

could be used in calculations. Based on the distances and the speed of the chasing car, the

algorithm should be able to predict the position of all detected objects appearing in the next

detection cycle. It compares the objects detected in the next cycle with the predicted locations.

With this method, we should be able to separate the running car from the background including

any obstacles. Then, the algorithm would turn the distance and direction of the running car into

an coordinate. With three coordinates of the running car, the algorithm is able to perform a

monomial basis to estimate the polynomial trajectory of the running car.

After the trajectory calculation, the chasing car can perform an aggressive pursuit

algorithm. Instead of following the running car, The MCU directs the chasing car to the point

that may possibly encounter the running car after a few seconds. We can also perform a lock-on

21

strategy so that the detection algorithm will analyze the sensor data around the trajectory at top

priority.

The camera-based detection is only used when the ultrasonic sensors can no longer detect

the running car. It means the running car is already out of sight. The MCU will send a signal

through the Communication Unit to activate the IPC, which should be able to return a direction

signal. The signal is calculated by the IPU and the calculation is in Appendix C. The MCU will

follow the instruction and control the Motor Control Component until the ultrasonic sensors

catch the running car again. After that, the MCU disables the IPC and switches back to sensor-

based detection.

2.5 Running Car Component

Input: Signals from control panel.

Output: Movement with constant speed and various directions

Description: We are not going to modify the running car’s motor too much. But in order to

lower the speed to 0.1m/s - 0.3m/s, we need to split the voltage to a resistor added to the circuit

supplied from the battery. Thus the motor will receive lower voltage and the speed will decrease.

See the simulation in the appendix.

22

2.6 Power Supply

Input: 9V High Power Battery

Outlet

Output: Stable power supplies for our cars’ motors, wireless devices, camera, IPC and MCU.

Description: There are two kinds of power supplies. One is for the IPC and camera, the other is

for the cars’ motor and MCU. Former is from 0 outlet which should have an stable power

flow. Latter is a group of three 1.5V batteries(Lithium AAA 1.5V High Energy Lithium) in the

running car and a 6V high power battery (Varta High Energy 9V Battery) for the motor and

MCU.

For the running car, it should last more than 10 hours. Each battery has 1250 mAh while the toy

car drains about 200 mA. With 3 battery, we have

 0 00 8 h

For the chasing car, the battery have a 5 Whr rating, as we cannot estimate the actual weight of

the car which greatly affects the power consume of motor, we can hardly estimate how many

hours can the chasing car last running. But we can safely assume that the motor consumes no

more than 250 mA. And as we separate the components from MCU, we calculate the power of

microcontroller functioning at its maximum operation frequency without output any power. So,

we are expecting the maximum power：

Motor 0mA W

Sensors 0mA 0 W

Communication 0mA mA 0 W

Microcontroller mA 0 0 W

23

The maximum power consumed by the chasing car is 3.0095W. With a battery of 9V, a capacity

of 1.2Ah, the chasing car should be able to run more than:

 Ah 00 W h

The 9V battery is the power source for both MCU and motor. To connect the MCU, it first goes

through a shunt regulator to keep the voltage stable.

Voltage stable circuit

We use a step-down voltage converter scale the voltage to 4.5V so that it fits the requirements of

our motor. We use a LM2574 Buck converter to do the scaling. As the voltage is calculated by

the equation, we set the resistors as 2k and 5.6 which will output a voltage of 4.67V.

Step-down/buck converter with LM2574

24

In case we fail to get a LM2574 chip, we can use an alternative circuit that has a not too much

less efficiency but much simpler. See the simulation below.

Step-down/buck converter without LM2574

25

Circuit output simulation

The power for a typical computer is about 100W. And the power for the camera is 1W max,

0.9W typical, and 0.4W when sleep. The XBee connecting to IPC is also about 0.3135W. The

running car’s power is 0. A * . = 0. W

So the total power of every component in our project is 100 + 0.3135 + 0.9 + 3.0095 =

104.223W

26

3. Requirements & Verifications

3.1 Testing procedures

Requirements Verifications

Camera

The camera outputs pictures to the IPC

with a frequency of 7.5Hz.

1. Power Supply: Guarantee the input

voltage is in its functioning range, which is

8 to 30 VDC.

2. Dimension: Each picture is of dimension

640 * 480.

