Appendix A

Requirements and Verification Table

Table A.1 Project Requirements and Verification

Requirements

Verification

Power Supply:

1.

Output voltage of A23 batteries should be
12 + 1 Vin order to provide steady power
supply to motors.

5 V voltage regulator (connected to
Arduino and sensors) should output
voltage of 5 + 0.3 V with maximum
current 1.5 A,

3.3 V voltage regulator should supply 2.2 —
3.8 V to transceivers while current
maintained within 17 + 2 mA.

Output voltage of the 1K Ohm
potentiometer needs to be restricted
within 1.8 — 2.2 V, which provides the

working current of the LED.

Connect the probes of a multimeter to the
ends of each battery to measure the
output voltage. The multimeter should
read 12 + 1 V.

After wiring a 5 V voltage regulator to an
A23 battery, measure the output voltage
with a multimeter. Expected value is 5 +
0.5 V. Connect a 3.5 ohms resistor as load,
measure the current through the load to
test if the regulator can sustaina 1.5 A
current.

Connect the 3.3 V voltage regulator to an
A23 battery, use a multimeter to measure
the terminal voltage of the regulator.
Make sure the voltage falls in the 2.2 — 3.8
V range. Use a 200 ohms resistor as load
and test if the regulator functions properly
with 17 + 2 mA current.

Connect the potentiometer to the SDO pin
of a transceiver and adjust the resistor
value. Use a multimeter to measure its
output voltage when SDO is set to high.

The multimeter should read 1.8 —2.2 V.

Transceiver:

1.

Transceivers should cover an effective
range of 10 + 0.5 m with no more than 5%

distortion.

Place two transceivers 10 m apart and
make one serves as receiver and the other
as transmitter. Use two oscilloscopes to

monitor the waveforms sent and received




2. Working at 433 MHz band, receiver by the transceivers, respectively. The
bandwidth is fixed at 67 + 5 kHz, while received signal should differ from the
transmitter frequency deviates from the origin one by less than 5%.
carrier frequency at 45 + 3 kHz. Set all transceivers and a spectrum

3. Data rate should be maintained at 1.2 + analyzer to operate at 433 MHz. The
0.2 kbps. analyzer is expected to receive the signal

at frequency within + 36 kHz after one
transceiver sends a signal at 433 MHz.
Then retrieve the signals received by other
transceivers using the microcontroller to
check if they deviate from 433 MHz by 45
+ 3 kHz.
Under transmitter operation, measure the
interval between signals sent by a
transceiver using an oscilloscope. Desired
interval should be 0.71 -1 ms.

Motor: For each of the three levels, let the cart

1. The cart should move at1.5 + 0.1 m/s, 1.4 move for 5 s in open area. Measure the
+ 0.1 m/s and 1.3 + 0.05 m/s for the three distance that the cart goes by a metric
speed levels. ruler and divide the result by 5. The

2. Percentage error of the actual turning expected results should be 1.5 + 0.1 m,

angle of the front ball wheel cannot

exceed 10%.

1.4+ 0.1mand 1.3 +0.05m,
respectively.

If test fails:

Use a stroboscope to measure the rotation
speed of the motor. The stroboscope
should read 1+0.02 Hz for 1.5 m/s level,
0.93+0.02 Hz for 1.4 m/s and 0.87+0.02
Hz for 1.3 m/s.

Mark the start position of the cart and set
the turning angle from 0 to 90° with 5°

increment each time. Let the cart move for




5sin open area. Measure the angle
between the cart’s path and the direction
it originally faced by a protractor. The
calculated error percentage should be less

than 10%.

Sensor:

1.

Under 5 V DC voltages, sensor will operate
at a current of 15 + 2 mA.

Sensor should be able to detect objects 0.5
+ 0.05 m and 0.2 + 0.02 m away and
differentiate these two distances by
triggering voltage signals of different
magnitudes.

Working frequency of the sensor should

be 40 + 4 Hz to provide updated

information of obstacles.

Apply 5V DC voltages to each sensor,
measure the passing current by a
multimeter. The multimeter should read
15+ 2 mA.

