Appendix A - Requirements and Verification Table

· Bullet points in requirements indicate a design change
	Requirement
	Verification
	R&V Met

	1. Motion sensors detects object in front of the door to within 350 cm
a. Motion sensor unit is receiving power
b. Motion sensor sends transmit signal when triggered by the microcontroller
c. Motion sensor receives reflected signal
d. Motion sensor unit is grounded
	1. An object will be moved in front of the sensor at 50 cm, 200 cm, 350 cm, and 500 cm. Distance readings will be collected from the arduino serial port at intervals of 200 ms and should steady out after two seconds with no more than one third of the readings delivering incorrect values.
a. A multimeter will be connected to the Vcc pin and should read 5v ± .2V
b. The microcontroller will write digital HIGH to the pin connected to the motion sensor trigger pin. A microphone will be placed in front of the transmitter and plugged into an oscilloscope. We should see a 40 kHz signal on the oscilloscope.
c. We will use a multimeter to probe the echo pin on the motion sensor. Shortly after a pulse is transmitted we should see the multimeter read 5V ± .2V
d. A multimeter will be connected to the Vcc pin and should read 0 ± .2V
	X

	2. Line sensor detects object in its path
a. Laser receives power
b. Laser sends a signal that is received by the photodetector
c. Photodetector voltage noticeably changes when laser is blocked in standard door frame
d. Comparator outputs proper digital output
· This was a design addition from using 100mV analog signal from the diode as the arduino input
	2. The laser will be aimed at the photodetector. An object will be placed in the laser’s path to block the signal. When the beam is blocked the photodetector output voltage falls from 100mV to 0V. This will be confirmed using a multimeter.
a. A multimeter will be connected to the laser power wire. The multimeter should read 3.3V ± .2V
b. A multimeter will be connected to the output of the photodetector. First we will take the reading when no laser is pointed at the photodetector. Next we will point the laser at the photodetector. The multimeter shows a reading different than when no laser is pointed at it
c. The laser will be powered and aimed at the photodetector. They will be set a distance of three feet apart (standard door frame). A multimeter will be connected to the output of the photodetector. When the laser beam is blocked the multimeter reading will fall from 100mV ± .005V to 0mV± .005V
d. The reference voltage pin of the comparator will be probed to ensure it is set at 74mV. The input to the positive input will be probed to ensure the proper input from the photodiode. The 100mV voltage difference from the diode being hit and not hit will be observed. The power inputs to the comparator will be probed to confirm they are 5V and ground. Finally, the line will be broken and the output of the comparator will be observed on using the serial monitor of the arduino. It should stop the motor and report that the line has been broken.
	X

	3. Both cameras take pictures when prompted
a. the camera receives power
b. The camera receives the signal from the arduino to take a picture
c. The camera is initiated and takes a picture
i. camera receives the activation signal
ii. The picture can be read from the camera output
d. The JPEG picture is downloaded and stored on the microSD card

	3. The cameras will take pictures and relay them to the microcontroller when prompted
a. A multimeter will be connected to the Vcc pin of the camera. The multimeter should read 5V ± .2V
b. When the microcontroller is cued, it will set the digital pin connected to the camera input to high. A multimeter reading of the camera input should read 5 volts ± .2V.
c. the camera is initiated to take a picture. Using the serial monitor of the microcontroller, the serial output from the camera to the microcontroller will be confirmed
i.The microcontroller will write HIGH to the digital pin connected to the camera RX input pin. A multimeter will be connected to the input pin. The multimeter should read 5V ± .2V.
ii. The microcontroller will print data from the output pin of the camera to the serial monitor. After the camera activation signal is sent, we will see a series of 1s and 0s instead of only 0s
d. A test JPEG will be sent into the digital pin of the microcontroller serially. The microSD card will be removed. Using a card reader, it will be confirmed that the JPEG was written to the microSD card successfully
	X