3. Frequency: Each second it should output

7.5 pictures each second. If the frequency

has an error frame rate of 2 or more, we

cannot guarantee the accuracy of the

direction signal anymore.

4. Range:

a. The height from the ground to the

camera is about 3 0 meters.

1. Test the input using multimeter. If the wire

cannot guarantee the voltage input, we need to

order another one.

2. We can test this by printing out the outputs of

corresponding height and width functions within

openCV library. Usually this should be

constantly true, but we will still test it at least

100 times.

3. We will have a counter variable for the

quantity of input pictures each second. Computer

should print out a warning message if the counter

is not within pictures. When the rate is

not within , IPC should send a special

signal to let the microcontroller know that

microcontroller should not use any new data

transmitted from the IPC. Under this

circumstance, microcontroller will try to search

the running car with its sensors, and the latest

direction signal. IPC, on the other hand, should

reboot the camera and check its rate counter. IPC

will send another special signal to

microcontroller and if at this point the

microcontroller still does not find the running car

using the sensors, it should start to use the data

from IPC from this point.

4.

a. Measure it with the measuring tape. For the

environment, we will use the floor of a building

so that we have a stable lighting environment, as

well as a level ground. Thus we can guarantee

the angle from the camera toward the ground is

almost vertical.

27

b. With this height, we test the real radius

of range of the camera. Make sure neither

car goes outside the range.

b. Mark the edges on the ground by checking the

image of the camera. Put multiple blocks in a

circle such that neither car could get out.

Image Processing Component

The IPC should resolve the center locations

of the two cars. And based on multiple

coordinates, it continuously sends direction

signal to the microcontroller for the

chasing car to turn.

1. Power Supply: Since IPC is a computer,

we always assume it functions properly

given power from the outlet. Nothing will

be checked. If the computer is not working

well, we can tell by its function.

2. Prerequisite: Each picture always

contains both cars.

3. Transmission: Guarantee the connection

between IPC and the camera is 100%

successful.

4. Filtering: For each colorful picture of the

car, IPC should be able to recognize a

cluster of points with the color of the car.

a. Make sure 95+% of the pixels of the

background are filtered out.

b. Make sure 95+% of the pixels of the car

are preserved.

2. As mentioned above, we will build a circle of

obstacles such that no car can get outside. Since

the ground is level, we should not worry about

the effect of the angle. Also, we will use sponges

as the obstacles. They have a very distinctive

colors and soft enough so the car will not be

damaged. The heights of the sponges are lower

than the cars, so nothing should be able to block

the site of the cars.

3. The supported cable is a 2m firewire thin

cable connecting both components. We already

tried the connection over 20 times and it did not

fail even once. But this is essential in order to get

the signals from IPC. Computer should have logs

when it’s failing to transmit data. We will print

the log on the screen when such incidents

happen. If it fails at least once, we should try to

order another cable online.

4. a and b. We will have two base pixels which

are almost the same color as the both cars. Of

course we will paint two cars with completely

different colors such that it is very clear to

separate them.

Specifically, we will calculate the difference

between each pixel in the picture and the base

28

5. Recognition: Only the car’s pixels

should be preserved. All the outside pixels

should be filtered out (at least all the ones

with a distance greater than the length of

the car).

a. All the dummy points should be

recognized and filtered out.

b. 99+% of the real points should be

preserved.

pixel. The difference of two pixels is defined as

the sum of the differences of all red, blue, green

components.

Diff |redthis redbase|

|greenthis greenbase| |bluethis bluebase|
We categorize all the pixels into two groups

depending on its difference: within the criterion

and outside the criterion. We convert the outside

ones into a completely black pixel. This is just

like marking it outside the

consideration/calculation. We preserve the ones

inside the criterion with its original pixel and go

to the next step of analysis. The specific criterion

depends on the actual light condition, as well as

the previous experience. By doing this, we

should be able to filter out most of the

background pixels and preserve the car’s pixels.

We will test it at least 50 times with different

lighting environments.

5. a and b. In the experiment, we will minimize

the conflicts between background and the cars.

Ideally, all the points recognized from last step

should all be real points. But with the affection

of lighting and all other possible side effects, it is

still possible that certain extreme points are

preserved from last step. And they will affect the

calculation of the center coordinate

catastrophically. Thus, we should have another

filtering algorithm to filter out the potential

dummy points with the same color of the car.