Place an object at 0.5 4+ 0.05 m in front of
a sensor and measure the voltage
response using an oscilloscope. Repeat the
same process after moving the object to
0.2 + 0.02 m. The sensor is expected to
trigger steady voltages in both cases, as
long as the distance is constant.
Furthermore, the former voltage should
be smaller than the latter one by more
than 0.2 V. These two voltages will be
recorded as threshold values.

Set the rotation frequency of a rotor with
only one tooth to 36 — 44 Hz and fix the
sensor at any point that could detect the
tooth. Use an oscilloscope to monitor the
output voltage of the sensor. If the voltage
signal is steady and constant, the sensor
frequency is the same as the rotor, which

means the specification is satisfied.

Microcontroller:

1.

Microcontroller needs to calculate the
positions of the cart and customer based

on information collected from

Pick arbitrary positions for the cart and
customer and record their coordinates.
Export the positions determined by the

microcontroller to a computer and check if




transceivers, and output speed and
turning angle of the cart. The calculated
positions should not deviate from the real
positions by more than 5 cm.

If an obstacle is detected within 0.2 m in
front or the left, the microcontroller
should modify the turning angle by 15° to
the right until all obstacles are cleared; if
something is found in the right, increase
the angle to the left by 15°.
Microcontroller should be able to
determine which button is pressed on the
keypad and correctly reflected that
information on the LCD screen.

If the number of items entered is less than
6, the microcontroller should determine
the optimal solution in 3 s; if the number is
between 7 and 10, the processing time is
restricted in 5 s.

When the distance between the cart and
customer exceeds 2 m, the microcontroller
will send a ‘high’ signal through cart’s
transceiver to customer’s transceiver,
which provides voltage to light the red
LED.

they are within 5 cm of the real locations.
Distances are measured based on
geometric centers.

Place an object at a distance of less than
0.2 m from the cart in each of the three
sides. Check if the microcontroller makes
correct turning instructions by exporting
data to a computer.

If test fails:

Measure the output voltage of the
corresponding pins by a multimeter, which
should read +(0.83+0.05) V. Positive
voltages indicate right-turning and
negative voltages are for left-turning.
Press each button on the keypad and write
Arduino codes to test if the
microcontroller correctly decodes which
button is pressed. Display the
corresponding product names stored in
the microcontroller on LCD. Make sure
they match the names assigned to each
button.

If test fails:

Measure the voltage of the pins connected
to the LCD by a multimeter. They should
be properly turned on and off according to
the programming codes of Arduino, which
display correct product names.

Test the case of n =6 and n = 10. Trace the
‘ready’ signal of Arduino using an
oscilloscope. Time delay should be within

3sand 5 s, respectively.




5. Set the distance between the cart and
customer to be larger than 2 m. Measure
the output voltage of the corresponding
pin of Arduino and check if it is set to high.

User Interface: 1. Connect the LCD display to the
1. LCD display needs be refreshed in 0.5 s microcontroller. Use an oscilloscope to
after a new item is entered by keypad. And measure the time delay for the LCD to
the information displayed should be the output a high signal after one button is
same as what the microcontroller outputs. pressed on the keypad. That time interval
2. All output pins of the keypad should needs to be less than 0.5 s.
produce correct low/high signals in order 2. For each button on the keypad, connect

to properly reflex which button is pressed.

the corresponding two pins that should be
set to high if that button is pressed to a
multimeter. If both of them are ‘on” and
the remaining five are ‘off’, the keypad is

working properly.

Alarm:
1. Thered LED is expected to light when the
distance between the cart and customer

exceeds 2 m.

