

ECE 445

Spring 2013

Design Review

Smart Shopping Cart

February 21, 2013

Di Fan

Ying He

Xuyang Yao

TA: Mustafa Mukadam

Table of Contents

I. Introduction

Statement of Purpose	3
Objectives	3
Goals	3
Benefits	3
Features	3
II. Design	
Block Diagrams	4
Block Descriptions	5
Schematics	9
Flowcharts	12
Tracing System	12
Navigation System	13
III. Requirements and Verification	
Requirements & Verification	14
Tolerance Analysis	19
IV. Cost and Schedule	
Labor Cost	19
Part Cost	20
Schedule	21
V. Ethical Considerations and Safety	22
VI. References	24

I. Introduction

Statement of Purpose:

As technology progressed, lives have been significantly improved due to the emergence of laborsaving and intelligent utilities. However, as we noticed, the shopping carts in major stores have experienced little changes and served only simple purposes ever since they were first manufactured. Pushing these carts around becomes noticeably painful when they carry heavy loads. Even though generally people are not moving fast in stores, there is a risk of collision if obstacles arise out of sight. Moreover, products can be extremely difficult to locate before people get familiar with the store layout. Considering all the disadvantages discussed above, we aim to implement a smart shopping cart that provides great convenience and efficiency to customers.

Objectives

Goals:

- Automatic customer tracing via communication between transceivers
- Avoid collisions with obstacles and detect accessible routes
- Optimize the path required to accommodate custom shopping list
- Alert system to warn customers on condition that carts fall behind

Benefits:

- Self-motion cart aiming to save human labor
- Optimal guiding system to reduce searching time
- Delicate user interface with multiple entering modes
- High-sensitivity sensors to minimize the possibility of collisions

Features:

- Sensors with minimum detection radius of 0.2 m
- Signal transmitters installed in store for precise navigation
- High CPU calculation speed for rapid moving decision
- Enclosed store map and product catalogs intended for searching function

II. Design

Block Diagram

Block Descriptions

Common components:

a. Power supply: Generally, five A23 12 V DC batteries serve as the power supply in this project. Due to the different operating voltages of various components, a 5 V voltage regulator and four 3.3 V voltage regulator will be used to provide appropriate operation environments to the entire circuit. This module is divided into three parts: the cart power supply provides power to two 12 V DC motors, a Arduino microcontroller, a wireless transceiver, a 12-button keypad with LCD screen and four ultrasonic distance sensors; the customer power supply powers a transceiver and an alarm; and the store power supply sustains two transceivers. Total current and power consumed is given by

$$I_{Arduino} = 0.8 A$$

$$I_{ATmega328} = 3.2 mA$$

$$I_{motor} = 4 A$$

$$I_{transceiver} = 17m \times 4 = 68 mA$$

$$I_{LED} = 0.5 mA$$

$$I_{tot_max} = 4.9 A$$

$$P_{tot_max} = 58.5 W$$

b. Transceiver: For instantaneous position update of the customer, a GPS-like positioning system is embedded in the cart. Since commercial GPS may not provide enough precision, we will use four Bluetooth RF RS232 Transceivers to implement accurate navigation, which require 3.3 V DC voltages. Two of them are installed in store and attached to the ceiling for maximum coverage. They will receive signals from the transceivers carried by the cart and customer then reflect these signals back at a data rate at 1.2 kbps. By measuring the time delay compared to the original signals, the microcontroller, which collects information from the cart transceiver and customer transceiver, is able to determine the positions of the cart and customer in a coordinate system based on the signal travelling speed. Detailed calculation strategy is shown as below.