Here we definitely need to assume that there’s a

main cluster of points and that cluster of points

should be the car and real points. It does not

make sense if there are even more dummy points

than the real points. We should observe the

results of the tests from previous section to

guarantee that among all preserved points, 95+%

should be real points. If not, we need to shrink

the criterion until it fits. The second assumption

is that dummy points are mostly far away from

the main cluster. Thus, we can group the points

into different sets. Algorithm is as follows: Start

with a bunch of empty sets.

Define the distance of the two points

29

6. Calculations: The IPC will output the

directional signal.

a. Given a processed picture, IPC should

calculate the center coordinates for each

processed picture. This is calculated by the

computer and should not have any error.

The error between the calculation and the

reality should be within 1cm.

b. With multiple coordinates IPC should be

able to find out the speed and direction.

The error between the calculation and the

reality should be within 10%.

 and to be

Distance √

Define a distance criterion ‘D’.

Iterate through all the preserved points, for each

point do the following:

If there exists an previously iterated point

whose distance from the current point is

within the criterion ‘D’ then:

put current point into that set.

else:

put current point into an new

empty set.

After the iteration, find out the size of each set.

Get the set with the maximum number of points

(this set should contain the real points). Mark all

points that are not in this set to be completely

black.

Repeat the above algorithm with a lower

distance criterion ‘D’ until the result is almost

ideal by observation.

We will test this algorithm more than 50 times

and guarantee it meets the requirement. We will

use the best ‘D’ when doing further experiments.

6.

a. Now that we have an accurate set of car’s

pixels

 n n , according

to their coordinates, we can just output the

estimated center coordinates (X, Y) by the

functions
∑n

i i

n
 and

∑n
i i

n

We can test it by looking at of the output

coordinate and see if it is reasonable. We will

test for at least 50 times.

b. Now that we have a series of car’s center

coordinates

 n n ,

We should be able to find out the average

velocity.

Say if we use the last five coordinates, the

velocity will be the average of four velocity

vectors: vi
 i i

 i i
. The average function is

the same as above. Except we have to separate

the angle and the speed. We will see the output

30

c. With the speed, direction, and the latest

coordinate, we should be able to predict the

impact point. The error between calculation

and the reality should be within 0.2m.

d. With the impact point estimation, we

should be able to get the turning angle for

the chasing car. The error between

calculation and the reality should be within

0.2m.

as a line on a 2D dimension indicating the angle

and speed, and compare it with reality. The

accuracy should be within 0 of the original.

We do not and should not worry about this too

much because due to a series of potential errors,

we cannot guarantee a relatively high accuracy.

But this does not matter too much because we

only need a general direction for the chasing car.

After it spots the running car, it will switch back

to sensor mode. We will test this by over 200

times.

c. As previously explained in the design of IPC,

we have two equations and two unknowns. We

can find the impact point using those equations.

We should compare it with the reality and the

accuracy should be within a radius of 20 cm. We

can test it over 100 times. Without enabling the

sensors, we disable the camera at some point of

its chasing. Let both cars run in its original

direction and check the impact point.

d. Use the equation mentioned in the design part,

we can find out the turning angle using arctan

function. This should be tested along with part c.

Again we will test it more than 100 times. The

accuracy is within 20 cm distance of the real

impact location.

Communication Module

It is used by the IPC to send direction data

to the microcontroller, and used by the

microcontroller to send signals to IPC to

switch to mode on/off.

1. Power Supply: Guarantee the voltage

input is stable at 3.3±0.1V.

a. Guarantee the power voltage supplied by

IPC is 3.3±0.1V.

b. Guarantee the power voltage supplied by

MCU is 3.3±0.1V

1. a. The voltage converter inside XBee will

convert USB voltage to 3.3±0.1V automatically.

If it does not work well, we should reorder one.

b. Since MCU and XBee are physically

connected. We can test the voltage supply for

XBee using multimeter. If microcontroller

functions well, the 3.3V port should output a

stable voltage. If the XBee does not have power,

we should put checking the functionality of

MCU into consideration.