1. Set the distance between the cart and
customer to be larger than 2 m. Measure
the output voltage of the potentiometer
that is connected to the customer
transceiver. The expected value is 1.8 —

2.2 V.




Appendix B Transceiver Schematics and Wired Circuit

Antenna
rReseT@ i / (see Text for details)
3v3
sv 10K 1
\ A
it 7T L " RFM-12B =
Vin c A'QEFE P P +33v
GND
A 13 - AA— Gnd %
R 1B O
D 1oE - | mosi © ) ]
U O SCK (Clock) RQ [ }—
I ;8 v ll: SS (Select) MISO (D Out) j—l
N 38
0 10|
2% Connect module IRQ to digital pin 2
o)

Figure B.1 RFM12B-S2 schematics

Figure B.2 Wired transceiver with ATmega328



Appendix C

Sensor Testing Results

sV 10uS pulse to Trigger

svr

Trigger

sSVr

Transmitter

Eight 40KHz pulses Transmitted

output

sSVr

Echo

Width proporticnal to measured distance

output

HC-SR04 Timing diagram

£ comi11

Figure C.1 HC-SR04 timing diagram

www . circuitstoday.com

¥

SN

’ =

distance_£:66
distance_1:21
distance_ xr:-14
distance_£:63
distance_ 1:€¢€
distance_xr:17
distance_ £:&62
distance_1l:€6€
distance_x:17
distance_ £:&3
disctance_1l:€5
distance_ xr:-8

distance_£:62
distance_l1:€1
distance_xr:10

«

Autoscroll

[Noi1eending

~ | 9600 baud

Figure C.2 Sensor Testing results




Figure C.3 Sensor Front View



Appendix D Supplemental Materials of User Interface

o1 (N

* \l”-bl—‘

W
*hkO”ChUu

3 NN

o 0o U (N
H| O] o] |[W
)

\_ J
\ J J © ©)
O o)
\ 47 / 000000000
000000000 1234567
1234567

Figure D.1 Keypad pin mapping

Figure D.2 Low-pass filter



Table D.3 Mapping From ATmega328 to Arduino

77

23
46

69
92

)

0

(

Kids (1)

Grocery

157
237
31
3

7
93

— —

—

115

469
543
615
683
751

138

161

184
207
230

— N e e

4

S—

Health

S

S—

S

Electronic

Apparel (8)

Home (9)

Figure D.4 Top view of user interface

10



Appendix E Arduino Codes

#include <RFM12B.h>
#include <avr/sleep.h>

#define trigPin_| 14

#define trigPin_f 9

#define trigPin_r 4

#define echoPin_| 7 //AQ used as digital input

#define echoPin_f 8

#define echoPin_r 3

#define transistorPin_| 5

#define transistorPin_r 6

#define readPin 3 // read from atmega328 through anaglog pin 3
#define sendreadyPin 15 //A1 used as digital input, connected to atmega

#define NODEID 1// network ID for customer

#define NETWORKID 99 //the network ID we are on

#define cartID 2 //the node ID we're sending to: human
#define ACK_TIME 50 // wait 50 ms for ACK signal to come back
#define SERIAL_BAUD 9600

intt_07 = 1300; // time needed to cover 0.7 m in x-direction

int t_90deg_left = 1130; //time needed to turn 90 degree when walking
int t_90deg_right = 970; //time needed to turn 90 degree when rest
intt_180 = 2020;

intt_21 =4050;

intt_14 =3050;

int t_sensor = 200;

float v_straight = 0.5; //meter per sec

int current_head;

int alarm_f =0, alarm_| =0, alarm_r = 0; // 0 if no objects within 35 - 45 cm
float cart_x =1.3; // store the cart position

float cart_y =0.5;

int cart_head = 0;

long duration_f, distance_f;

long duration_|, distance_|;

long duration_r, distance_r;

int readytogo = 0; // set to 1 after collecting all store information

// wait for user input when starting up

int sum =0;

int ave = 0;

int count = 0; // count the numver of items selected
inti=0;

intj=0;

11



int store[10]; // store the store number
float store_location[10][2]; // store location
//char store_name[10]; // store name

// determine optimal path

int sort = 0; // store list is unsorted, set to 1 if sorted
int goal;

int nextstore = 0;

float next_x;

float next_y;

