UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Data Acquisition System for Formula SAE Race Car

ECE445 – Final Report
Project 34
Mohan Sha

Shaik Mohammad Farooq

Raviraj Mahajan

TA: Ryan May

May 1, 2013

Table of Contents

1. Introduction

 1.1 Statement of Purpose

3

 1.2 Objectives

4
2. Design

2.1 Block Diagram

5
2.2 Block Descriptions

6
2.3 Simulations

8
2.4 Design Alterations

10
3. Requirements and Verifications

3.1 Testing Procedures

11
3.2 Quantitative Results

11
4. Cost Analysis

4.1 Labor

16
4.2 Parts

16
5. Conclusion

17
6. Future Work/Alternatives

17
7. Ethical Considerations

18
8. References

20
9. Appendix

A Verification and Requirements Table

22
B Design Schematics

31
C Arduino Code

33
1. Introduction

 1.1 Statement of Purpose:

Every year the UIUC SAE Formula Electric team builds a car to participate in a racing competition with other major universities. In order to test and improve performance of the car it is important to have as much data from the car as possible. Our task is to build a data acquisition system for the car, collecting and displaying real time data on the dashboard. This entailed finding the right sensors and a processing unit to convert their outputs to relevant units and output them to a display placed on the dashboard. The parameters to be measured were as follows:

· Temperature – motor, coolant and battery

· Speed – motor and wheel

· Voltage and Current drawn from the battery

Another aspect of the system that we were required to build was the wireless transmission of this data to a nearby computer and also saving it to an SD card located on the car in case a computer is not available nearby to receive real time data. This was important as it would enable the pit stop crew to instruct the driver concerning the optimum usage of the car. It would also allow the team to know exactly how the car was handling different tracks during the practice runs which would enable them to make necessary changes to the car before the final race. The entire system thus created will be modular in nature and could potentially be implemented in future SAE race cars. The legacy of the project is that after installation of the DAQ system on to the race car our team will get to assist the Formula SAE team during the real race in July, 2013.

1.2 Objectives

1.2.1 Goals

· Provide the driver and team with real time input from all the sensors in the car.

· System should be compact and easily transferable to other project cars.

· Data should be synchronized.
1.2.2 Functions
· Acquire data from various types of sensors – temperature, pressure and speed.
· Acquire and display the data for the temperatures of the coolant, the batteries and the motor. Similarly, acquire and display speed of the motor and wheels and pressure of all the tires.
· Ensure that response time of the sensors is optimum by synchronizing all sensors.
· Data should be wirelessly transmitted to a computer located at the race pit from where the rest of the team monitors the race.
1.2.3 Benefits
· Service time efficiency due to on-site data analysis and fast feedback.
· Service cost efficiency due to time efficient method and higher calibration quality.

· Single display with all the required data eliminates the need for manually testing each part.

· Wireless data transmission allows formula SAE team to instruct the driver on how to boost performance.

1.2.4 Features

· Wireless data transmission for over a track of 0.5 mile.

· LCD displaying multiple data.

· Simultaneous multiple data sensing.

· Compact processing system with dimensions of approximately 3 X 3 inches

· Wireless transmission.
2. Design

2.1 Block Diagrams
[image: image1.png]Computer

=
=
&
3
@
8
z
3
o

Microcontroller

Temperature
BMS
{Voltage /
Current)

Fig 1. Full System Block Diagram
2.2. Block Description
The system consists of three main blocks. Firstly, the sensor block consists of several kinds of sensors that will collect data about the car and an RS232 communication protocol from the BMS. This signal will then pass through a choke to the microcontroller. The second block is the processing block consisting of ArduinoUno board containing the ATMEGA328 microcontroller. The microcontroller will translate the digital and analog signals into readable, useful data. The Ardunio is connected to a Tx Xbee which will wirelessly transmistt all the data obtained. The third block consists of the three different outputs. Firstly, a LCD will display speed and temperature data to the driver. Secondly, all the data will be received at a base station at the pit stop through an Xbee module and a USB Xbee Explorer that allows the data to be read through a computer. This is the Rx part of the system.
1. Power Supply

The car has a 12VDC power supply separate from its 300 VDC supply for the drivetrain. The 12VDC outlets of the car will be used to power our sensors and processors. A 12V-5V dc-dc converter powers all the components of the data acquisition system.
[image: image2.png]2v

v
DC-0C Buck

Leo

Convertor

Mirocontolor

XBoo

Sensors
@

Fig 2. Power Module
2. Battery Temperature Sensor

The battery temperature sensors are already integrated in the Elithion Battery Management System (BMS). The BMS also gives information on the state of charge, voltage and current of every individual battery cell and of the complete.