Figure 2 Position determination process

$$d = \frac{\Delta t}{2} v_{signal}$$

$$\cos(\theta_h) = \frac{L^2 + d_{h1}^2 - d_{h2}^2}{2Ld_{h1}}, \quad \sin(\theta_h) = \sqrt{1 - \cos^2(\theta_h)}$$

$$\cos(\theta_c) = \frac{L^2 + d_{c1}^2 - d_{c2}^2}{2Ld_{c1}}, \quad \sin(\theta_c) = \sqrt{1 - \cos^2(\theta_c)}$$

$$x_h = d_{h1}\cos(\theta_h), \quad y_h = d_{h1}\sin(\theta_h)$$

$$x_c = d_{c1}\cos(\theta_c), \quad y_c = d_{c1}\sin(\theta_c)$$

Cart: We will build a $25 \times 30 \ cm^2$ vehicle platform with two 12 V DC motors for the mechanical part of the project. The approximate weight of the finished cart is 2.5 kg.

a. Motor: Two GM9236S025 motors with reduction ratio 65.5:1 are installed in the platform to provide driving force for the shopping cart and directly controls its moving speed. The encoders that are included in the platform are going to encode instructions from the Arduino microcontroller to achieve desired cart speed and turning angle. There are three speed levels in this project: 1.5 m/s for rapid catch-up, 1.4 m/s for intermediate distances and 1.3 m/s for simply following mode.

- b. Sensor: Four HC-SR04 ultrasonic distance sensors will be placed to each side of the cart to accomplish our obstacle-avoiding feature. They receive 5 V DC power supply from the 5 V voltage regulator. When any sensor detects an obstacle within its detection radius, it will trigger a voltage signal to the microcontroller in order to adjust the direction of the cart. HC-SR04 sensor covers a range from 2cm to 5m with 0.3cm resolution. Since we are only interested in specific distance intervals in determination of avoidance strategy, the voltage signals corresponding to 0.2 m and 0.5 m are recorded to serve as threshold values. More detailed information is presented in Figure 7.
- c. Microcontroller: This is the most critical component in our design. An Arduino and an ATmega328 microcontroller are used to process all the data and calculations. The microcontroller is responsible for determination of the shopping cart's speed and direction when tracing the customer and avoiding obstacles via feedbacks from transceivers and sensors, respectively. It will also generate routes from the current position to places where desired goods are located. To implement this function, we need to enclose the store layout and catalog information within the microcontroller. The Arduino is powered up by 5 V DC voltages, which comes out of the 5 V voltage regulator, and collects all signals from sensors, transceivers and the user interface.
- d. User Interface: We aim to provide a convenient and multi-functional user interface, which includes three main subcomponents. A push button on/off switch will be used to enable/disable the user interface. A 16×2 LCD screen shield and a 12-button keypad are presented to the customer to enter goods they wish to purchase and display the shopping list for their record. All products are classified into ten general categories so that customers may narrow down the ranges for easier search. Each of the categories is represented by a numerical button. Customers can choose between two modes of navigation: item-by-item entry mode that leads customers to the product immediately after they finish entering the item, or the multiple-item mode that determines the most efficient route covering all items entered. A flow chart that demonstrates the logic determination process is included in Figure 8.

Customer: In our design, the customer will carry a transceiver attached with an alarm system. The transceiver will frequently send signals to the microcontroller to track the position of customer. An alarm will be triggered to remind the customer when the cart falls more than 2 m behind.

a. Alarm: We will connect a red LED light to the transceiver carried by the customer. Once the distance between the cart and customer exceeds 2 m, the transceiver receives a signal from the microcontroller to light the LED. 1.8V-2.2V DC voltages will be applied to the LED in this case.

Store: In order to implement the navigation system of the cart, we need to include the store layout and how products are located into the microcontroller. So a store map is designed as follows.