	4. The audio circuitry captures and manipulates the incoming audio signal properly
a. The microphone functions properly
i. The microphone is properly grounded
ii. The microphone is outputting an audio signal of the surrounding environment
b. The op amp amplifies the audio signal
i. The op amp is properly powered
ii. The op amp is properly grounded
iii. The input signal is fed into the op amp
iv. The op amp amplifies a signal
v. The op amp amplifies the incoming audio signal so the peaks reach 2.5V ± .5V and -2.5V ± .5V
c. The DC offset circuit shifts the amplified audio signal to an arduino compatible range of 0-5 V
i. The circuit is properly powered
ii. The circuit is properly grounded
iii. The circuit amplifies a test signal of amplitude 2.5 V to 5V ± .2V
iv. The circuit offsets a signal from the microphone and amplifier where the peak amplitudes are from 0 to 5V
	4. The audio waveform is displayed on an oscilloscope properly amplified and DC offset
a.
i. A multimeter will be used to probe the ground pin of the microphone to confirm that it is at 0V ±.2V
ii. The output of the microphone will be output to an oscilloscope. The waveform on the oscilloscope should show peaks when loud signals are made to the microphone, such as a clap
b.
i. The Vcc+ and Vcc- pins of the op amp are probed using a multimeter to confirm it receives 5V± 0.2V and -5V± 0.2V respectively
ii. A multimeter will be used to probe the ground pin of the op amp to confirm that it is at 0V ±.2V
iii. An oscilloscope will be placed at the output terminal of the microphone as well as the input of the op amp circuit. We will provide audio input and verify that the two signals match.
iv. A test signal of amplitude 200mV will be fed into the input of the op amp. The output will be displayed on an oscilloscope showing a gain (Vout/Vin) of 12.5. The should correspond to a peak voltage of 2.5V
v. An oscilloscope will be connected to the output of the op amp circuit. We will measure ambient sound as well as a series of louder noises and visually confirm that the peak voltages are 2.5V ± .5V and -2.5V ± .5V

c.
i. The Vcc node of the circuit will be probed using a multimeter to confirm it receives 5V± 0.2V
ii. A multimeter will be used to probe the ground node of the circuit to confirm that it is at 0V ±.2V
iii. A power supply will be connected to the input of the DC offset circuit and set to 2.5 V. We will use a multimeter to probe the output terminal and verify that it is at 5V± 0.2V
iv. The input of the DC offset circuit will be connected to a power supply and an oscilloscope will be connected to the output of the circuit. We will vary the voltage of the power supply and check multiple data points to ensure that
 Vout = Vin + 2.5 V ±.2V
	X

	5. Incoming audio signal from microphone circuit is processed and analyzed for dog bark detection
a. Arduino recognizes a loud noise that could be a dog bark
b. The arduino performs an FFT on the converted audio signal
c. Audio is sampled according to Nyquist ratio limits to avoid aliasing
d. The arduino can recognize defined amplitudes in a given frequency range
e. The arduino can recognize a dog bark
	5. The offset microphone data is processed for bark detection on the arduino board
a. The arduino will turn on an LED when a signal is processed whose amplitude is 1V ± .1V higher than the surrounding environment
b. A test audio signal will be sent to the arduino. The arduino will perform an FFT. The arduino will serially output the result of the FFT to confirm that it is performed properly
c. The audio signal being input to the arduino will be observed on an oscilloscope. The peak amplitude will be recorded. The sampling rate used by the arduino must match the nyquist rate corresponding to this peak amplitude
d. A frequency band of 10kHz will be used. An input test audio signal in that given range whose amplitude is above 2V ± .5V will set off an LED
e. A pre recorded audio signal of a dog bark will be sent to the arduino. The arduino should recognize the signal and turn on an LED 40% of the time. The LED should not turn on when the arduino is sent a test signal of the surrounding environment
	X

	6. Motor opens the door
a. The motor shield receives activation signal from the microcontroller
b. The motor is activated
c. The motor opens the door
d. The snap action switches alert the arduino when the door is open and closed
· We changed our design from using a rotary encoder to two snap action switches to recognize when the door is open and closed

	6. The door opens when prompted by the microcontroller
a. The digital microcontroller output connected to the input of the motor shield will be set to high. Using a multimeter, verify that the input voltage seen by the motor is equal to 12V±.5V.
b. When the input of the motor is set to 12V, the motor spins without a door attached
c. The door is opened all the way by sufficiently sending 12V±.5V at a max of 2A from the motor controller
d. We will monitor the output of the snap action switches using a volt meter. The voltmeter should fall from 5V to 0V when the switch is pressed. Later, the motor will be run open and closed. When the motor hits the first switch, the motor will stop and then return to close. When the motor returns to the closed position it will stop.
	X

	7. Arduino Ethernet Shield sends twitter notification containing link to web server to notify user of dog waiting at door
a. Arduino Ethernet shield is powered
b. Ethernet shield connects to internet
c. Arduino posts twitter message
d. clickable link is included in tweet

· Original design was to notify user via email. We ran into authorization issues with the Arduino and switched to Twitter

	7. Tweet is visible and contains clickable link to the web server
a. Power LED is lit
b. If successful, Arduino will print “connected” to the serial monitor
c. Status code 200 will be returned from twitter server after twitter.post command
d. IP address of server appears as clickable hyperlink
	X