The BMS is powered separately via a different 12V power supply from one of the 12 outlets.
3. Sensors
a. Motor and Coolant Temperature Sensors
Both the motor and coolant temperature sensor take 5V input form the buck converter. The coolant temperature will be placed in the out-flow pipe of the coolant.
b. Battery Temperature Sensor

The battery temperature sensors are already integrated in the Elithion Battery Management System (BMS). The BMS also gives information on the state of charge, voltage and current of every individual battery cell and of the complete.

a. Motor and Vehicle Speed Sensors:
There are two digital Hall Effect sensors being used to measure the rotation seed of the motor and the speed of the rotation of the wheels.
4. Arduino Uno
This board is powered by the ATmega 328 microcontroller running at 8 MHz. It has 14 digital I/O pins and 8 analog input pins. It accepts 3-12 VDC as input voltage and hence, we will use the 5 V obtained from the buck converter as the input voltage.
The code for the microprocessor can be found in the appendix.
5. XBee Module

a. Transmitter:

All the data collected and converted by the Arduino from the sensors is transmitted wirelessly via the XBee module. We used XBee-PRO S1 wireless RF module. It transmits data at a frequency of 2.4 GHz. The maximum RF line of sight range is 1.2 km (.8 miles). The Tx unit is responsible for transmitting the serial data generated by the processor block to the Rx unit wirelessly at 2.4GHz.
b. Receiver:

The XBEE wireless module employs the Zigbee protocol to communicate to the receiver module. The Rx will be connected to the computer via XBee Explorer. Rx unit is plugged into the XBee Explorer, which is attached to a mini USB cable.
6. Display
The LCD shows the Vehicle speed and Motor Temperature to the driver. The choice of our LCD is the Hitachi HD44780. It consists of 4 lines x 20 characters.
2.3 Design and Simulations:
1. Power Supply: Buck converter
12V-5V dc-dc buck converter design schematic:

[image: image3.png]Vintin
Vintax

0V
14V

| 4vin

Reomp
115 Kohm

Ceomp
30007
500V

TPS54340

Choot

1

Vout=5V
lout=2A

o
700 mv.
7504

Ribt
147 Kohm

Rfbb
1,65 Kohm

Fig 3. Buck converter Scehmatic

Voltage ripple: 20mV

Tolerance < 20%

[image: image4.png]

Fig 4. Buck converter voltage ripple

2. Sensors

a. Motor Temperature Sensor
The sensor gives temperature difference as voltage values between 0-2V. This voltage can then be converted to temperature in degree Celsius using the following formula:

ºC = 100 * V-50

The sensor has a 10 mV/°C scale factor. It accepts input voltages between 2.7 - 5.5 VDC and hence we will be supplying it with the 5 V obtained from the buck converter circuit. It has a temperature range of -40 to +125 0C with an accuracy of ±20C. The motor is not expected to exceed temperatures of 1150C which makes this sensor ideal to use.

b. Coolant Temperature Sensor
The sensor has a known temperature range of -55°C to +125°C with an accuracy of ±0.5°C. This sensor gives and output in the form of 9-12 bit digital signals. The conversion of 12 bit temperature to digital word is at most 0.75s. The code to get the temperature value from the bit values is included in the Ardunio’s description.
c. Motor and Vehicle Speed Sensors:

These sensors accept input voltages between 6.5 - 24VDC and hence we will be powering them with the 5 V output from the buck converter circuit. The sensors have a frequency range of 0 - 12 KHz and give the frequency as digital output.
Assuming the tire has a radius of 20 cm, i.e. 0.0002 km, the distance covered in one rotation is 0.0002 * 2 * π = 0.001257 km

The highest speed that can be detected for this tire can then be = 1200 rotations per second * 60 seconds * 60 minutes * distance covered in one rotation = 5428.673 km/h

3. Fuse
A 3A fuse was chosen to protect the circuit, placed between the 12VDC outlet and the buck converter. The fuse breaks over 3A. Simulation of the fuse:
[image: image5.png]Curtent output of 3A fuse (Amps)

T Letthrough current

input current to 3A fuse (Amps)

Fig 5. Simulation of 3A Fuse
2.4 Design Alteration:

· The Arduino Fio v3 was replaced by the Arduino Uno. This was done to ease the process of loading code onto the microcontroller. The Arduio Fio can only be programmed through and FTDI cable or wirelessly through an Xbee. This causes complications as Microsoft Windows 7 is not able to successfully load the drivers required to recognize the device. The Arduino Uno is more user-friendly and satisfies all the requirements for our system. The only drawback is relatively larger size which does not take precedence over accessibility.

· The Elithion Lithiumate Pro BMS system will most probably be replaced soon, therefore the 19th of June race may very well be its last. Rather than spending excess time debugging an outdated system, the team has decided to put it on hold.

· For the BMS to function correctly, it must know the number of battery cells that it is monitoring. But since new batteries are introduced, the exact number of cells per bank and banks per pack are still to be determined. Without this information, the BMS cannot function correctly.

· Due to the above mentioned problem, and many hidden ones as well, the BMS has been malfunctioning for a long time, giving the wrong voltage reading of 250VDC to 400VDC, while the maximum possible voltage output of the battery pack is only 300V. And of course, since it is a DC battery pack, the voltage output does not give random fluctuations either (verified by oscilloscope reading of a sufficiently long period).

3. Design Requirements and Verifications

 3.1 Testing Procedure:

Refer Appendix A

3.2 Quantitative Results
1 .Buck Converter
We tested the buck converter with the help of an oscilloscope. The following picture shows that the buck converter outputs 4.8V for an input voltage of 12 V. That is about 4% error considering that the required voltage is 5V. The error obtained is much below our requirements. On adjusting the feedback of the buck converter design we were however able to get an output voltage of 4.99V for the same input voltage of 12V.
[image: image6.jpg]

Fig 6. Buck converter output test

2. Sensors:

a. Motor and Battery Temperature Sensors:

The following figure shows the expected voltage vs. temperature relation obtained from the data sheet. We were able to test the sensor by using a controlled heating pad with known temperatures. The graph in fig 4 shows that the observed voltage ranges were very close to the expected ranges with an accuracy of ±20mV translating to a accuracy of ±20C as expected.