31

2. Connection: Guarantee the connection

between the component and XBee.

a. Make 100% successful connection

between the IPC and XBee

b. Make 100% successful connection

between the MCU and Xbee

3 Communication: Module has 99.9%

accuracy of transmitting data.

a. Transmission from IPC to MCU is

99.9% successful.

b. Transmission from MCU to IPC is

99.9% successful.

4. Distance: The maximum distance

between MCU and the laptop is more than

10m indoor without big disturb.

5. Transmission Rate: Make sure more than

10000 signals can be transmitted every

second.

2. a and b. If the power flows in properly, the

connection should also be fine. There’s an LED

on XBee, indicating if it is functioning properly.

If abnormal circumstance happens, we should

see if we can fix it. If not, we need a new XBee.

3. a and b. A standard XBee can send 250

kilobits every second. We are sending signals in

a rate of 8 bits a time. Technically, we can send

31250 samples every second. Since we only need

to send tens signals each second, we can send

multiple times to guarantee the transmission

accuracy. We will send each data 5 times. The

component receiving it will compare the 5

results. If one of them is different with the other

four, we still consider it as a success. If two or

more results are different, we consider it as a

failure and output a failure signal. For IPC it

prints the wrong data on the screen. For MCU it

outputs a failure-transmission signal to IPC and

let IPC print the last result out. We will not

consider a case of two consecutive failures

(which sending the special signal fails, too)

because we guarantee a 99.9% success. We can

test this more than 10000 times and it will not

take too much time due to the high efficiency of

XBee.

4. The distance between the MCU and laptop

will be assured to be ≽10 meters by using

measuring tape. The clearance of obstacles will

be assured with visual check. Send multiple

signals and test the results as above. Make sure

the success rate is more than 99%. We can test

1000 times.

5. Though not necessary, we can still test this.

Send signals in both directions 10000 times each

second. Check the accuracy and the number of

signals we received. Print out the result on the

screen if necessary.

32

Ultrasonic Sensor Unit

The ultrasonic sensor should be able to

detect the distance of objects that in front

of the chasing car.

1. Power Supply: Guarantee the voltage

input is stable at 5±0.1V.

2. Detection Range: The ultrasonic sensor

should satisfy range requirements.

a. The sensor should never detect ground as

an object.

b. The distance measured by single

ultrasonic sensor should have a ±3cm error

1. Since we use a daughter board for the sensor,

we first need to use multimeter to guarantee that

circuit on the PCB is connected correctly. Then

we can test the voltage supply for sensor using

multimeter. If microcontroller functions well, the

5V port should output a stable voltage. If the

sensor does not have power, we should put

checking the functionality of MCU into

consideration.

2. a. Mount the sensor on the car. With no object

in front of the car, the sensor should return the

longest reading. Adjust the car, the height of

sensor and the direction of the sensor so that the

sensor will not be able to detect ground surface.

Now put an object in front of the car, it should be

able to read the distance of the object. Now put

away the object again, the received distance

should go back to the longest reading again.

Record the height and the angle of the sensor,

make sure every sensor follows this requirement.

b. Measure an object with one sensor. This test

should run in 5 different distances: 30cm, 50cm,

1m, 2m, and 5m. First use ruler to make sure the

distance is correct. Place the object directly in

front of the sensor and take the distance reading.

Then compare the two measures. After these

tests have passed, we place the object that is to

the left side a bit while keeping the distance the

same. Do all these tests again, and compare the

results. Then we place the object to the right side

a bit and the tests again. The ultrasonic sensor

should have readings that satisfied the

requirement as long as the object is within its

detection area. If these tests fail to meet the

tolerance, we should consider buying more

sensitive sensors since this is the lowest

requirement for our project to work.

33

c. The ultrasonic sensor should have > 5m

detection range

d. The sensors have a >120 degree field of

view (FOV)

3. Interference: The ultrasonic sensors

should avoid interference from each other.

a. The sensor should not send any

ultrasonic wave ms after it’s disabled

b. The sensor will take correct distance

reading within 50ms after enable signal

sends.

c. Measure an object in at least 5m distance. We

put the sensor in the center. Then draw a circle

with a 5m radius. Move the object along the line

and record the reading. Plot the reading in graph.

Check all the readings to see whether they all

satisfy the requirement c.

d. We first test the detection width of one sensor.