RFM12B radio;
char alarm[1]; // set to 'Y' if front sensor detects something
bool requestACK = true;

void setup() {
Serial.begin (9600);
pinMode(trigPin_f, OUTPUT);
pinMode(trigPin_I, OUTPUT);
pinMode(trigPin_r, OUTPUT);
pinMode(echoPin_f, INPUT);
pinMode(echoPin_I, INPUT);
pinMode(echoPin_r, INPUT);
pinMode(19, OUTPUT); // front sensor LED indicator

pinMode(sendreadyPin, INPUT);
pinMode(transistorPin_I, OUTPUT);
pinMode(transistorPin_r, OUTPUT);

pinMode(readPin,INPUT);

radio.Initialize(NODEID, RF12_433MHZ, NETWORKID);
radio.Sleep(); // sleep right away to save power
// Serial.printIn("Transmitting...\n\n");

}

void loop() {
if(digitalRead(sendreadyPin) == 1){
delay(500);
while(i < 10)
{
delay(500);
while(j < 10){
delay(25);
int val = analogRead(readPin);
sum = sum + val;
i+
//Serial.print("value =");

12



//Serial.printin(val);
}

ave = sum / 10; // average out to get user input

//Serial.print("average =");
//Serial.printin(ave);
//Serial.print("");

if(ave < 70){
i --; // no coming signal

}

if(ave < 70 && count != 0){
break; // no coming signal

}

if(70 < ave && ave < 160){
store[count] = 0;
store_location[count][0] = 1.3;
store_location[count][1] = 0.5;
//store_name[count] = "Grocery";
Serial.print("grocery");
count ++;

}

if(160 < ave && ave < 250){
store[count] = 1;
store_location[count][0] = 2.7;
store_location[count][1] = 0.5;
//store_name[count] = "Kids";
Serial.print("kids");
Serial.print("location:");
Serial.printin(store_location[count][0]);
Serial.printin(store_location[count][1]);
count ++;

}

if(250 < ave && ave < 340){
store[count] = 2;
store_location[count][0] = 2.7;
store_location[count][1] = 1.9;
//store_name[count] = "Books";
Serial.print("books");
count ++;

}

if(340 < ave && ave < 430){
store[count] = 3;
store_location[count][0] = 1.3;
store_location[count][1] = 1.9;
//store_name[count] = "Office";
Serial.print("office");
count ++;

13



}

if(430 < ave && ave < 520){
store[count] = 4;
store_location[count][0] = 1.3;
store_location[count][1] = 3.3;
// store_name[count] = "Health";
Serial.print("Health");
count +4+;

}

if(520 < ave && ave < 610){
store[count] = 5;
store_location[count][0] = 2.7;
store_location[count][1] = 3.3;
//store_name[count] = "Beauty";
Serial.print("beauty");
count +4+;

}

if(610 < ave && ave < 700){
store[count] = 6;
store_location[count][0] = 2.7;
store_location[count][1] = 4.7;
//store_name[count] = "Sports";
Serial.print("sports");
count +4+;

}

if(700 < ave && ave < 790){
store[count] = 7;
store_location[count][0] = 1.3;
store_location[count][1] = 4.7;
//store_name[count] = "Electronics";
Serial.print("electronics");
count +4+;

}

if(790 < ave && ave < 880){
store[count] = 8;
store_location[count][0] = 2.7;
store_location[count][1] = 6.1;
//store_name[count] = "Apparel";
Serial.print("apparel");
count +4+;

}

if(880 < ave && ave < 970){
store[count] = 9;
store_location[count][0] = 1.3;
store_location[count][1] = 6.1;
//store_name[count] = "Home";
Serial.print("home");
count +4+;

14



}

i ++; // increase the index
delay(250);
sum = 0;
i=0;
}

delay(1000);

//Serial.print("stores we chose:\n");
//Serial.print("count:");
//Serial.printin(count);

// for (int a =0; a < count; a++){

// Serial.printIn(store[a]);
//Serial.print("");