Figure 3 Store layout

Schematics

Figure 4 Schematic for microcontroller, sensors, cart transceiver and keypad

Figure 5 Schematic for LCD screen and motors

Figure 6 Schematic for customer and store transceivers

Flow Charts

Figure 7 Tracing system flow chart

Figure 8 Navigation system flow chart

III. Requirements and Verification

Requirements & Verification

Requirements	Verification
Power Supply:	1. Connect the probes of a multimeter to
1. Output voltage of A23 batteries should	the ends of each battery to measure the
be 12 \pm 1 V in order to provide steady	output voltage. The multimeter should
power supply to motors.	read 12 ± 1 V.
2. 5 V voltage regulator (connected to	2. After wiring the 5 V voltage regulator
Arduino and sensors) should output	to an A23 battery, measure the output
voltage of 5 \pm 0.3 V with maximum	voltage with a multimeter. Expected
current 1.5 A.	value is 5 \pm 0.5 V. Connect a 3.5 ohms
3. 3.3 V voltage regulator should supply	resistor as load, measure the current
2.2 - 3.8 V to transceivers while	through the load to test if the regulator
current maintained within 17 ± 2 mA.	can sustain a 1.5 A current.
4. Output voltage of the 1K Ohm	3. Connect the 3.3 V voltage regulator to
potentiometer needs to be restricted	an A23 battery, use a multimeter to
within $1.8 - 2.2$ V, which provides the	measure the terminal voltage of the
working current of the LED.	regulator. Make sure the voltage falls in
	the 2.2 – 3.8 V range. Use a 200 ohms
	resistor as load and test if the regulator
	functions properly with $17 \pm 2 \text{ mA}$
	current.
	4. Connect the potentiometer to the SDO
	pin of a transceiver and adjust the
	resistor value. Use a multimeter to
	measure its output voltage when SDO
	is set to high. The multimeter should
	read 1.8 – 2.2 V.
Transceiver:	1. Place two transceivers 10 m apart and
1. Transceivers should cover an effective	make one serves as receiver and the

	range of 10 ± 0.5 m with no more than		other as transmitter. Use two
	5% distortion.		oscilloscopes to monitor the waveforms
2.	Working at 433 MHz band, receiver		sent and received by the transceivers,
	bandwidth is fixed at 67 \pm 5 kHz, while		respectively. The received signal
	transmitter frequency deviates from the		should differ from the origin one by
	carrier frequency at 45 \pm 3 kHz.		less than 5%.
3.	Data rate should be maintained at 1.2 \pm	2.	Set all transceivers and a spectrum
	0.2 kbps.		analyzer to operate at 433 MHz. The
			analyzer is expected to receive the
			signal at frequency within \pm 36 kHz
			after one transceiver sends a signal at
			433 MHz. Then retrieve the signals
			received by other transceivers using the
			microcontroller to check if they deviate
			from 433 MHz by 45 \pm 3 kHz.
		3.	Under transmitter operation, measure
			the interval between signals sent by a
			transceiver using an oscilloscope.
			Desired interval should be $0.71 - 1$ ms.
Motor	<u></u>	1.	For each of the three levels, let the cart
1.	The cart should move at 1.5 \pm 0.1 m/s,		move for 5 s in open area. Measure the
	1.4 \pm 0.1 m/s and 1.3 \pm 0.05 m/s for		distance that the cart goes by a metric
	the three speed levels.		ruler and divide the result by 5. The
2.	Percentage error of the actual turning		expected results should be 1.5 \pm 0.1 m,
	angle of the front ball wheel cannot		1.4 ± 0.1 m and 1.3 ± 0.05 m,
	exceed 10%.		respectively.
			If test fails:
			Use a stroboscope to measure the
			rotation speed of the motor. The
			stroboscope should read 1 ± 0.02 Hz for
			1.5 m/s level, $0.93 \pm 0.02 \text{ Hz}$ for 1.4 m/s