Use two symmetry objects to approach the

sensor from both sides. These objects will be 4m

away from the surface of sensor. Make them stop

when the distance readings change. Then we can

measure the ultrasonic wave detection width.

With this width, we put sensors pointing in

different direction. Then we move an object from

left to right and test whether at least one of the

sensors can always detect the object in the

chasing car’s 0 degree FO .

a. The enable/disable bit is controlled by MCU.

Put two sensors with imbalanced positions to the

object. We simultaneously activate two

ultrasonic sensors. They should both have

invalid readings due to the interference. Then at

time 0, we disable one sensor and check the

readings of the other active sensor. Record the

time period when is the incorrect reading

become correct. Mark it as time t. Then we

check whether t is less than 1ms. Repeat this test

50 times with different sensors, objects and

distances, the sensor disable time should not

exceed 1ms. If it does exceed 1ms, we need to

measure how long will it be safe the switch to

another sensor. This will limit the valid reading

frequencies every second. But it is always the

first priority to make sure the measurements are

correct.

b. We first disable the sensor. And then, at time

0, we activate it. Record the reading from 0 to

60ms. See whether the distance reading can

become correct within 50ms. Do this test 50

times with different sensors, objects and

34

distances, the sensor should satisfy this

requirement every time. If not, we need to

measure how long will it be safe to start re-

reading the measurements. This will limit the

valid reading frequencies every second. But it is

always the first priority to make sure the

measurements are correct.

Microcontroller Unit

The microcontroller is the main controller

on the chasing car. It receives the signal

from sensors and communication unit, and

it outputs correct movement instruction to

the motor unit

1. Power Supply: Guarantee the voltage

input is stable at 9±1V.

2. Prerequisite: We assume that the ground

surface is flat, as assumed in camera part.

The gaps between obstacles are larger than

the length of the chasing car and the

running car. The obstacle is high enough to

be detected by the ultrasonic sensors, but

low enough to not block the view of the

camera. The number of obstacles (with

gaps) in site is less than three so that MCU

1. The power source directly comes from the 9V

battery. We use a voltage stable circuit to

guarantee the voltage is within the range. We can

test the voltage supply for MCU using

multimeter. If battery functions well, the MCU

should be able to have a stable voltage. If the it

does not have power, then the battery is not

qualified. We must replace it with a new and

more powerful battery.

2. The ground surface should be flat. If it is not

flat, then the sensors may incorrectly detect the

ground surface as an obstacle. We already plan

to test it indoor so this should not be a problem.

Since ultrasonic sensor does not have the ability

to detect the shape of an object, we can hardly

find a way to decide whether the gap is large

enough for the chasing car to go through. We

will measure the gaps using measuring tape to

35

can handle the situation

3. Obstacles and moving object

recognition: It separates the running car

from obstacles.

a. It should record the distance of each

obstacle that is in the FOV of chasing car.

For each object it detects, MCU should

keep track of their records until they are

out of sight up to 8 detection cycles.

b. It predicts the new position of each

object before the next detection cycle. The

criterion should be within 5 cm.

c. It compares the new detection position to

the predicted position.

d. It is able to recognize the running car as

a new object if the distance of an object

ensure it. Also, the sensors should correctly

return the distance of objects in front of the

chasing car.

3. a. Based on the angles on the sensors and the

speed assumption of itself, MCU can locate each

object according to the distance readings. At

first, its view has nothing. After it sees objects, it

creates an array of empty locations to fill in. For

each detection cycle it revises the updates the

coordinate of that object (if it’s within a

tolerance of the prediction). If it is not within

that tolerance, we mark that object as

‘disappeared’. eep on checking the next

predicted area after 8 detection cycles (two

seconds). If it still does not appear in the

predicted area, delete that variable permanently.

When writing the algorithm, we can test this by

connecting it to the computer and simulate the

results. It will output all the objects it sees with

their trajectories and show it on the screen. If it

appears after several cycles and disappear again,

we should mark it as ‘appear’ and ‘disappear’

again. And we rerun the algorithm mentioned

above recursively.

b. Based on the angle of the sensor and the speed

of the chasing car, we should be able to predict

the object’s appearing area in the next cycle. For

example, assume the sensor in the very front is

detecting an object with distance 1 m, and

assume the running car has a speed of 40 cm/s.