	8. Web server is hosted displaying images and containing functional buttons
a. Web server is accessible via IP address
 i. Ethernet shield is powered
 ii. Ethernet shield connects to internet
 iii. Server is initialized at given IP
 iv. When requested server reads index.htm file and displays content
b. Images are displayed on server
c. Open and close buttons generate different outputs

· Original design was to send pictures and receive response via email. Authorization issues prevented this so we moved to the more robust solutions of the web server
	8. Web server is available at given IP address, pictures are displayed and clicking open or close produces different outputs
a. When IP is accessed, server is displayed in web browser
 i. Power LED is lit
 ii. If successful, Arduino will print “connected” to the serial monitor
 iii. Arduino will print “server is at: (IP)”
 iv. Serial monitor will print out client HTTP request and load server
b. server will be loaded, images will be visible
c. Open button will append “status=0” and close button will append “status=1” to end of server address. Arduino will parse this status and turn on one LED for open and a different LED for close
	X

Appendix B - Software Flowchart
[image:]
Appendix C - Microphone Eagle PCB Layout

[image:]

Appendix D - Important Code

//GENERAL
int sensorValue = 0;
int count = 0;
int dots = 0;

//DISTANCE
#define TRIGGER_PIN 24
#define ECHO_PIN 25
#define MAX_DISTANCE 500
#include <NewPing.h>
NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);
int DistanceIn;
int DistanceCm;

//CAMERA
#define chipSelect 4
#include <Adafruit_VC0706.h>
#include <SD.h>
#include <SoftwareSerial.h>
Adafruit_VC0706 cam1 = Adafruit_VC0706(&Serial3);
Adafruit_VC0706 cam2 = Adafruit_VC0706(&Serial2);

//ETHERNET
#include <SPI.h>
#include <Ethernet.h>
byte mac[] = { 0x90, 0xA2, 0xDA, 0x0D, 0xC8, 0x7D };

//SERVER
IPAddress ip(192,168,0,166);
EthernetServer server(80);
String HTTP_req = "";
File webFile;

//TWITTER
#include <Twitter.h>
Twitter twitter("24561956-0TpKlbjsEbl4RhSHMg8o2sdtopfhipC5dbDlYpz2A");
char msg[] = "Yo Dog, let me in! \n http://192.168.0.166";
boolean tweet = false;

//MOTOR
boolean Hit1 = false; //closed?
boolean Hit2 = false; //opened?
boolean opened = false;
boolean closed = false;
int Bump1 = 21; //fully closed
int Bump2 = 20; //fully opened
boolean direct = true; //true = opening, false = closing
boolean trip = false; //line sensor tripped?

void setup()
{
 Serial.begin(9600);
 Serial.println();
 Serial.println();
 Serial.println("Welcome to The Bark Activated Dog Door");
 Serial.println("BADD DOGG");

 //Bump Sensors
 pinMode(Bump1, INPUT);
 pinMode(Bump2, INPUT);

 //Motor Interrupts
 attachInterrupt(2, BumpClose, CHANGE); //pin 21
 attachInterrupt(3, BumpOpen, CHANGE); //pin 20
 attachInterrupt(4, LineTrip, CHANGE); //pin 19

 //MICROPHONE
 pinMode(30, OUTPUT);
 digitalWrite(30, LOW);
 pinMode(31, INPUT);

 //SPI Pins
 pinMode(53, OUTPUT); // SS on Mega
 digitalWrite(53, HIGH);

 pinMode(10, OUTPUT); // SS on Uno, etc.
 digitalWrite(10, HIGH);

 pinMode(4, OUTPUT);
 digitalWrite(4, HIGH);
}

void loop()
{
 if (tweet == false)
 {
 distance();

 digitalWrite(4, HIGH);
 digitalWrite(10, LOW);

 //Start Server
 server.begin();
 Serial.print("server is at ");
 Serial.println(Ethernet.localIP());
 }