	and 0.87±0.02 Hz for 1.3 m/s.
	2. Mark the start position of the cart and
	set the turning angle from 0 to 90° with
	5° increment each time. Let the cart
	move for 5 s in open area. Measure the
	angle between the cart's path and the
	direction it originally faced by a
	protractor. The calculated error
	percentage should be less than 10%.
Sensor:	1. Apply 5 V DC voltages to each sensor.
1. Under 5 V DC voltages, sensor will	measure the passing current by a
operate at a current of 15 ± 2 mA.	multimeter. The multimeter should read
2. Sensor should be able to detect objects	15 + 2 mA.
0.5 + 0.05 m and $0.2 + 0.02$ m away	2. Place an object at $0.5 + 0.05$ m in front
and differentiate these two distances by	of a sensor and measure the voltage
triggering voltage signals of different	response using an oscilloscope. Repeat
magnitudes.	the same process after moving the
3. Working frequency of the sensor	object to 0.2 ± 0.02 m. The sensor is
should be 40 ± 4 Hz to provide updated	expected to trigger steady voltages in
information of obstacles.	both cases, as long as the distance is
	constant. Furthermore, the former
	voltage should be smaller than the latter
	one by more than 0.2 V. These two
	voltages will be recorded as threshold
	values.
	3. Set the rotation frequency of a rotor
	with only one tooth to $36 - 44$ Hz and
	fix the sensor at any point that could
	detect the tooth. Use an oscilloscope to
	monitor the output voltage of the
	sensor. If the voltage signal is steady

	and constant, the sensor frequency is
	the same as the rotor, which means the
	specification is satisfied.
Microcontroller:	1. Pick arbitrary positions for the cart and
1. Microcontroller needs to calculate the	customer and record their coordinates.
positions of the cart and customer	Export the positions determined by the
based on information collected from	microcontroller to a computer and
transceivers, and output speed and	check if they are within 5 cm of the real
turning angle of the cart. The calculated	locations. Distances are measured
positions should not deviate from the	based on geometric centers.
real positions by more than 5 cm.	2. Place an object at a distance of less than
2. If an obstacle is detected within 0.2 m	0.2 m from the cart in each of the three
in front or the left, the microcontroller	sides. Check if the microcontroller
should modify the turning angle by 15°	makes correct turning instructions by
to the right until all obstacles are	exporting data to a computer.
cleared; if something is found in the	If test fails:
right, increase the angle to the left by	Measure the output voltage of the
15°.	corresponding pins by a multimeter,
3. Microcontroller should be able to	which should read $\pm (0.83 \pm 0.05)$ V.
determine which button is pressed on	Positive voltages indicate right-turning
the keypad and correctly reflected that	and negative voltages are for left-
information on the LCD screen.	turning.
4. If the number of items entered is less	3. Press each button on the keypad and
than 6, the microcontroller should	write Arduino codes to test if the
determine the optimal solution in 3 s; if	microcontroller correctly decodes
the number is between 7 and 10, the	which button is pressed. Display the
processing time is restricted in 5 s.	corresponding product names stored in
5. When the distance between the cart and	the microcontroller on LCD. Make sure
customer exceeds 2 m, the	they match the names assigned to each
microcontroller will send a 'high'	button.
signal through cart's transceiver to	If test fails:

17

customer's transceiver, which provides	Measure the voltage of the pins
violtage to light the red LED	accurate the transferred to the LCD by a multimeter
voltage to light the red LED.	connected to the LCD by a multimeter.
	They should be properly turned on and
	off according to the programming
	codes of Arduino, which display
	correct product names.
	4. Test the case of $n = 6$ and $n = 10$. Trace
	the 'ready' signal of Arduino using an
	oscilloscope. Time delay should be
	within 3 s and 5 s, respectively.
	5. Set the distance between the cart and
	customer to be larger than 2 m.
	Measure the output voltage of the
	corresponding pin of Arduino and
	check if it is set to high.
User Interface:	1. Connect the LCD display to the
1. LCD display needs be refreshed in 0.5 s	microcontroller. Use an oscilloscope to
after a new item is entered by keypad.	measure the time delay for the LCD to
And the information displayed should	output a high signal after one button is
be the same as what the microcontroller	pressed on the keypad. That time
outputs.	interval needs to be less than 0.5 s.
2. All output pins of the keypad should	2. For each button on the keypad, connect
produce correct low/high signals in	the corresponding two pins that should
order to properly reflex which button is	be set to high if that button is pressed to
pressed.	a multimeter. If both of them are 'on'
	and the remaining five are 'off', the
	keypad is working properly.
Alarm:	1. Set the distance between the cart and
1. The red LED is expected to light when	customer to be larger than 2 m.
the distance between the cart and	Measure the output voltage of the
customer exceeds 2 m.	potentiometer that is connected to the

customer transceiver. The expected
value is 1.8 – 2.2 V.