Further we assume the detection frequency is 4

Hz. The next appearing area for this object

should be in front, with a distance of 90 cm. The

tolerated area is a radius of 5 cm. We will test

the accuracy with still obstacles above 100 times

and adjust the tolerated radius accordingly.

c. Calculate the distance of the predicted

coordinate with the actual coordinate use the

distance equation mentioned in IPC verification.

d. If an object appears outside the appearing

area, meanwhile the original object disappears,

36

between the detected position and the

predicted position is larger than a criterion.

4. The pursuit-evasion algorithm: It

calculates the trajectory of the running car.

a. Based on several previous coordinates of

the running car the sensors detected, it is

able to predict the trajectory of the running

car. The trajectory should have a tolerance

within ±3 cm.

b. The pursuit algorithm should be able to

point out a better path to chase the running

car rather than following behind it. A better

path means the it has shorter distance than

the path of running car from the initial

point to the intersection of these two paths.

we count this as a “disappear-appear”. If this

“disappear-appear” happens consecutively, with

a reasonable pattern, we recognize it as the

running car and start to predict the running car’s

trajectory, using the last several “disappear-

appear” locations.

We should heavily test this as this is the core of

our project. Make sure the algorithm work well

and it can accurately predict the running car with

a tolerance of 10 cm each cycle.

4. a. We first use Matlab to simulate the

algorithm. Then we code the MCU and print its

output on laptop to see whether it works. The

trajectory may not accurately predict the path of

running car. But it can at least tell the direction

of the running car in the next two detection

cycles. To test this algorithm, we will have a

long detection cycle. We now decide to use a 5s

cycle. The sensor first does a reading. Then we

move the running car to another position. This

movement should follow a fixed curve of

quadratic or cubic function. After 10 detection

cycles, we compare the calculated trajectory and

curve function we used. They should have close

slope at each detection points. We run 10

different curves. If they are not similar, then we

need to come up with a better algorithm.

b. A better path means the it has shorter distance

than the path of running car from the initial point

to the intersection of these two paths.

We also first simulate this in Matlab. Matlab

should print out our pursuit path. We compare

them with the trajectory of the running car and

decide whether this path is better. Then we code

them in MCU. And again, we use a 5s detection

cycle. At each point, the algorithm should output

the predicted trajectory and the pursuit path

directions. We connect these directions into a

curve manually or by Matlab. Then we decide

whether this path is better. We will have no

obstacle in this test. We do this test for 10 times.

We will try to adjust the coefficients to gain a

more aggressive algorithm.

37

c. The evasion algorithm should be able to

adjust the path so that the chasing car will

not bump into the obstacles. The car should

never crash into obstacles.

5. Camera-based algorithm: The MCU will

follow the order of IPC to drive the car

when in the camera-base detection mode.

The tolerance is 10 cm. At the same time,

the sensors keep searching the running car.

Once it finds the running car, MCU should

disable the IPC data and goes back to

sensor-based algorithm.

6. Motor Control: According to the

calculation of the algorithm, the MCU will

send the straight, left and right turn signal

to the H-bridge circuit of the Motor.

c. The evasion algorithm is used to avoid

obstacles. As we set the gaps larger than the car

itself, it should be fine. We still begin our test in

Matlab. Given the pursuit direction, the evasion

algorithm will adjust the direction to one that

could successfully avoid the obstacle. Then we

code on MCU with a tentative detection cycle

which is 0.25s. We use XBee communication

module to send the path direction and drive the

car towards or approaches an obstacle. Then we

can decide whether this algorithm works. We do

this test for 10 times. If the car successfully

avoids all the obstacles, then we consider this

requirement passed.

5. Instead of using camera and IPC, we manually

test this requirement with the laptop. We give

direction orders from laptop and drive the car

around. If the car runs to the target within a

tolerance of 10 cm, then first half of the

requirement meets. Then we test the second part.

We will control the running car to run around

and give direction orders to the chasing car. We

will add a LED on the MCU to tell if the sensors

detect the running car. Our laptop should receive

a disable signal when the LED lights up. There is

no obstacle in this test and we will run this test

10 times. If anything goes wrong, then either the

code has a bug, or the LED is built wrong.

6. We code the MCU a series of direction order.

Then we run the chasing car and see if follows

that path within a tolerance of 10 cm. We give

10 sets of different order series. If the car runs in

wrong direction in any of these tests, then we

need to check our code.

