

# Soldier Status Monitoring Project

SPRING 2013 ECE445 Sang Hee Seo Santhosh Vairavan Yash Kurkani TA : Lydia Majure



## Introduction

- Soldier Status Monitoring
- portable device capable of monitoring body vitals
- The sponsors were interested in using this device to monitor soldiers out in the field



### Goals

- Gather heart rate, body temperature and movement data reliably
- Wireless communication of the sensor data over 100m
- Continuous monitoring of the soldiers vitals for at least 12 hours.

]



#### **Features**

- Portable and lightweight device
- LED lighting to display when user vitals reach critical threshold
- Non-invasive monitoring of soldier vitals
- Onsite storage of data on external SD/MMC card



### Main focus area

- Identifying required sensors and its connections with the Arduino microcontroller chip
- Designing custom PCB to incorporate microcontroller and sensors
- Data Packaging and Wireless
   Communication over 100 to 500m
- Software Coding for analyzing and displaying received sensor data.

# Intermediate project goals

- Create a prototype device using identified individual components connecting to the Arduino Uno board using a breadboard.
- Create a completely customized board for the device thereby making it even more compact and portable.



# **Protype A**





## **Prototype B**





### **Final Product**



# **Overall Block Diagram**





# **Threshold Display Module**





## **Sensor Display Module**





# Skin Temperature Sensor (MLX90614)

- Average temperature of all objects in its Field of View.
- I<sup>2</sup>C device, outputs literal information of temperature
- 17bit resolution instead of voltage reading

- **INPUT**: 3.3V through Li-Poly battery. Clock input (SCL) from digital 21
- OUTPUT: Single ended digital communication. Output Data(SDA) on digital 20



## **Comparison of IR sensor**

- Infrared
   Thermometer
   from Home
   Depot to test
   accuracy.
- Holding it same distance, it was 100% accurate.





# **Pulse Sensor Amped**

- Monitor heart rate data in "beats per minute"
- Optical Heart Rate Sensor
- The device will be connected to the ear lobe

- INPUT: 3-5V (requires Aref)
- **OUTPUT:** Single wire output is an analog fluctuation in voltage.







#### **Pulse Sensor Simulation**



#### HR = 60000 / IBI ;

when IBI is calculated in milliseconds



### Pulse Sensor Simulation with oscilloscope

#### **Regular Pulse Reading**

#### Superimposed Regular Pulse



# Pulse Sensor Simulation with oscilloscope

# Pulse reading under constant ambient light

# Pulse reading in dark room with no ambient light



# **Comparison of Pulse Sensor**

- OxyWatch premium Fingertip Pulse
   Oximeter from
   Home Depot
- Pulse Sensor Amped was off by approx 2beats





# Motion Sensor (ADXL 335)

- triple axis accelerometer
- Full scale range of ±3g
- Measures static acceleration due to gravity.
- ADC gives 10bit resolution

- **INPUT:** Input voltage can be between 1.8V to 3.7VDC.
- **OUTPUT:** Accelerometer outputs analog voltage depending on sensed value in each axis.