Tolerance Analysis

In this project, the microcontroller processes a larger amount of information than any other part of the cart and it communicates with all the rest components. Consequently, the microcontroller critically affects the performance of the entire project. A minor mistake in calculating the cart's speed and direction may result in significant inefficiency when trying to avoid an obstacle. And the cart fails to perform functionally if the microcontroller is not able to figure out the best route in GPS mode. Therefore, the moving decisions of the microcontroller demands great accuracy and its connections with the transceiver, sensors and motors should be fast and reliable. The cart is expected to turn from 0 to 180 degrees both clockwise and counterclockwise and have a speed to sweep from 0 to 1.5 m/s. The turning angle is especially important so its tolerance is within $\pm 10\%$. Additionally, the store layout and product locations need to be properly stored in the microcontroller.

IV. Cost and Schedule

Labor Cost

Member	\$/hour	Hours/week	Total hours	Subtotal	Subtotal * 2.5
Ying He	40	12	144	5760	14400
Di Fan	40	12	144	5760	14400
Xuyang Yao	40	12	144	5760	14400
				Total	43200

Parts Cost

Name	Part Number	Unit Price	Quantity	Total Price
Power Supply				
12 V DC Battery	Energizer A23	\$1.15	5	\$5.75
Voltage Regulator 5V	COM-00107	\$1.25	1	\$1.25
Battery Storage Clip Holder	YS320925515181	\$0.996	5	\$4.98
Microcontroller				
Arduino Uno	DEV-1102	\$29.95	1	\$29.95
Atmega328	DEV-10524	\$5.50	1	\$5.50
Voltage Regulator 3.3V	COM-00526	\$1.95	4	\$7.8
User Interface				
Keypad 12-button	COM-08653	\$3.95	1	\$3.95
LCD Keypad Shield	SainSmart 1602	\$9.99	1	\$9.99
Push Button Switch	COM-09177	\$0.99	2	\$1.98
Motor				
12V DC Gearmotor/Encoders	GM9236S025	\$37.95	2	\$75.9
Transceiver				
RFM12B-S2 Wireless Transceiver	WRL-09582	\$6.95	4	\$27.8
Red LED	COM-09590	\$0.35	2	\$0.7
1K Ohm Potentiometer	023-510	\$1.79	1	\$1.79
Sensor				
Ultrasonic Distance Sensor	HC-SR04	\$5.59	4	\$22.36
Miscellaneous				
Resistors, capacitors, inductors,				
transistors, wires, PCB and etc.			20	\$15
Total				\$214.7

Grand Total = \$43200 + \$214.7= \$43414.7

<u>Schedule</u>

Week		Tasks	Assigned to
1	2/4/13	Finish primary proposal and mock DR sign-up	Ying He
		Order vehicle frame, install motors	Di Fan
		Assemble the vehicle	Xuyang Yao
2	2/11/13	Learn Arduino software and design store map	Di Fan
		Learn Arduino software, install receiver and sensors to the vehicle	Xuyang Yao
		Record the map into the memory of the controller	Ying He
3	2/18/13	Finish the customer tracking unit	Xuyang Yao
		Prepare for the Design Review: requirement and verification & flow chart	Di Fan
		Prepare for the Design Review: block description & schematics	Ying He
4	2/25/13	Finish the detection & decision unit for stationary obstacles	Di Fan
		Order the rest parts we need to use	Xuyang Yao
		Test the parts we order	Ying He
5	3/4/13	Detection & decision unit algorithm & write individual progress report	Ying He
		Assemble detection & decision unit parts & write individual progress report	Di Fan
		Debug detection & decision parts algorithm & write individual progress report	Xuyang Yao
6	3/11/13	Design the position system	Ying He
		Create circuit board and order PCB	Di Fan
		LCD display and store catalog	Xuyang Yao
7	3/18/13	Spring Break	

