

Global Active Noise Cancellation for Cell Phone Privacy

Final Presentation

Joel Godard and Hershed Tilak

TA: Justine Fortier ECE 445: Senior Design Project #27 April 1, 2013

Agenda

- Introduction
- Objectives
- Original design and fabrication
- Modifications to Original Design
- Requirements and verification
- Voice Characterization
- Speaker Array Evaluation
- Further testing
- Summary and conclusions
- Recommendations for future work
- Credits
- Questions

Introduction

- Active noise cancellation (ANC) is currently used in many noise cancelling headsets
- Wanted to explore active noise cancellation to reduce cell phone users voice in the far-field
- Requires cancelling noise at source instead of at destination

- Explore active noise cancellation to reduce cell phone users voice in the far-field
- Characterize human voice radiation pattern
- Assess optimal speaker arrangements to maximize destructive interference

Original Design

- Acquire raw voice signal through microphone, amplifier, and filter circuitry
- Phase shift by 180° using DSP
- Emit phase shifted signal through speakers
- Characterize speaker and human voice radiation patterns to aid in speaker array design

]

Original Design: Top Level

Original Design: Audio Input

- Acquires and amplifies input waveform
- Mic has flat response from 100Hz to 15 kHz
- Amplifier gain of 5 V/V

Figure 2: Audio Input block diagram

Original Design: DSP

- Generates output wave based on input
- Basic Algorithm:
 - Acquire input wave
 - Take FFT
 - Time shift and Frequency Scale
 - Take IFFT
 - Output new wave

Original Design: Audio-DSP Interface

- Filters input and digitizes it for DSP processing
- Converts signal back to analog for audio output
- 1st order RC Low Pass Filter w/ 3 kHz cutoff
- Audio Codec samples at 8 kHz

ECE ILLINOIS

Original Design: Audio Output

Power Supply

 Outputs inverted signal

• N = 8

Speaker Speaker Cancelling Signal Amplifier (1)(1)Speaker Speaker Cancelling Signal Amplifier (2)(2)Audio-DSP Interface Speaker Speaker Amplifier Cancelling Signal (N) (N)

Original Design: Power Supply

Original Design: Fabrication

- Two PCBs
 - one for output circuit speaker array
 - one for everything else
- Fabricated in Electronics Service Shop

]

ECE ILLINOIS

Original Design: Fabrication

Modifications to Original Design

- Couldn't program DSP
 - JTAG emulator cost \$1,000
 - Used DSK (demonstration kit) instead
- 9V battery could not supply necessary current
 - Used power supply instead

]

Requirements and Verification

Component Block	Requirements	Verification Results
Audio Input	Acquire sound signalAmplify low level signal	Pass Pass
Digital Signal Processor	 Phase shift signal by 180° Configure CODEC Power-up sequencing 	Fail Pass Pass
Audio-DSP Interface	Sample at correct frequencyPerform low-pass filtering	Pass Pass
Audio Output	Amplify shifted signalEmit phase shifted signal	Pass Pass
Power Supply	Source enough currentSupply voltages	Pass Pass

Requirements and Verification Audio Input

Mic output within 0.5224 mV to 896.9 mV
 27.89 mV from 8 cm under normal conditions

Requirements and Verification Audio Input

- Microphone amplifier voltage gain is 4.78 V/V
- Specified as 5V/V±0.25V/V

Requirements and Verification Digital Signal Processor

- $180^{\circ} \pm 18^{\circ}$ phase shift could not be attained
- DSP latency ~ 3.26 ms
 - Destructive
 interference every
 n(153 Hz)
 - Constructive
 interference every
 n(153 Hz) + 76.5 Hz
- Negative time shift worsened problem

Requirements and Verification Digital Signal Processor

• Reset pin on DSP is held low for 1 \pm 0.5 seconds

Audio CODEC is
 configured correctly

Requirements and Verification Audio-DSP Interface

- The low pass anti-aliasing filter has a 3 dB cutoff frequency at 3 \pm 0.3 kHz
- Actual $f_{3dB} = 3.2$ kHz with 2.01V Pk-Pk input wave

Requirements and Verification Audio-DSP Interface

• Audio CODEC sampling rate verified as

Requirements and Verification Power Supply

- DC-DC Converters tested with 9V source
- Minimum supply voltage tested using voltage sweep
- Must operate with input voltage \geq 6.25V

Spec Actual	V _{in.min}	DS0-X 3034A, MY52103431: Thu Apr 11 09:09:39 2013 1 2.00V/ 2 2.00V/ 3 4 520.0≌ 100.0≌/ Stop ₽ 1 2.62V		
5 ∨ ±0.05 ∨	4.97 V	6.25 V	Agilent	
3.3 V ±0.033∨	3.29 V	~	a, → → → → → → → → → → → → → → → → → → →	
1.5 ±0.015	1.51 V	~	Δ. +1.000000000000000000000000000000000000	
1.25 ±0.0125	1.25 V	~	Measurement Menu Source Type: Add Settings Clear Meas Statistics 1 Top Measurement + +	

Requirements and Verification Power Supply

- Maximum power draw of circuit ~ 1.5 A
 - 9V battery could not supply this current
 - DC Power Supply used instead
- 9V battery output voltage across 6 ohm load

Requirements and Verification Audio Output

 Speaker amplifier gain verified at 0.91 V/V – Tolerance is 0.89±0.05 V/V

Voice Characterization Experiment Design

- Measure acoustic radiation pattern of human voice
- Measure typical frequency content
- One reference microphone and one comparison microphone

Voice Characterization Experiment Design

• Speech sample containing many English "consonants, vowels, and clusters" read at 9 microphone positions

Please call Stella. Ask her to bring these things with her from the store: Six spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother Bob. We also need a small plastic snake and a big toy frog for the kids. She can scoop these things into three red bags, and we will go meet her Wednesday at the train station.

Weinberger, Steven. (2013). Speech Accent Archive. George Mason University.

]

Voice Characterization Experiment Verification

• Looking for symmetry (pattern of Joel's voice)

Voice Characterization Experiment Verification

• CUI Speaker used in array

Voice Characterization Experiment Verification

• Average frequency content (3 men, 2 women)

H. K. Dunn, S. D. White, "Statistical Measurements on Conversational Speech", J.A.S.A, vol. 11, pp. 278-288, Jan. 1940.

Speaker Array Evaluation

- Attempt to match acoustic radiation pattern of average human voice
- Several speaker arrays evaluated
- Single element pattern found to be best match

Further Testing

- Tested to see if we can cancel a single frequency at a given point in space
- Found that we can achieve partial cancellation
- Difficult to match phase and amplitude
 - Speaker frequency response is not flat

Summary and Conclusions

- We acquired the acoustic radiation pattern of human voice
- We built a circuit to read in a signal and output an inverted version (for certain frequencies)
- We tested multiple speaker arrays and chose the one with the response most similar to that of the human voice

Summary and Conclusions

- Our method will not work
 - Latency
 - Radiation patterns differ on individual basis
 - Must know sound source location to match amplitude
 - Small speakers have poor low frequency response

Possible Future Work

- Using feedback to control amplitude
 - Needs more microphones
 - Bulky and not portable
- Using inverting amplifiers
 - No latency
 - Gives up frequency scaling (not feasible with length 32 FFT either)
- Use of FPGA
 - Decrease latency

Professor Jennifer Bernhard EM Laboratory students and staff Professor Jont Allen Parts Shop staff **Our TA Justine Fortier** ECE 445 entire staff

Thanks for Listening!