Motor Control Module (Chasing car)

The motor control module can control the

chasing car’s turning and it should provide

a constant speed for the chasing car

1. Endurance: Make sure the car can run

more than 3 hours.

1. According to our calculation, the chasing car

can run about 3.5 hours with the MCU in full

operation. So it should run more than 3 hours

with an idle MCU. Replace the battery with a

38

2. Speed: Motor must be able to keep the

running car at a speed of 0.3 m/s, and

chasing car at 0.4 m/s. Both of them are

within ±0.05m/s error.

3. Turn: The motor control module should

be able to perform a turn either left or right

in the direction provided by the MCU.

brand new Varta High Energy 9V Battery. First

make sure the voltage input is 4.5V by the

multimeter. Then keep the MCU sending 0000

forever. Flip the chasing car with the roof on the

ground so that the wheels are turning but the car

puts still. Put it aside of me, pick a favorite

movie and start to watch. Record the start time

and the moment when the car starts to slow

down. Check the time difference. If the time is

shorter than 3 hours, we should re-measure and

estimate the power dissipated in the components

and come up with a better result.

2. Test the fully loaded vehicle with a fully

operating MCU to ensure that the unit has the

ability to run greater or equal to 0.3m/s. Visually

observe if the average speed is about the same

during the test. This will be taken directly from a

distance over time relationship. The test should

run in both running car and chasing car with 3

test distances: 5m, 10m, and 20m. If the error is

too large, we should measure the power

dissipated in the components. Also check if the

voltage input is stable.

3. Given the turn signal from MCU, the vehicle

should turn as expected. This only tests the

direction that the car turns. Then, the MCU

signal the motor back to go straight. The motor

should be able to turn back to go straight. Take

the same test with different energy left in the

battery to test the loyalty of the motor.

Remember the critical point and be aware to

change battery when reaching that point.

39

3.2 Tolerance Analysis

The most important part of the analysis is the recognition of the running car by both the

sensors and the camera on the ceiling. The coordinates of the running car might be off for a few

samples. We must guarantee that the error of the coordinates must be within ±1cm. As long as

this requirement holds, the algorithm should be able to figure out the right track.

The delay in wireless communication should not affect our result much because the cars

run in 0.3 - 0.4m/s. The distance between two modules is around 6m. It only takes 20ns for the

signal to travel and less than 1ms for the communication module to react. So, the delay is not a

problem.

There will be Doppler Shift Effect when chasing car uses the ultrasonic sensors. It

happens when the chasing car is moving. With the formula:

The speed of light is much greater than our cars’ speed. The frequency should not change much.

We can be sure that this shift would not affect our result.

40

4. Cost Analysis and Schedule

4.1 Cost Analysis

4.1.1 Labor Cost

Name Rate Hours Hours * 2.5 Total ($)