/1'}
// determine optimal path
if (sort == 0){

for(int k = 0; k < count; k ++){
for(int h = 0; h < count - k -1; h++){
if(store[h] > store[h+1]){
int tmp=store[h];
store[h]=store[h+1];
store[h+1]=tmp;
//flip x
float flip_x = store_location[h][0];
store_location[h][0] = store_location[h+1][0];
store_location[h+1][0] = flip_x;
//flipy
float flip_y = store_location[h][1];
store_location[h][1] = store_location[h+1][1];
store_location[h+1][1] = flip_y;

/*Serial.print("sorted stores:");

for (int b =0; b < count; b++){
Serial.printin(store[b]);
Serial.print("x_axis:");
Serial.printin(store_location[b][0]);
Serial.print("y_axis:");
Serial.printin(store_location[b][1]);
1*/

delay(1000);

sort = 1; // finish sorting the list

15



readytogo =1;
}

if(readytogo == 1){
goal = store[nextstore]; // find the next destination

if (nextstore < count){
next_x = store_location[nextstore][0]; // get the next store location
next_y = store_location[nextstore][1];
nextstore++;
//test
Serial.print("next loaction_x:");
Serial.printin(next_x,2);
Serial.print("next loaction_y:");
Serial.printin(next_y,2);
delay(1000);

}

else {
next_x = 1.3; // return to starting spot
next_y =0.5;

}

// set out to the destination!!!
float delta_x = next_x - cart_x; // calcualate the length needs to go
float delta_y = next_y - cart_y;

// U_turn necessary?
if ((cart_head == 180 && (cart_y==0.5 || cart_ y==3.3 || cart_y==6.1)) || (cart_head == 0 &&
(cart_y==1.9 || cart_y == 4.7))
// stop to get ready for U_turn

// front sensor needed
digitalWrite(trigPin_f, LOW);
delayMicroseconds(2);
digitalWrite(trigPin_f, HIGH);
delayMicroseconds(10); // Added this line
digitalWrite(trigPin_f, LOW);

duration_f = pulseln(echoPin_f, HIGH);
distance_f = (duration_f/2) / 29.1;
Serial.print("\ndistance_f: ");
Serial.printIn(distance_f);

while(distance_f < 20 && distance_f > 0){
digitalWrite(19, HIGH);
analogWrite(transistorPin_l, 0);
analogWrite(transistorPin_r, 0);
delay(150);

16



//talk to cautomer
radio.Wakeup();

radio.Send(cartlD, alarm, 1, requestACK);
delay(50); // wait for receive send back ACK

if (radio.ACKReceived(cartID)){
Serial.print("successful");

}

radio.Sleep();
delay(500);

digitalWrite(trigPin_f, LOW);
delayMicroseconds(2);
digitalWrite(trigPin_f, HIGH);
delayMicroseconds(10); // Added this line
digitalWrite(trigPin_f, LOW);

duration_f = pulseln(echoPin_f, HIGH);
distance_f = (duration_f/2) / 29.1; //update distance front
Serial.print("new front distance:");
Serial.printin(distance_f);
}
digitalWrite(19, LOW);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,0);
delay(300);

// U_turn

analogWrite(transistorPin_r,0);
analogWrite(transistorPin_|,169);

delay(t_180);

analogWrite(transistorPin_r,0);
analogWrite(transistorPin_|,0);

delay(100);

cart_head = 180 - cart_head; // update the cart head angle

// right sensor needed

digitalWrite(trigPin_r, LOW);
delayMicroseconds(2); // stay low for 2ms
digitalWrite(trigPin_r, HIGH);
delayMicroseconds(10); // stay high for 10 ms
digitalWrite(trigPin_r, LOW);

duration_r = pulseln(echoPin_r, HIGH);
distance_r = (duration_r/2) / 29.1;

17



if(distance_r < 20 && distance_r > 0){
analogWrite(transistorPin_l,0);
analogWrite(transistorPin_r,195);
delay(t_sensor);
Serial.print("direction modified!");

}

}

//return to the origin
if(delta_y < 0){
if(cart_head == 0){

analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,169);
delay(t_180); // turn 180 degrees
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,0);
delay(300);