[image: image7.jpg]OUTPUT VOLTAGE (V)

20

a. TMP35
18 b. TMP36
3 c. TMP37
= c
e Vg =3V A
14 /\
12
1.0
08
a
06
04
02
)
50 25 0 25 50 75 100

TEMPERATURE (°C)

125

Fig 7. Expected Voltage vs. Temperature

[image: image8.png]1.6

1.4

1.2

1

Output Voltage 08

\%]

0.6

0.4

0.2

26

50 75
Temperature (°c)

100

Fig 8. Observed Voltage vs. Temperature
Using the slope obtained from the graph we plotted above, we got the following readings of temperature from the sensor-arduino interface as outlined in the requirements and verification table.

[image: image9.emf]Thermometer

Temp.(°C)

Sensor Temp. (°C)

25.1 27.7

40.25 44.01

55.42 57.7

75.22 77.91

90.21 93.2

100.02 102.88

[image: image10.png]120

100

80

Thermometer

Temp.(°C) 60

40

20

20

40 60
Sensor Temp.(°C)

80

100

120

Fig 9. Thermometer Temperature vs. Sensor Tempearature

The data collected showed an average error of ~ 5% or 3°C.

This was included as an offset of -3 in the formula to calculate the temperature from the voltage.

b. Coolant Temperature Sensor:

To test the sensor, we used a heating pad with known controlled temperature and compared it with the temperature read by the sensor. The following table documents the observations.
[image: image11.emf]Thermometer

Temp.(°C)

Sensor Temp. (°C)

25.55 23.1

40 37.5

55.5 52.88

75.25 73.15

90.35 87.75

100.25 97.89

[image: image12.png]120

100

80

Sensor Temp.(°C) 60

40

20

yd

v

20

40 60 80 100

Thermometer Temp.(°C)

120

Fig 10. Thermometer Temperature vs. Sensor Tempearature

This showed an average error of ~ 5 % or ±2.45 °C.
To compensate for this, we included an offset of +2.45 in the Arduino code when calculating the temperature.

c. Motor and Vehicle Speed Sensors:
The testing included attaching the speed sensor to a small motor-wheel assembly and using a stroboscope to measure the RPM. The observations are tabulated below.

[image: image13.emf]Stroboscope

Reading (RPM)

Sensor Reading (RPM)

80 68

110 120

140 155

170 165

200 225

230 212

[image: image14.png]Sensor RPM

250

200

150

100

50

/

50

100 150
Stroboscope RPM

200

250

Fig 11. Stroboscope RPM vs. Sensor RPM
The average error in detection was ±16 RPM. This large inaccuracy is due to the fact that the testing was done using 4 targets. More targets will be added to decrease this error.
3. Arduino Uno

The Arduino was able to fulfill all the requirements included in the requirements and verification table above.

4. XBee Pro S1

The Xbee Pro S1 was successfully tested at a range of 300m with zero bit error rate.

5. LCD

The LCD was able fulfilled its highest requirement successfully.
[image: image15.png]

4. Cost Analysis

4.1 Labor

	Name
	Hourly Rate

($ / hour)
	Hours invested over entire period of project
	Total Cost = Hourly Rate x 2.5 x Hours Invested

	Mohan Sha
	20
	120
	$2400

	Farooq Shaik
	20
	120
	$2400

	Raviraj Mahajan
	20
	120
	$2400

	Total
	60
	360
	$7200

4.2 Parts

	Item
	Serial Number
	Quantity
	Cost per unit ($)
	Total Cost ($)

	Digital Temp Sensor
	DS18B20
	2
	10
	20

	LCD (Hitachi)
	HD44780
	1
	20
	20

	Xbee
	XBP24-AWI-001-ND
	1
	32
	32

	Voltage Regulator
	LM2575IN
	4
	1.86
	7.44

	Analog Temperature Sensor
	TMP36
	2
	1.50
	3

	Arduino Fio
	B004G4XVKC
	1
	34
	34

	Adafruit Data Logger
	243
	1
	28
	28

	SD Card (1 GB)
	9643151
	1
	4
	4

	XBee Explorer USB
	WRL 08687 ROHS
	1
	25
	25

	Speed Sensor
	SNDH-H3C-G03
	2
	11.25
	22.50

	Buck Converter
	90583
	1
	7
	7

	Total
	
	
	
	202.94

4.3 Grand Total

	Section
	Total

	Labor
	$7200

	Parts
	$202.94

	Total
	$7402.94

6. Conclusion

The system, as outlined in the introduction, has been completed to Formula SAEe's requirements with all parts fully functional. The car will now have an LCD in the middle of its dashboard, displaying the speed of the car, the temperature of the engine and coolant, and the voltage of the battery packs if the team so requests. All this data is also being wirelessly transmitted to a nearby computer where it is directly entered into an excel sheet.