 // listen for incoming clients
 EthernetClient client = server.available();

 if (client)
 {
 Serial.println("new client");
 // an http request ends with a blank line
 boolean currentLineIsBlank = true;
 String buffer = "";
 while (client.connected())
 {
 if (client.available())
 {
 char c = client.read();
 HTTP_req += c; // save HTTP request character
 Serial.print(c);
 buffer += c;
 // if you've gotten to the end of the line (received a newline
 // character) and the line is blank, the http request has ended,
 // so you can send a reply
 if (c == '\n' && currentLineIsBlank)
 {
 // send web page
 if ((HTTP_req.indexOf("GET / ") > -1) || (HTTP_req.indexOf("GET /website.htm") > -1))
 {
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connnection: close");
 client.println();
 webFile = SD.open("website.htm"); // open web page file
 }

 else if (HTTP_req.indexOf("GET /IMAGE00.jpg") > -1)
 {
 webFile = SD.open("IMAGE00.jpg");
 if (webFile)
 {
 client.println("HTTP/1.1 200 OK");
 client.println();
 }
 }

 else if (HTTP_req.indexOf("GET /IMAGE01.jpg") > -1)
 {
 webFile = SD.open("IMAGE01.jpg");
 if (webFile)
 {
 client.println("HTTP/1.1 200 OK");
 client.println();
 }
 }

 if (webFile)
 {
 while(webFile.available())
 {
 client.write(webFile.read()); // send web page to client
 }
 webFile.close();
 }

 HTTP_req = ""; // empty the string
 break;
 }

 if (c == '\n')
 {
 currentLineIsBlank = true;
 buffer = "";
 }

 else if (c == '\r')
 {
 if(buffer.indexOf("GET /?status=0") >= 0)
 {
 Serial.println();
 Serial.println("Closing");
 while(1)
 {
 closeDoor();
 if (closed == true)
 {
 break;
 }
 }
 closed = false;
 opened = false;
 tweet = false;
 }

 if (buffer.indexOf("GET /?status=1") >= 0)
 {
 Serial.println();
 Serial.println();
 Serial.println("Opening");
 while(1)
 {
 openDoor();
 if (opened == true)
 {
 break;
 }
 }
 opened = false;
 closed = false;

 delay (2000);

 Serial.println();
 Serial.println("Closing");
 while(1)
 {
 closeDoor();
 if (closed == true)
 {
 break;
 }
 }
 opened = false;
 closed = false;
 tweet = false;
 }
 }

 else
 {
 currentLineIsBlank = false;
 }

 }
 }

 // give the web browser time to receive the data
 delay(1);

 // close the connection:
 client.stop();
 Serial.println("client disonnected");
 }
}

void distance()
{
 Serial.println();
 Serial.println("MEASURING DISTANCE");
 while (count < 10)
 {
 delay(200);// Wait 200ms between pings (about 5 pings/sec). 29ms should be the shortest delay between pings.
 DistanceCm = sonar.ping_cm();//Maximum sensor distance is rated at 400-500cm.
 Serial.print("Ping: ");
 Serial.print(DistanceCm); // 0 = out of range, no echo response
 Serial.println(" cm");

 if (DistanceCm < 50 && DistanceCm != 0)
 {
 count++;
 if (count >9)
 {
 Serial.println();
 Serial.println("Activating Microphone");
 microphone();
 }
 }

 else
 {
 count = 0;
 }
 }
 count = 0;
}

void microphone()
{
 digitalWrite(30, HIGH);
 delay (1000);
 int mic = LOW;

 while (mic == LOW)
 {
 mic = digitalRead(31);
 }

 Serial.println();
 Serial.println("Dog Bark Detected");
 digitalWrite(30, LOW);
 Camera1();
 Camera2();
 Tweet();
 tweet = true;
}

void Camera1()
{
 Serial.println();
 Serial.println("TAKING PICTURE #1");
 Serial.println();

 digitalWrite(10, HIGH);
 digitalWrite(4, LOW);

 //Initialize SD Card
 if (SD.begin(chipSelect))
 {
 Serial.println("SD Card Initialized");
 }

 //Remove Old Image
 SD.remove("IMAGE00.jpg");

 // Try to locate the camera
 if (cam1.begin())
 {
 Serial.println("Camera Found:");
 }
 else
 {
 Serial.println("No camera found?");
 return;
 }

 cam1.setImageSize(VC0706_160x120); // small

 Serial.println("Snap in 3 secs...");
 delay(3000);

 if (! cam1.takePicture())
 Serial.println("Failed to snap!");
 else
 Serial.println("Picture taken!");

 // Create an image with the name IMAGExx.JPG
 char filename[13];
 strcpy(filename, "IMAGE00.jpg");

 // Open the file for writing
 File imgFile = SD.open(filename, FILE_WRITE);