//right sensor needed

digitalWrite(trigPin_r, LOW);
delayMicroseconds(2); // stay low for 2ms
digitalWrite(trigPin_r, HIGH);
delayMicroseconds(10); // stay high for 10 ms
digitalWrite(trigPin_r, LOW);

duration_r = pulseln(echoPin_r, HIGH);
distance_r = (duration_r/2) / 29.1;

if(distance_r < 20 && distance_r > 0){
analogWrite(transistorPin_1,0);
analogWrite(transistorPin_r,195);
delay(t_sensor);
Serial.print("direction modified!");

1

cart_head = 180;

}
analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,169);
delay(t_07 * 0.9);

//turn left 90 degree
analogWrite(transistorPin_r,195);
analogWrite(transistorPin_|,0);
delay(t_90deg_left);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_|,0);
delay(300);
analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,169);

18



delay((float)(-(delta_y+0.15)/v_straight)*1000);

if(delta_x ==0){
//turn left by 90 degree
analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,0);
delay(t_90deg_left);
analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,169);
delay(t_07);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,0);
delay(300);

}

//turn right by 90 degree

else if(delta_x < 01
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_1,169);
delay(t_90deg_right);
analogWrite(transistorPin_r,195);
analogWrite(transistorPin_1,169);
delay(t_07);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_|I,0);
delay(300);

}

readytogo = 0; // stop

}

// go in the x direction for 1.4 m if the destination is in the same lane

else if(delta_y == 0){
// return from 1to O
if(cart_x == 2.7 && cart_y == 0.5){

// U_turn
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,169);
delay(t_180);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,0);
delay(100);

cart_head = 180 - cart_head,;
//go for 1.4m
analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,169);
delay(t_14);

readytogo = 0; // stop

19



}
//go straight for 1.4m

else{

//Serial.print("in loop?");
analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,169);
delay(t_14);
//Serial.print("done");

}

digitalWrite(trigPin_r, LOW);
delayMicroseconds(2); // stay low for 2ms
digitalWrite(trigPin_r, HIGH);
delayMicroseconds(10); // stay high for 10 ms
digitalWrite(trigPin_r, LOW);

duration_r = pulseln(echoPin_r, HIGH);
distance_r = (duration_r/2) / 29.1;

if(distance_r < 20 && distance_r > 0){
analogWrite(transistorPin_l,0);
analogWrite(transistorPin_r,195);
delay(t_sensor);

}

}// delta_y ==

// the cart needs to move into another lane
else if (delta_y > 0){

//in x direction 0.7m
analogWrite(transistorPin_r,195);
analogWrite(transistorPin_|,169);
delay(t_07);

// turn 90 defrees left

if(cart_ y==0.5 || cart_y==3.3 || cart_y ==6.1){
analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,0);
delay(t_90deg_left);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,0);
delay(300);

}

// turn 90 degrees right

else if(cart_y ==1.9 || cart_y == 4.7){
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,169);

20



delay(t_90deg_right);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,0);
delay(300);

}

// move in y direction

analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,169);
delay(t_07);

analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,169);

delay((float)((delta_y) / v_straight) * 1000 - t_07);

Serial.print("time measured:");
Serial.printin(delta_y / v_straight * 1000);
Serial.print("delta x:");
Serial.printin(delta_x);
Serial.print("cart_head:");
Serial.printin(cart_head);

//move in remaining x direction

if(delta_x == 0 && cart_head == 0){
analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,0);
delay(t_90deg_left);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,0);
delay(300);
current_head = 180;

}

if(delta_x > 0 && cart_head == 0){
Serial.print("turn right?");
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,169);
delay(t_90deg_right);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,0);
delay(300);
current_head = 0;

}

if(delta_x == 0 && cart_head == 180){
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,169);
delay(t_90deg_right);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,0);

21



delay(300);
current_head = 0;

}

if(delta_x > 0 && cart_head == 180){
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,169);
delay(t_90deg_right);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_l,0);
delay(300);
current_head = 180;

}//head to the destination

if(delta_x == 0){

analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,169);
delay(t_07);