It has been confirmed that one of our team members, Mohan will go to the race with the team to help resolve any unforeseen errors that may occur in the system.

This is the first year where the FSAE Electric car team will have a car fully functional and ready to race, we are very glad that our fully functioning data acquisition system will enter the race and be put on the race track with the car.

7. Future work

The system has been tested independent of the car. As soon as the car is available, we will attach the system onto the car and perform further testing. The data lines and power lines to the sensor will be wrapped together with the other cables of the car, and tied to the chassis once the car is assembled. Only the mount for the speed sensor targets, which may require welding to the chassis, is a small concern.

The team has suggested a few features that can be added on to the car:

· Steering wheel potentiometer to measure the steering angle.

· Automatic lap time recorder. This is difficult because in order to do this, usually, as target is put on the ground, once the car passes the target, the lap time is logged. But as per FSAE rules, individual teams are not allowed to place any object on the race track.

· Independently powered data acquisition system. Currently, there are several maneuvers that will cut the power from the batteries, such as, violently braking, braking while accelerating, accelerator potentiometer malfunction. This is done in accordance with the FSAE rules. Once the power is cut, there will be no power to the microcontroller. With an independent power supply of its own, the microcontroller and the sensors will remain functional even if the car is turned off. Thus, the pit crew will be able to read when and where did the illegal maneuver occur that cause the car to shut down; rather than abruptly loosing data collection.

8. Ethical Considerations:

	IEEE Code of Ethics
	Considerations

	1. To accept responsibility in making decisions consistent with the safety, health and welfare of the public, and to disclose promptly factors that might endanger the public or the environment.
	Since the driver will be using the data from our sensors and we must make sure it is absolutely accurate. A false speed can mislead the driver. We must also make sure that there is no chance of electric shock from our components in the system as the SAE team will be required to replace the sensors when damaged.

	2. To avoid real or perceived conflicts of interest whenever possible, and to disclose them to affected parties when they do exist.
	Throughout this course, our team will ensure that we manage our time wisely, coordinate work among the team members and make sure we utilize all available resources. Therefore we will try our best to balance our work and achieve the goals.

	3. To be honest and realistic in stating claims or estimates based on available data.
	Our system will be advertised accurately in its
reliability and how long it lasts (battery).

	4. To maintain and improve our technical competence and to undertake technological tasks for others only if qualified by training or experience, or after full disclosure of pertinent limitations.
	Since we are not very experienced in this field of building a product from scratch we will try our best to learn the necessary skills to complete the project.

	5. To seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit properly the contributions of others.
	Throughout the course we will critique each other work to make sure that we create the best product possible.

7. REFERENCES

[1] "Arduino - SD." Arduino - SD. Scott Fitzgerald, 11 Nov. 2011. Web. 01 Oct. 2012.
<http://arduino.cc/en/Reference/SD>.

[2]"Analog Filter Design Demystified." - Tutorial. N.p., n.d. Web. 02 Oct. 2012.
<http://www.maximintegrated.com/app-notes/index.mvp/id/1795>.
[3]"IEEE Code of Ethics," [Online].
http://www.ieee.org/about/corporate/governance/p7- (accessed February 15, 2013)
[4]"2013 Formula SAE Rules." Formula SAE. students.sae.org/competitions/formulaseries/rules/2013fsaerules.pdf (accessed March 13, 2013).

[5]Amin, Archit , Zachary Beran, and Ben Kimey. "Alternative Energy Monitoring System." ECE 445 Course Website. courses.engr.illinois.edu/ece445/projects/fall2011/project7_final_paper.pdf (accessed December 7, 2011).

[6]Assem, Pourya, and Paul Lupas. "On-Site Hotbox Calibration System." ECE 445 Course Page. courses.engr.illinois.edu/ece445/projects/fall2012/project2_final_paper.pdf (accessed December 12, 2012).

[7]Dallas Semiconducto. "DS18B20 Programmable Resolution 1-WireÂ® Digital Thermometer." Dallas Semiconducto. dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Temp/DS18B20.pdf (accessed February 13, 2013).

[8]Adafruit . "Data-Logger Shield for Arduino - User manual." limor. http://www.ladyada.net/make/logshield/use.html (accessed March 9, 2013).

[9]"GEARTOOTH SPEED SENSOR GS101205 Series." Cherry Corporation. www.cherrycorp.com/english/sensors/pdf/CHE-214006_GS101205_DtSh_E.pdf (accessed March 8, 2013).

[10] Analog Devices. "Low Voltage Temperature Sensors." TMP36 Data Sheet. dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Temp/TMP35_36_37.pdf (accessed February 5, 2013).
8. Appendix
A. Verification and Requirements
1. Power Supply

	Requirements
	Verification
	Success

	12 V, 7.2 Ah low voltage power supply
1. The battery should be able to supply a
voltage of 12VDC (±1V) and 3A.
2. Different sensors have different voltage requirements as follows. One Buck Converter should be able supply 5±0.2V at 2A input voltage. The following components connected in parallel will draw current from the 5V supply:
Motor temp. sensor: 2.7 to 5.5 VDC