| cm   |    |  |  |
|------|----|--|--|
|      |    |  |  |
| incl | 1e |  |  |

# ADXL335 Simulations with oscilloscope

# +Z axis in direction of gravity

# -Z axis in direction of gravity

| X   | Agil              | lent Techn     | ologies              |       |                  |                 |         | wed ma | R 06 05:0        | 6:42 2013 |     | 🔆 Agi      | lent Tecl  | inologies           |        |                   |   | WED MAR 06 05:08:10 2013 |          |      |     |   |       |
|-----|-------------------|----------------|----------------------|-------|------------------|-----------------|---------|--------|------------------|-----------|-----|------------|------------|---------------------|--------|-------------------|---|--------------------------|----------|------|-----|---|-------|
|     | 500\%/            | 2 5000         | / 3                  | 4     | 5000/            | 🔆 0.0s          | 10.00₽/ | Stop   | - <del>1</del> 4 | 1.95V     | ١   | 500\/      | 2 50       | )\$/ 3              | 4      | 500⊽∕             | * | 0.0s                     | 10.009/  | Stop | ł   | 4 | 1.95V |
|     | ~~~               |                |                      |       | +                |                 |         | ~      |                  |           | 1   |            |            |                     |        |                   | Ī |                          |          |      |     |   |       |
| -   |                   | <del>~~~</del> |                      |       | <u> </u>         |                 |         |        | ~~~~             |           |     |            |            |                     |        |                   |   |                          |          |      | ~~~ | ~ |       |
|     |                   |                |                      |       |                  |                 |         |        |                  |           |     |            | ÷~~~       |                     | ~+~~~~ |                   | - | ~~~~                     | +        | ~~~~ |     |   | ~~~~  |
| -   |                   |                |                      |       |                  |                 |         |        |                  |           |     |            |            |                     |        |                   | - |                          |          |      |     | _ |       |
|     |                   |                |                      |       |                  | ł               |         |        |                  |           |     |            |            |                     |        |                   | ł |                          |          |      |     |   |       |
| ┢   |                   |                |                      |       |                  | -               |         |        |                  |           |     |            |            |                     |        |                   |   |                          |          |      |     | - |       |
|     |                   |                |                      |       |                  | -               |         |        |                  |           |     |            |            |                     |        |                   | - |                          |          |      |     |   |       |
| ₽₽  |                   |                |                      |       |                  | -               |         |        | Yel              | low=X     | (-a | xis;       |            |                     |        |                   | - |                          |          |      |     |   |       |
| -   |                   |                |                      |       |                  |                 |         |        | Gre              | en=Y      | -ax | cis:       |            |                     |        |                   |   |                          |          |      |     | - |       |
|     |                   |                |                      |       |                  | -               |         |        | Ma               | aonta:    | _7  |            | •          |                     |        |                   | ł |                          |          |      |     |   |       |
|     |                   |                |                      |       |                  | -               |         |        | Ivia             | yenia     | =2  |            | <b>)</b> . |                     |        |                   |   |                          |          |      |     | - |       |
|     |                   |                |                      |       |                  |                 |         |        |                  |           |     |            |            |                     |        |                   |   |                          |          |      |     |   |       |
|     |                   |                |                      |       |                  | -               |         |        |                  |           |     |            |            |                     |        |                   | - |                          |          |      |     |   |       |
|     |                   |                |                      |       |                  |                 |         |        |                  |           |     |            |            |                     |        |                   |   |                          |          |      |     |   |       |
| Rec | call Menu         | u              |                      |       |                  |                 |         |        |                  |           | Re  | ecall Men  | iu         |                     |        |                   |   |                          |          |      |     |   |       |
| Ŷ   | ) Recall<br>Setup |                | Press to g<br>∎/usb0 | po Pr | ess to<br>lecall | Clear<br>Displa | y       |        |                  |           |     | Necal Setu | l:<br>p    | ) Press to<br>∞/usb | go P   | ress to<br>Recall |   | Clear<br>Display         | <u> </u> |      |     |   |       |