}
else if((cart_head == 0 && delta_x > 0) || (cart_head == 180 && delta_x < 0)){

analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,169);
delay(t_07);

}
else if((cart_head == 0 && delta_x < 0) || (cart_head == 180 && delta_x > 0)){

analogWrite(transistorPin_r,195);
analogWrite(transistorPin_l,169);
delay(t_21);

}

}//delta_y <0

cart_head = current_head;

cart_x = next_x; // update current cart location
cart_y = next_y,

//sensor needed

// front sensor needed
digitalWrite(trigPin_f, LOW);
delayMicroseconds(2);
digitalWrite(trigPin_f, HIGH);
delayMicroseconds(10); // Added this line
digitalWrite(trigPin_f, LOW);

duration_f = pulseln(echoPin_f, HIGH);
distance_f = (duration_f/2) / 29.1;

22



Serial.print("\ndistance_f: ");
Serial.printin(distance_f);

while(distance_f < 20 && distance_f > 0){
digitalWrite(19, HIGH);
analogWrite(transistorPin_l, 0);
analogWrite(transistorPin_r, 0);
delay(150);

//talk to cautomer
radio.Wakeup();

radio.Send(cartID, alarm, 1, requestACK);
delay(50); // wait for receive send back ACK

if (radio.ACKReceived(cartID)){
Serial.print("successful");

}

radio.Sleep();
delay(500);

digitalWrite(trigPin_f, LOW);
delayMicroseconds(2);
digitalWrite(trigPin_f, HIGH);
delayMicroseconds(10); // Added this line
digitalWrite(trigPin_f, LOW);

duration_f = pulseln(echoPin_f, HIGH);

distance_f = (duration_f/2) / 29.1; //update distance front
}
digitalWrite(19, LOW);
analogWrite(transistorPin_r,0);
analogWrite(transistorPin_1,0);
delay(300);

//right sensor needed

digitalWrite(trigPin_r, LOW);
delayMicroseconds(2); // stay low for 2ms
digitalWrite(trigPin_r, HIGH);
delayMicroseconds(10); // stay high for 10 ms
digitalWrite(trigPin_r, LOW);

duration_r = pulseln(echoPin_r, HIGH);
distance_r = (duration_r/2) / 29.1;

if(distance_r < 20 && distance_r > 0){
analogWrite(transistorPin_l,0);

23



analogWrite(transistorPin_r,195);
delay(t_sensor);
Serial.print("Right sensor:");
Serial.printin(distance_r);
Serial.print("direction modified!");

}

Serial.print("delay?");
analogWrite(transistorPin_r, 0);
analogWrite(transistorPin_|, 0);
delay(3000);

24



Appendix F Supplemental Materials of Ultrasonic Transmitter &

Receiver
Vee
2N3906 2N3906
2N3904 2N3904
X
[y
O
Arduino Digital Pin 10
Figure F.1 Circuit diagram of ultrasonic transmitter
6.8n
[l 0.1u
I I 1N4148 1u
i ™~ I
L1 I
— ST

Figure F.2 Circuit diagram of ultrasonic receiver

25

0 indu) Bojeuy ounpry



DSO-x 30344, MY52103417: Sat Apr 20 06:28:48 2013
1 2 2 0.0s -16.0%

Agilent

Aecquisition

Mo e Mormal
1.00G

Channels
1.00:1
1.00:1

& Measurements
Freg(1):
39.96kHz
Pk-Pk(1]):
10.4Y
L tin(1):

-5.24Y

Fast Debug 4> Channels Acg Mode
Butoscale [ All Mormal

Figure F.3 Signal generated by ultrasonic transmitter

.5 Agilent Technologies THU APR 25 08:27:14 2013
ﬂ 200%/ 8 ) % 00s 10008 Stop £ 95.0%
Freq(1): 40.0kHz Pk-Pk{(1 ): 563mV
Undo Fast Debug | /) Channels Acq Mode
Autoscale | All Normal

Figure F.4 Signal received by ultrasonic receiver

26