Coolant temp sensor: 3.0 to 5.5 VDC

Hall effect sensors: 5 to 24 VDC

LCD input: 3 to 5.5 VDC
Arduino Uno v3 3.3 to 5.5VDC

3. The Arduino must supply a voltage input stable at 3.3±0.1V to XBee Tx
	1. A multimeter will be used to measure the voltage across the battery. A 100 ohm resistor will be connected from power to ground for the 12 V power supply. The voltage should not drop below 11V.
2. Use a multimeter to test all the outputs. Check the power input to each of the components using a multimeter. The sensors, LCD, Arduino, and the data logger should receive an input of
5±0.2V from the buck converter and draw a maximum current as follows:

Motor Temp Sensor: 50uA

Coolant Temp Sensor: 4 mA

LCD: 2mA

Arduino: 100mA

Hall Effect Sensor: 50mA
3. We can test the voltage supply for XBee using multimeter. If microcontroller functions well, the 3.3V port should output a stable voltage. If the XBee does not have power, we should put checking the functionality of Microprocessor into consideration.
	Yes

Yes

Yes

2. Buck Converter

	Requirements
	Verifications
	Success

	1. The buck converter will decrease the voltage from the 12±1 V power supply to the required 5±0.2 volts for the motor.
2. The duty cycle should be about 0.416.
3. Buck converter efficiency should be about 90%

	1. The output voltage of the buck converter will be tested by Digital Multimeter. The converter should maintain a set voltage level with ripple of about 4%.

2. Calculate the duty cycle based output the input and output voltages.

3. Calculate the current flowing through each component using the Digital Multimeter. Using P = I2R, and the given resistances of the components calculate the total power dissipated.
Efficiency formula is given in the bock description of buck converter.
	Yes

Yes

Yes

a. Micro-controller (Arduino Uno)
Initially we planned to use Arduino Fio. We were unable to upload the program onto the Fio and hence could not even test it. We decided to work on Arduino Uno and successfully completed all the actions on Uno. The requirements of Arduino Fio and Arduino Uno are similar. Hence below is table representing the requirements and verifications using Arduino Uno.

	Requirements
	Verification
	Success

	1. The microcontroller must be able to run the code as expected. Also, the serial output should be working properly as we will be using it to debug the circuit at different levels.

2. Microcontroller should be able to withhold the code loaded onto it.

3. Check if the analog inputs are working.

4. Check if the digital pins are working.

	1. Write a simple program to display “Hello World” as output ten times. Run the program after loading it onto the microcontroller and use the Serial output to read the output on the computer. Another test would be to make the LEDs on the Arduino board to blink.

2. Disconnect the microcontroller from the computer after loading the code onto it. The above LED test should be performed again and the output confirmed.

3. The formulae to convert the analog signals from the various sensors to digital will be programmed into the code. Using signal generator, generate a 5V DC supply and connect it to the analog inputs. Using serial interface with a computer through USB we can read the output from the microcontroller on the computer. Change the input voltage and check whether the resulting output is in accordance with the input voltage. Perform the test with multiple inputs to test that the microcontroller can handle multiple inputs simultaneously.

4. This can be done by using the pin as an output. Then connect it to an LED and make it blink.

pinMode(pin, OUTPUT);// set pin to input

digitalWrite(pin, HIGH);// turn on pullup resistors

	Yes

Yes

Yes

Yes

b. XBee Module

	Requirements
	Verification
	Success

	1. The Xbees must communicate with 0 bit error rate with an effective range of 1 km as required for the race.

2. Transmittiing Xbee should be connected to the correct output (most significant bit is on pin D12, and least significant bit in on pin D11)

3. Transmitter should communicate to receiver.

4. Transmitting Xbee should send signal two signals from two different pins.

5. Receiver should receive the most significant bit, followed by the least significant bit

6. Receiver should receive the exact same signal sent by transmitter.

The received data should be assigned to corresponding variable.
7. Module has 99.9% accuracy of transmitting data. a. Transmission from IPC to MCU is 99.9% successful.
8. Transmission Rate: Make sure more than 10000 signals can be transmitted every second.
	1. Connect RS232 serial cable to XBEE units on two separate computers and use the terminal port to send and receive specific test vectors. Ensure the connections from Tx microprocessor to Tx XBEE are correct. Tx of the microprocessor goes to the Rx of the XBEE and the Rx of the microprocessor goes to the Tx of XBEE. The test can be performed with two laptop computers in an open field (Bardeen quad). Check for accuracy of data received ideally 0 bit error rate is expected. Note that baud rate on both Xbees should be set to the same value.
2. Check if the output of microcontroller is connected to the correct digital input pin.

3. Try sending random data, and see if the red light on both Xbees are blinking (if they are blinking, they are communicating to one another).
4. • Connect transmitter to PC, and use the terminal tab from X-CTU to try sending data to receiver.

• If sending sample data succussful, try to execute UART API command line to send data from D12, and execute another one to send data from D11.

5 • Create a debugging code to print out the command line received from transmitter.

• Open serial monitor from arduino program to check the received command line. Check if there are two different command lines printed in the serial monitor.

6. Add a printing line to the receiver Xbee code, to print out the value of both variables. Check if the value for each variable matches the one sent from transmitter.

 • Check if the Arduino code contains function that extract the value from the command lines received (assigning parts of the command lines to variables).

• Print the value of both variables, and see if they match the value in the command lines.