Hai Chi 30/hr 20/week 500 15000

Zhe Ji 30/hr 20/week 500 15000

Total 30000

4.1.2 Parts Cost

Item Name Unit Cost ($) Quantity Total Cost ($) status

Fire-i digital camera 100 1 100 To Be Ordered

LV-Maxsensor-EZ1 27.95 5 139.75 Bought

Laptop 300 1 300 In Lab

Toy Cars 40 2 80 Bought

Arduino Mega 2560 49 1 49 Bought

Varta High Energy 9V Battery 14.03 1 14.03 To Be Ordered

XBee®DigiMesh® 2.4 25 2 50 To Be Ordered

Resistors, 0.1 35 3.5 In Lab

Capacitors 0.15 15 2.25 In Lab

LEDs 2 2 4 In Lab

Total 742.53

41

4.2 Schedule and responsibilities

Week Tasks Members

2/5 Write Proposal Hai

2/12 Image Processing Algorithm Hai

 Microcontroller Algorithm Zhe

2/19 Prepare Design Review Hai

 Prepare Design Review Zhe

2/26 Sensor Hai

 Power Zhe

3/5 Movement Module Circuit Hai

 Movement Module Mechanical Zhe

3/12 Prepare for Individual Progress Report Hai

 Prepare for Individual Progress Report Zhe

 Image Processing Threshold and Noise Hai

 Image Processing Color Plane Extraction Zhe

3/19 SPRING BREAK

3/26 Communication Module Send Hai

 Communication Module Receive Zhe

4/2 Testing and Debugging: Image Processing Hai

 Testing and Debugging: Pursuit-evasion Module Zhe

4/9 Build Mechanical Chassis and Integrate Systems Together Hai

 Final Testing Zhe

 Ensure Completion Zhe

4/16 Prepare Demo Presentation and Paper Hai

42

4/23 Final Demo Zhe

4/30 Final Presentation and Final Paper Hai

43

5. Ethics and Safety

5.1 Ethics issues

We agree to uphold the IEEE Code of Ethics, and will address any relevant ethical concerns

about our project. The ones related to our project are the followings:

3. to be honest and realistic in stating claims or estimates based on available data;

5. to improve the understanding of technology; its appropriate application, and potential

consequences;

7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors,

and to credit properly the contributions of others;

8. to treat fairly all persons regardless of such factors as race, religion, gender, disability, age, or

national origin;

9. to avoid injuring others, their property, reputation, or employment by false or malicious action;

10. to assist colleagues and co-workers in their professional development and to support them in

following this code of ethics.

44

5.2 Safety issues

 The power voltage of every equipment on both cars is below 12V so it does not have any

potential harm to human body. But we need to be aware to properly handle the power of the

computer and camera. Also we are going to solder components together so we should be aware

to uphold soldering safety code (see citation).

 The running car is controlled by us and it weighs less than 500 grams and the maximum

speed is below 0.3m/s. It would not be able to make any kind of harm even to a baby (as long as

he does not eat it). The chasing car has a weight below 1 kilogram and the maximum speed is

below 0. m/s. It also has a focus only on the running car so it will dodge anything that’s not

yellow and running. We promise to keep our cars away from children.

45

6. References

Pursuit-Evasion Algorithm

http://vp.dei.ac.in/wiki/index.php/The_Monomial_Basis

http://en.wikipedia.org/wiki/Pursuit-evasion

Arduino Mega 2560 Data Sheet

http://www.atmel.com/Images/doc2549.pdf

XBee Communication

ftp://ftp1.digi.com/support/documentation/90000991_B.pdf

Ultrasonic Sensor

http://www.maxbotix.com/documents/MB1010_Datasheet.pdf

H-bridge

http://en.wikipedia.org/wiki/H_bridge

Soldering safety

http://naples.cc.sunysb.edu/Admin/HRSForms.nsf/pub/EHSD0348/$File/EHSD0348.pdf

IEEE Code of Ethics

http://www.ieee.org/about/corporate/governance/p7-8.html

LM2574 Buck Converter

http://www.ti.com/lit/ds/symlink/lm2574.pdf

http://vp.dei.ac.in/wiki/index.php/The_Monomial_Basis
http://en.wikipedia.org/wiki/Pursuit-evasion
http://www.atmel.com/Images/doc2549.pdf
http://www.maxbotix.com/documents/MB1010_Datasheet.pdf
http://en.wikipedia.org/wiki/H_bridge
http://naples.cc.sunysb.edu/Admin/HRSForms.nsf/pub/EHSD0348/$File/EHSD0348.pdf
http://www.ieee.org/about/corporate/governance/p7-8.html
http://www.ieee.org/about/corporate/governance/p7-8.html
http://www.ieee.org/about/corporate/governance/p7-8.html
http://www.ti.com/lit/ds/symlink/lm2574.pdf

46

7. Appendices

A. IPC Code Snippet

#include <string>

#include "EasyBMP.h"

#include <cmath>

#define target "Tests/camera3.bmp"

#define out "Tests/cout3.bmp"

#define red 253

#define green 190

#define blue 5

int main ()

{

 BMP pic;

 pic.ReadFromFile(target);

 for(int w = pic.TellWidth(); w >= 0; w--)

 for(int h = pic.TellHeight(); h >= 0; h--)

 if(fabs(input(w, h) -> Red - red)

 + fabs(input(w, h) -> Green - green)

 + fabs(input(w, h) -> Blue - blue) > 50)

 {

 output(w, h) -> Red = 0;

 output(w, h) -> Blue = 0;

 output(w, h) -> Green = 0;

 }

 pic.WriteToFile(out);

 return 0;

}

47

B. IPC Calculation