# ADXL335 Simulations with oscilloscope

# +Y axis in direction of gravity

# -Y axis in direction of gravity

| ->       | 🗧 Agi           | lent Techno | ologies               |               |          |                  | ,       | wed ma  | R 06 05:0        | 04:18 2013               |                  | 🔆 Agi                 | lent Techr | ologies             |       |                   |   |                  |         | wed ma    | R 06 05 | :08:32 20 | 13 |
|----------|-----------------|-------------|-----------------------|---------------|----------|------------------|---------|---------|------------------|--------------------------|------------------|-----------------------|------------|---------------------|-------|-------------------|---|------------------|---------|-----------|---------|-----------|----|
| 1        | 500⊽/           | 2 5000/     | / 3                   | 4 50          | 0⊽/ ⊰    | ⊱ 0.0s           | 10.009/ | Stop    | <u>f</u> 4       | 1.95V                    | 1                | 5000/                 | 2 500      | V <mark>3</mark>    | 4     | 500⊽∕             | * | 0.0s             | 10.00₽/ | Stop      | £       | 1.95      | ۶V |
|          | ~               |             |                       |               |          |                  |         |         | <u> </u>         | <u> </u>                 |                  |                       |            |                     |       |                   | Ī |                  |         |           |         |           |    |
| F        | ~~~~            |             |                       |               |          |                  | tin     |         |                  | متحدث                    |                  |                       |            |                     |       |                   | - | ~~~              |         |           |         |           | ~  |
|          |                 |             |                       |               |          |                  |         |         |                  |                          |                  | h                     |            |                     |       |                   | 4 |                  |         | ~~~~      |         |           | ~  |
|          |                 |             |                       |               |          |                  |         |         |                  |                          |                  |                       |            |                     |       |                   | _ |                  |         |           |         |           |    |
|          |                 |             |                       |               |          |                  |         |         |                  |                          |                  |                       |            |                     |       |                   | ł |                  |         |           |         |           |    |
|          |                 |             |                       |               |          |                  |         |         |                  |                          |                  |                       |            |                     |       |                   |   |                  |         |           |         | _         | -  |
|          |                 |             |                       |               |          |                  |         |         |                  |                          |                  |                       |            |                     |       |                   | - |                  |         |           |         |           |    |
| <b>₽</b> | + + + +         |             |                       |               |          |                  |         | + + + + | Yel<br>Gre<br>Ma | llow=)<br>een=Y<br>genta | K-a<br>′-a<br>⊨Z | xis;<br>xis;<br>-axis |            |                     |       | · · · · ·         |   | - + + +          |         | · · · · · |         | · · ·     |    |
|          |                 |             |                       |               |          |                  |         |         |                  | <u> </u>                 |                  |                       |            | J                   |       |                   |   |                  |         |           |         |           |    |
|          |                 |             |                       |               |          |                  |         |         |                  |                          |                  |                       |            |                     |       |                   | _ |                  |         |           |         |           |    |
|          |                 |             |                       |               |          |                  |         |         |                  |                          |                  |                       |            |                     |       |                   | ł |                  |         |           |         |           |    |
| Rec      | all Men         | u           |                       |               |          |                  |         |         |                  |                          | R                | ecall Men             | u          |                     |       |                   |   |                  |         |           |         |           |    |
| 2        | Recall<br>Setur |             | Press to go<br>µ/usb0 | Press<br>Reca | to<br>II | Clear<br>Display |         |         |                  |                          |                  | € Recal<br>Setu       | l: 🔁 🔁     | Press to<br>∞a/usb0 | go Pi | ress to<br>Recall |   | Clear<br>Display | ,       |           |         |           |    |

# ADXL335 Simulations with oscilloscope

# +X axis in direction of gravity

# -X axis in direction of gravity

| 9  | 🔆 Agil   | lent Techno | logies       |     |       |                                       | 1       | Ned Ma | R 06 05:0         | 8:59 2013 | $\rightarrow$ | Agilent T      | echnologie | s        |         |    |         |         | wed ma | R 06 05 | 5:10:13          | 2013 |
|----|----------|-------------|--------------|-----|-------|---------------------------------------|---------|--------|-------------------|-----------|---------------|----------------|------------|----------|---------|----|---------|---------|--------|---------|------------------|------|
| 1  | 500⊽∕    | 2 5000/     | 3            | 4   | 5000/ | ————————————————————————————————————— | 10.00g/ | Stop   | -f <mark>4</mark> | 1.95V     | 500           | r/ 🛛           | 5000/ 3    | 4        | 5000/   | *  | 0.0s    | 10.00₽/ | Stop   | ł       | <mark>4</mark> 1 | .95V |
|    |          |             |              |     |       |                                       | ~~~+    | ~~~    | ~~~               |           | · ····        |                | ~~~~~      | <u> </u> |         |    |         | ~~~~    | ~~~~   | ~~~     |                  |      |
|    |          |             |              | ~~  |       |                                       |         |        |                   |           |               |                |            | apa      | ap===   | ~~ |         |         |        |         |                  |      |
|    |          |             |              |     |       | -                                     |         |        |                   |           |               |                |            |          |         |    |         |         |        |         |                  |      |
|    |          |             |              |     |       | -                                     |         |        |                   |           |               |                |            |          |         | -  |         |         |        |         |                  |      |
|    |          |             |              |     |       | _                                     |         |        |                   |           |               |                |            |          |         |    |         |         |        |         |                  |      |
|    |          |             |              |     |       | -                                     |         |        |                   |           |               |                |            |          |         | -  |         |         |        |         |                  |      |
|    |          |             |              |     |       | -                                     |         |        |                   |           |               |                |            |          |         | -  |         |         |        |         |                  |      |
| 92 |          |             |              |     |       |                                       |         |        |                   |           |               |                |            |          |         |    |         |         |        |         |                  |      |
|    |          |             |              |     |       |                                       |         |        | Yel               | low=X     | (-axis        | ,              |            |          |         | -  |         |         |        |         |                  |      |
|    |          |             |              |     |       | -                                     |         |        | Gre               | en=t      | -axis;        | _              |            |          |         | -  |         |         |        |         |                  |      |
|    |          |             |              |     |       | ~                                     |         |        | Ма                | genta     | =Z-ax         | is.            |            |          |         | -  |         |         |        |         |                  |      |
|    |          |             |              |     |       | -                                     |         |        |                   | _         |               |                |            |          |         | -  |         |         |        |         |                  |      |
|    |          |             |              |     |       |                                       |         |        |                   |           |               |                |            |          |         | -  |         |         |        |         |                  |      |
|    |          |             |              |     |       | -                                     |         |        |                   |           |               |                |            |          |         |    |         |         |        |         |                  |      |
| Pa | coll Man |             |              |     |       | 1                                     |         |        |                   |           | Pasall N      | 1001           |            |          |         | Ť  |         |         |        |         |                  |      |
| ne | Boooll   | u<br>·      | Propo to gol | Dro | oo to | Clear                                 |         |        |                   |           | Recall N      | ienu<br>colli: |            | to go C  | race to |    | Clear   |         |        |         |                  |      |
|    | Setup    |             | usb0         | Re  | call  | Display                               | ,       |        |                   |           | Se            | tup            | US         | b0       | Recall  |    | Display |         |        |         |                  |      |