2. A standard XBee can send 250 kilobits every second. We are sending signals in rate of 8 bits a time. Technically, we can send 31250 samples every second. Since we only need to send tens signals each second, we can send multiple times to guarantee the transmission accuracy. We will send each data 5 times. The component receiving it will compare the 5 results. If one of them is different with the other four, we still consider it as a success. If two or more results are different, we consider it as a failure and output a failure signal.
3. Send signals in both directions 10000 times each second. Check the accuracy and the number of signals we received. Print out the result on the screen if necessary.
	Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

a. Sensors

i. Temperature sensors

	Requirements
	Verification
	Success

	
Motor Temperature Sensor
1. Sensor should be properly calibrated.

2. Sensor accuracy should be ±2°C as specified in the data sheet. Minimum error of ±3°C is tolerable.

Coolant Temperature Sensor
1. Sensor accuracy should be ±2°C.
2. Sensor should be waterproof.

	
1. Connect the terminals of the sensor to a voltmeter. Place the sensor on a surface with known temperature or measure the temperature with a thermometer. For room temperature 27 degree (Celsius) the sensor should give an output of 0.77V.
Several intermediate temperatures will be taken. The readings can then be plotted on a graph Temp vs Volts. All the points on the graph should approximately lie on the line:
C = 100*V – 50.

2. Use a heating pad found is the ME 340 lab as a controlled heating object. Place sensor on it and note the output temperature. Take 15 readings from 25°C to 120°C which is the maximum expected temperature for the motor. Compare the readings with actual temperatures of the heating pad to check for accuracy.
 1. Perform above step and using arduino to read the output with the code attached in appendix.
2. Dip the sensor into a glass of water. Measure the temperature of the water with a thermometer and compare with the sensor output. Heat the water to ~50°C and repeat the test.
	Yes

Yes

Yes

Yes

ii. Motor/Wheel Speed Sensors

	Requirements
	Verification
	Success

	1. The sensors should be able to detect the magnet.
2. The sensor should be calibrated correctly.

Max. speed of the car: 80 mph.
18in wheels = 1.44m per rotation.
89,408 rotations per hour.

Frequency: 24.84Hz.

Well within the ratings. (0-10kHz)

The error of speed read must be <3%.
3. The sensor should detect speeds of at least 180 km/h.
	1. Check if the magnet is within 1.5mm of the sensor head. Move the sensor over the magnet several times while checking the output to verify that the sensor is detecting the magnet.
2. A tachometer will be used to record the speed of a rotating steel object. Then use the sensors to find out the speed of the object. These two readings must be within 3% of each other. (Rotating motors found in the ECE 486 lab are perfect for the testing)
Equations:

Frequency*π*diameter(in)=speed

To convert this speed into mph, multiply it by 2.24.
3. Using the test motor in the lab, rotate the motor at 2400 rpm. This is equal to 180 km/h for a radius of 20 cm. The sensor should be able to detect the magnet and give an output of approximately 40 Hz which is well within the range of the sensor.
	Yes

Yes

No
We were not able to get the higher speeds accurately as we were using just 1 sensor on the wheel. We need to add more sensors to get accurate data of higher speeds.

b. LCD

	Requirements
	Verification
	Success

	1. The display functions with an input voltage of 5V.

2. It should display numbers, letters,
symbols and musical notes in color without any lag, flickering or disruption.

3. Check the refresh rate is at least 0.25seconds.
	9. Using a digital multimeter, supply 5V to the VCC pin on the LCD module through a banana wire with a 4mm male
output socket. 1. The LCD should light up when attached to the power source.

10. Run a simple program that displays numbers, letters, symbols and musical notes. The program is to be written and run in the arduino. This is similar to a Hello World test.

11. Write a program on arduino to send output every 0.5 seconds. If this is seen on the LCD we know refresh rate is below 0.5 seconds. Then, write another program to send output every 0.25 seconds and check if LCD shows this output and so on.
	Yes

Yes

Yes

Appendix B. Design Schematic

[image: image16.png]ECE4d5 Project # 34

sese-pag Ravi e
o Farooq Shlk
oo 2 o Wohan Sha
. Yrniversty of Hicis - Lkbana Champsign
o
soonico B2
foanict s Slaomasy
et
coomo._seuabamios |2
N Tampanios [A
Sgompamics [O
Frsiaosnios [
crsioioy [2 Al g, , as B
DTRSLERF RaE 2l pax i s B
CODOUT_ENDOS R Ao Seess
E i =
sour 3wl
oo Y. mfe
ot oo e
Punmssi 3o o
et (2 o e oo
ol o o [3
weser B 2 s 2zon [Qe
Vet |- 2l 55 855 8RS
S
XBL i] S5
il Loz
<5082
105083
Dot Sencars 11&pes
12 Zpas.
= e
= e
=)

oo roaan

Fig 8. Design Schematic involving Tx Module

[image: image17.jpg]ECE445 Project #34
Raviraj Mahajan

Faroog Shaik

Mohan Sha

Piversity of llinois - Urbana Champaign|

XBEE_RECIEVER

e
3 e
1o owsremr
= st
5v 4
o oncomrs
. oot
e 15 [useon o |-t 4 comour puoos
ap USEDP RXD — DTRISLEEP4RQIDIS
0 Bus 12| crepior
Sl s B o 1] wospos
ATyt o 1 P 1ol KeSocunanos
veeio + DTR s 7] FE-TisDaDIOS
10 oo, SeLavamos
c L 2 e o oonic
= =3 - 1« o Sormor
BF TONF 3] oo . = o e
T G e 02 3 il
! s mue 1 e
GND GND GND 9 oo
FT232RL-BASICSSOP
GND 28] XBEE-PRO