8	3/25/13	Set up user interface	Ying He
		Design one-by-one searching scheme	Di Fan
		Check and test LCD screen & keypad	Xuyang Yao
9	4/1/13	Design multiple-item searching scheme	Ying He
		Finish the most-efficient-path determination unit	Di Fan
		Debug algorithm and test all components before assemble	Xuyang Yao
10	4/8/13	Assemble all components	Ying He
		Finish attach components to PCB	Di Fan
		Debug and test	Xuyang Yao
11	4/15/13	Prepare for demo and presentation & write final report	Ying He
12	4/22/13	Demo and presentation	Di Fan
13	4/29/13	Final paper and lab notebook due	Xuyang Yao
		Check out	

V. Ethical Considerations and Safety

Ethical Considerations

Our project aims to build a shopping cart that provides great convenience and efficiency to customers in store. Thus, we need to address several items in the IEEE Code of Ethics.

IEEE Code of Ethics	Our concerns
1. to accept responsibility in making decisions	We need to ensure that the future use of our
consistent with the safety, health, and welfare	project in stores will not contain any potential
of the public, and to disclose promptly factors	danger.
that might endanger the public or the	
environment;	
2. to avoid real or perceived conflicts of	Our interest of shopping cart project has no

interest whenever possible, and to disclose	conflict with any other existing object by
them to affected parties when they do exist;	research.
3. to be honest and realistic in stating claims or	We will be honest and realistic with TA and
estimates based on available data;	Instructor while giving explanation and
	presentation of our project.
4. to reject bribery in all its forms;	Bribery should not be a problem in the project.
5. to improve the understanding of technology;	We will learn and improve our understanding
it's appropriate application, and potential	of any project related knowledge.
consequences;	
6. to maintain and improve our technical	We will try our best to make the project perfect
competence and to undertake technological	by using the knowledge we have obtained by
tasks for others only if qualified by training or	far.
experience, or after full disclosure of pertinent	
limitations;	
7. to seek, accept, and offer honest criticism of	We promise to guarantee that all the technical
technical work, to acknowledge and correct	works are honest, and will admit the error if
errors, and to credit properly the contributions	there is any. We will not take credits from
of others;	other people's work.
8. to treat fairly all persons regardless of such	We will treat all people fairly regardless of
factors as race, religion, gender, disability, age,	their race, religion, gender, disability, age, or
or national origin;	national origin.

<u>Safety</u>

In this project, safety issues are emphasized by restricting the maximum cart moving speed to be 1.5 m/s, which is slightly higher than average walking speed. Additionally, the obstaclesavoidance feature eliminates all potential collisions between carts and human or among carts. Ultimately, our design aims to provide safe and enjoyable shopping experience to customers.

VI. References

- 1. "Arduino Uno". < http://arduino.cc/en/Main/arduinoBoardUno>.
- 2. "Pittman Express GM9236S025 Datasheet".

<http://www.servo2go.com/support/downloads/GM9236S025.pdf>.

- 3. "Keypad 12 Button Datasheet". < https://www.sparkfun.com/products/8653>.
- 4. "RFM12B-S2 Wireless Transceiver Datasheet".

<https://www.sparkfun.com/products/9582>.

5. "Tutorial testando o transceptor RFM12B-S2 Wireless Transceiver com Arduino" <http://labdegaragem.com/profiles/blogs/tutorial-testando-o-transceptor-rfm12b-s2wireless-transceiver >.