# **Power Supply Module**

- This module powers the entire device.
- 2000mAh Lithium
   Polymer battery
- battery includes built-in protection against over voltage, over current, and minimum voltage
- Weight: 36g



# **SD/MMC Storage Module**

- This module stores all the data acquired from the sensors.
- Packaged sensor data from microcontroller is stored in microSD card before transmitting
- Required voltage of 1.8 to 3.6V





#### Wireless Transmission via Xbee module



- Allows a very reliable simple wireless communication.
- The two modules act as a transmitter and a receiver accordingly.
- Able to send data from Wright & Green to Wright & Springfield.
- Configured via X-CTU



## Data Transmission via X-CTU

#### Characters

| 100) 🥶           | ИЗ] X-CTU                                   |                                 | \mu [CO | M5] X-CTU                              |                   |                    |                 | X           |
|------------------|---------------------------------------------|---------------------------------|---------|----------------------------------------|-------------------|--------------------|-----------------|-------------|
| About            | XModem                                      |                                 | About   | XModem                                 |                   |                    |                 |             |
| PC Setti         | ngs Range Test Terminal Modem Configuratio  | n                               | PC Set  | tings Range Test Terminal Modem Cor    | nfiguration       |                    |                 |             |
| - Line St<br>CTS | atus Assert Close                           | e Clear Show<br>fort Screen Hex | Line 9  | Assert                                 | Close<br>Com Port | Assemble<br>Packet | Clear<br>Screen | Show<br>Hex |
| hello            | oskskskskskdjska <mark>sksksksk</mark> hell | 0                               | hell    | oskskskskskdjska <mark>sksks</mark> ks | khello            |                    |                 |             |
|                  |                                             | _                               |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 | 1       |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
| •                |                                             |                                 |         |                                        |                   |                    |                 |             |
|                  |                                             |                                 |         |                                        |                   |                    |                 |             |
| COM3             | 9600 8-N-1 FLOW:NONE                        | Rx: 8 bytes                     | COM5    | 9600 8-N-1 FLOW:NONE                   | R                 | x: 25 bytes        |                 |             |

 Heart rate, body temperature, motion Speed (Main Goal)