LED3

Fig 9. Design Schematic involving Rx module
Appendix C. Arduino Code

//downloaded library

#include <OneWire.h>

#include <SPI.h>

#include <LiquidCrystal.h>

//for Xbee use

#include <SoftwareSerial.h>

SoftwareSerial mySerial(8,9); // RX, TX

//Digital temp sensor Signal pin on digital 13

int DS18S20_Pin = 13;

//Wheel Speed Hall effect sensor constants on pin 2

 volatile byte rpmcount;

 unsigned int rpm;

 unsigned long timeold;

//Motor Speed Hall effect sensor constants on pin 3

 volatile byte rpmcount2;

 unsigned int rpm2;

 unsigned long timeold2;

//Declaring digital Temperature sensor on digital pin 13

 OneWire ds(DS18S20_Pin);

//set the speed variable as zero so when the interrupt for the

//speed sensor is not in effect speed is detected as zero

 volatile int speed1 = 0;

 volatile int speed2 = 0;

 /*The circuit:

 * LCD RS pin to digital pin 12

 * LCD Enable pin to digital pin 11

 * LCD D4 pin to digital pin 7

 * LCD D5 pin to digital pin 6

 * LCD D6 pin to digital pin 5

 * LCD D7 pin to digital pin 4

 * LCD R/W pin to ground

 * 10K resistor:

 * ends to +5V and ground

 * wiper to LCD VO pin (pin 3)*/

// initialize the library with the numbers of the interface pins

 LiquidCrystal lcd(12, 11, 7, 6, 5, 4);

void setup() {

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600);

 // set the data rate for the SoftwareSerial port

 mySerial.begin(9600);

 // set up the LCD's number of columns and rows:

 lcd.begin(20, 4);

 //message to check lcd function

 lcd.print("Initialising LCD");

 lcd.clear();

 //hall effect sensor constants and set interrupt to whenever magnet is detected

 //attachInterrupt 0 means pin 2

 attachInterrupt(0, rpm_fun, RISING);

 rpmcount = 0;

 rpm = 0;

 timeold = 0;

 //attachInterrupt 1 means pin 3

 attachInterrupt(1, rpm_fun2, RISING);

 rpmcount2 = 0;

 rpm2 = 0;

 timeold2 = 0;

 //Serial.println("#S|HEADER|[Units:,Celsius,Celsius,Celsius,Kmph,,Kmph,]#");

 //Serial.println("#S|HEADER|[Date Time,Motor Temperature,Battery Temperature,Coolant Temperature,Wheel Speed,Wheel RPM,Motor Speed,Motor RPM]#");

 mySerial.println("Xbee Connection Established");

 mySerial.println("#S|HEADER|[Units:,Celsius,Celsius,Celsius,Kmph,,Kmph,]#");

 mySerial.println("#S|HEADER|[Date Time,Motor Temperature,Battery Temperature,Coolant Temperature,Wheel Speed,Wheel RPM,Motor Speed,Motor RPM]#");

}//end of setup

// the loop routine runs over and over again forever:

void loop() {

 // read the input on analog pin 0:

 int temp1Value = analogRead(A0);

 //delay(20);

 int temp2Value = analogRead(A1);

 //delay(20);

 int digitalTemp = getTemp();

 digitalTemp = digitalTemp + 3;

 // delay(20);

 // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V):

 float voltage1 = temp1Value * (5.0 / 1023.0);

 float voltage2 = temp2Value * (5.0 / 1023.0);

 //Convert voltage reading to temperature in celcius

 int actTemp1 = (voltage1*100-55)-4;

 int actTemp2 = (voltage2*100-55)-4;

 //change to float to display on lcd

 float temp1 = actTemp1;

 //print out the value you read:

 Serial.print("Analog Temp 1: ");

 Serial.println(actTemp1);

 //delay(5);

 Serial.print("Analog Temp 2: ");

 Serial.println(actTemp2);

 //delay(5);

 Serial.print("Digital Temp: ");

 Serial.println(digitalTemp);

 //delay(5);

 Serial.print("\n");

 lcd.setCursor(0, 0);

 lcd.print("Motor Temp:");

 lcd.print(temp1, 2);

 lcd.setCursor(0, 2);

 lcd.print("Speed (kmph):");

 //Hall effect 1 - wheel speed

 if (rpmcount >= 20) {

 //Update RPM every 20 counts, increase this for better RPM resolution,

 //decrease for faster update

 rpm = 30*1000/(millis() - timeold)*rpmcount;

 timeold = millis();

 rpmcount = 0;

 //Calculating speed based on wheel radius = 2*pi*radius*60*rpm

 //this value is for 17.7cm wide tires. divide by 4 for 4 magnets

 speed1 = 0.00111715034*rpm*60/4;

 Serial.println("Wheel RPM: ");

 Serial.println(rpm,DEC);

 Serial.println("Wheel Speed KMPH: ");

 Serial.println(speed1,DEC);

 mySerial.println("Wheel RPM: ");

 mySerial.println(rpm,DEC);

 mySerial.println("Wheel Speed KMPH: ");

 mySerial.println(speed1,DEC);

 }

 //Hall effect 2 - motor speed

 if (rpmcount2 >= 4) {

 //Update RPM every 20 counts, increase this for better RPM resolution,

 //decrease for faster update

 rpm2 = 30*1000/(millis() - timeold2)*rpmcount2;

 timeold2 = millis();

 rpmcount2 = 0;

 //Calculating speed based on wheel radius = 2*pi*radius*60*rpm

 //this value is for 20cm wide tires

 speed2 = 0.00047877872*rpm*60;

 Serial.println("Motor RPM: ");

 Serial.println(rpm2,DEC);

 Serial.println("Motor Speed KMPH: ");

 Serial.println(speed2,DEC);

 mySerial.println("Motor RPM: ");

 mySerial.println(rpm2,DEC);

 mySerial.println("Motor Speed KMPH: ");

 mySerial.println(speed2,DEC);

 }

//print speed to lcd

float speedInt = speed1;

lcd.print(speedInt, 2);

excelDataXbee(actTemp1, actTemp2, digitalTemp, rpm, speed1, rpm2, speed2);

//excelDataSerial(actTemp1, actTemp2, digitalTemp, rpm, speed1, rpm2, speed2);

//delay(750);

}

//function to print data in CSV format which is excel compatible

void excelDataXbee(int actTemp1, int actTemp2, int digitalTemp, int rpm, int speed1,int rpm2, int speed2){

 mySerial.print("#S|ADDDATA|[,");

 char buffer1[5];

 mySerial.print(itoa((actTemp1),buffer1,10));

 mySerial.print(",");

 char buffer2[5];

 mySerial.print(itoa((actTemp2),buffer2,10));

 mySerial.print(",");

 char buffer3[5];

 mySerial.print(itoa((digitalTemp),buffer3,10));

 mySerial.print(",");

 char buffer4[5];

 mySerial.print(itoa((rpm),buffer4,10));

 mySerial.print(",");

 char buffer5[5];

 mySerial.print(itoa((speed1),buffer5,10));

 mySerial.print(",");

 char buffer6[5];

 mySerial.print(itoa((rpm2),buffer6,10));

 mySerial.print(",");

 char buffer7[5];

 mySerial.print(itoa((speed2),buffer7,10));

 mySerial.println("]#");

 //non-excel format data

 mySerial.print("Analog Temp 1: ");

 mySerial.println(actTemp1);

 //delay(5);

 mySerial.print("Analog Temp 2: ");

 mySerial.println(actTemp2);

 //delay(5);

 mySerial.print("Digital Temp: ");

 mySerial.println(digitalTemp);

 //delay(5);

 mySerial.print("\n");

 //delay(200);

}

void excelDataSerial(int actTemp1, int actTemp2, int digitalTemp, int rpm, int speed1,int rpm2, int speed2){

 Serial.print("#S|ADDDATA|[,");

 char buffer1[5];

 Serial.print(itoa((actTemp1),buffer1,10));

 Serial.print(",");

 char buffer2[5];

 Serial.print(itoa((actTemp2),buffer2,10));

 Serial.print(",");

 char buffer3[5];

 Serial.print(itoa((digitalTemp),buffer3,10));

 Serial.print(",");

 char buffer4[5];

 Serial.print(itoa((rpm),buffer4,10));

 Serial.print(",");

 char buffer5[5];

 Serial.print(itoa((speed1),buffer5,10));

 Serial.print(",");

 char buffer6[5];

 Serial.print(itoa((rpm2),buffer6,10));

 Serial.print(",");

 char buffer7[5];

 Serial.print(itoa((speed2),buffer7,10));

 Serial.println("]#");

}

//function that returns the temperature from digital sensor in DEG Celsius

float getTemp(){

 byte data[12];

 byte addr[8];

 if (!ds.search(addr)) {

 //no more sensors on chain, reset search

 ds.reset_search();

 return -1000;

 }

 if (OneWire::crc8(addr, 7) != addr[7]) {

 Serial.println("CRC is not valid!");

 return -1000;

 }

 if (addr[0] != 0x10 && addr[0] != 0x28) {

 Serial.print("Device is not recognized");

 return -1000;

 }

 ds.reset();

 ds.select(addr);

 ds.write(0x44,1); // start conversion, with parasite power on at the end

 byte present = ds.reset();

 ds.select(addr);

 ds.write(0xBE); // Read Scratchpad

 for (int i = 0; i < 9; i++) { // we need 9 bytes

 data[i] = ds.read();

 }

 ds.reset_search();

 byte MSB = data[1];

 byte LSB = data[0];

 float tempRead = ((MSB << 8) | LSB); //using two's compliment

 float TemperatureSum = tempRead / 16;

 return TemperatureSum;

}

//Hall effect : Each rotation, this interrupt function is run twice

void rpm_fun()

 {

 rpmcount++;

 }

void rpm_fun2()

 {

 rpmcount2++;

 }

10