| [ | -Line Status-<br>CTS CD D                   | SR DTR                                     | RTS 🔽 Bre                                   | ak 🗖                            | Close<br>Com Port                   | Assemble<br>Packet                   | Clear<br>Screen | Show<br>Hex |
|---|---------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------|-------------------------------------|--------------------------------------|-----------------|-------------|
|   | .card ir<br>.Farenhe<br>4.99.Far            | itializ<br>it: 79.<br>enheit:              | ed<br>84BPM: 0<br>80.06BPM                  | .X: 4<br>4: 23                  | .24.Y:<br>4.X: 4                    | 4.94.                                | z:              | <b></b>     |
|   | 5.00.2.<br>4.18.Y:<br>235.X: 4<br>78.76BPM  | 5.00.Z:<br>14.Y:<br>1: 235.X               | 5.00.Fa<br>5.00.Z:                          | renhe<br>5.00.                  | it: 79<br>Farenh<br>0.Z:            | 235.A.<br>0.34BPM<br>meit:           | :               |             |
|   | 5.00.Far<br>5.00.Z:<br>4.73.Y:<br>138.X: 4  | 5.00.Fa<br>5.00.Z:<br>.18.Y:               | 80.64BP<br>renheit:<br>5.00.Fa<br>5.00.Z: 1 | 4: 23<br>79.9<br>renhe<br>5.00. | 6.X: 4<br>5BPM:<br>it: 80<br>Farenh | .93.Y:<br>236.X:<br>).53BPM<br>leit: | :               |             |
|   | 80.53BPM<br>5.00.Far<br>5.00.Z:<br>4.22.Y:  | 1: 113.X<br>enheit:<br>5.00.Fa<br>5.00.Z:  | : 5.00.Y<br>80.85BPM<br>renheit:<br>5.00.Fa | : 5.0<br>4: 10<br>80.1<br>renhe | 0.Z:<br>0.X: 4<br>7BPM:<br>it: 79   | .18.Y:<br>100.X:                     | :               |             |
|   | 218.X: 5<br>83.16BPM<br>5.00.Far<br>5.00.7* | 6.00.Y:<br>1: 235.X<br>renheit:<br>5 00 Fa | 5.00.Z:<br>: 4.95.Y<br>81.82BP              | 5.00.<br>5.0<br>4:23<br>827     | Farenh<br>0.Z:<br>5.X: 4<br>28PM・   | eit:<br>.91.Y:<br>235 X:             |                 |             |
|   | 4.19.Y:<br>235.X: 4<br>82.80BPM             | 5.00.Z:<br>.88.Y:<br>1: 232.X              | 5.00.Fa<br>5.00.Z:<br>: 4.20.Y              | renhe<br>5.00.                  | it: 82<br>Farenh<br>0.Z:            | 2.87BPM<br>leit:                     | :               |             |
|   | 5.00.Far<br>5.00.Z:<br>4.89.Y:<br>235.X: 4  | 5.00.Fa<br>5.00.Z:<br>.21.Y:               | 82.40BP<br>renheit:<br>5.00.Fa<br>5.00.Z:   | 4: 23<br>82.5<br>renhe<br>5.00. | 2.X: 4<br>1BPM:<br>it: 82<br>Farenh | 235.X:<br>235.X:<br>240BPM<br>eit:   | :               |             |
|   | 82.26BPM<br>5.00.Far<br>5.00.Z:<br>4.19.Y:  | 1: 235.X<br>renheit:<br>5.00.Fa<br>5.00.Z: | : 4.88.Y<br>82.36BPM<br>renheit:<br>5.00.Fa | : 5.0<br>4: 23<br>82.2<br>renhe | 0.Z:<br>5.X: 4<br>9BPM:<br>it: 82   | .23.Y:<br>235.X:<br>.26BPM           | :               | -           |
| Ī | СОМ5 192                                    | 00 8-N-1 FLC                               | W:NONE                                      |                                 | Ba                                  | : 1636 byte:                         | s               |             |

## **LED Battery Status Indicator**



This circuit is responsible • for indicating a low status of battery. A full battery is around 3.7v. When the battery goes below 3.0v, the red LED lights as an indication of the low status of the battery.

### LED Battery Status Indicator Simulation





## Phase 2 connections:

- For the purpose of phase 2 we remove the arduinoUno board and the breadboard, and replace it with a custom PCB incorporating the following features:
- <u>ATmega 328 microcontroller chip connection</u>
- ADXL335 accelerometer chip
- Footprint for MLX90614 Infrared Temperature Sensor
- Lithium polymer battery socket port.
- MAX1555 with microUSB port for Lithium polymer battery charging.
- SD/MMC card holder
- External 16MHz crystal clocking device
- Headers for pulse sensor and expansion ports



# **Battery Charging (MAX1555)**

- IC for USB charging of Lithium Polymer battery
- Quick charging
- Current automatically reduced to trickle when charging is complete.





# Making of PCB at EVRT 50N

- Step1: Print PCB layout on glossy paper using laser printer
- Step2: Using clothes iron heat transfer design onto copper board.
- Step3: Use PCB etching solution to etch out all copper except transferred ink traces.
- Wash board completely to remove ink and have copper traces left.





### **Future Work**

- We could add a gyroscope, magnetometer, and GPS to improve motion detection
- We could add multiple temperature sensors to improve skin temperature data collected
- We could add electrode ECG measurement in addition to pulse oximetry
- Atmega328 has limited ports with no room for expansion. Could upgrade to Atmega2560



## Conclusion

- Tested with arduino with sensors and are able to communicate reliable data
- Tested the xbees with arduino. Able to transmit at least 100m
- Prototyped a working device
- Made a pcb version of the prototyped board
- Need to design a case that is wearable