 // Get the size of the image (frame) taken
 uint16_t jpglen = cam1.frameLength();
 Serial.print("Storing ");
 Serial.print(jpglen, DEC);
 Serial.print(" byte image.");

 int32_t time = millis();
 pinMode(8, OUTPUT);
 // Read all the data up to # bytes!
 byte wCount = 0; // For counting # of writes
 while (jpglen > 0) {
 // read 32 bytes at a time;
 uint8_t *buffer;
 uint8_t bytesToRead = min(32, jpglen); // change 32 to 64 for a speedup but may not work with all setups!
 buffer = cam1.readPicture(bytesToRead);
 imgFile.write(buffer, bytesToRead);
 if(++wCount >= 64) { // Every 2K, give a little feedback so it doesn't appear locked up
 Serial.print('.');
 wCount = 0;
 }
 //Serial.print("Read "); Serial.print(bytesToRead, DEC); Serial.println(" bytes");
 jpglen -= bytesToRead;
 }
 imgFile.close();

 time = millis() - time;
 Serial.println("done!");
 Serial.print(time); Serial.println(" ms elapsed");
}

void Camera2()
{
 Serial.println();
 Serial.println("TAKING PICTURE #2");
 Serial.println();

 digitalWrite(10, HIGH);
 digitalWrite(4, LOW);

 //Remove Old Image
 SD.remove("IMAGE01.jpg");

 // Try to locate the camera
 if (cam2.begin())
 {
 Serial.println("Camera Found:");
 }
 else
 {
 Serial.println("No camera found?");
 return;
 }

 cam2.setImageSize(VC0706_160x120); // small

 Serial.println("Snap in 3 secs...");
 delay(3000);

 if (! cam2.takePicture())
 Serial.println("Failed to snap!");
 else
 Serial.println("Picture taken!");

 // Create an image with the name IMAGExx.JPG
 char filename[13];
 strcpy(filename, "IMAGE01.jpg");

 // Open the file for writing
 File imgFile = SD.open(filename, FILE_WRITE);

 // Get the size of the image (frame) taken
 uint16_t jpglen = cam2.frameLength();
 Serial.print("Storing ");
 Serial.print(jpglen, DEC);
 Serial.print(" byte image.");

 int32_t time = millis();
 pinMode(8, OUTPUT);
 // Read all the data up to # bytes!
 byte wCount = 0; // For counting # of writes
 while (jpglen > 0) {
 // read 32 bytes at a time;
 uint8_t *buffer;
 uint8_t bytesToRead = min(32, jpglen); // change 32 to 64 for a speedup but may not work with all setups!
 buffer = cam2.readPicture(bytesToRead);
 imgFile.write(buffer, bytesToRead);
 if(++wCount >= 64) { // Every 2K, give a little feedback so it doesn't appear locked up
 Serial.print('.');
 wCount = 0;
 }
 //Serial.print("Read "); Serial.print(bytesToRead, DEC); Serial.println(" bytes");
 jpglen -= bytesToRead;
 }
 imgFile.close();

 time = millis() - time;
 Serial.println("done!");
 Serial.print(time); Serial.println(" ms elapsed");
}

void Tweet()
{
 Serial.println();
 Serial.println("TWEETING");
 Serial.println();

 digitalWrite(10, LOW);
 digitalWrite(4, HIGH);
 Ethernet.begin(mac, ip);

 Serial.println("connecting ...");

 if (twitter.post(msg))
 {
 int status = twitter.wait(&Serial);
 if (status == 200)
 {
 Serial.println("OK.");
 }
 else
 {
 Serial.print("failed : code ");
 Serial.println(status);
 }
 }

 else
 {
 Serial.println("connection failed.");
 }
}

void openDoor()
{
 direct = true;

 if (Hit2 == false)
 {
 dots ++;
 if (dots == 15000)
 {
 Serial.print(".");
 dots = 0;
 }
 digitalWrite(12, LOW); //Forward direction
 digitalWrite(9, LOW); //disengage brake
 analogWrite(3, 255); //full speed ahead
 }

 else if (Hit2 == true)
 {
 digitalWrite(9, HIGH); //engage brake
 analogWrite(3, 0); //no speed
 Serial.println();
 Serial.println("STOP");
 Serial.println("Door Opened");
 opened = true;
 }
}

void closeDoor()
{
 direct = false;

 if (trip == true)
 {
 digitalWrite(9, HIGH);
 analogWrite(3, 0);
 Serial.println();
 Serial.println("Line Tripped");
 delay(3000);
 }

 else
 {
 if (Hit1 == false)
 {
 dots ++;

 if (dots == 15000)
 {
 Serial.print(".");
 dots = 0;
 }

 digitalWrite(12, HIGH); //Backward direction
 digitalWrite(9, LOW); //disengage brake
 analogWrite(3, 255); //full speed ahead
 }

 else if (Hit1 == true)
 {
 digitalWrite(9, HIGH); //engage brake
 analogWrite(3, 0); //no speed
 Serial.println();
 Serial.println("STOP");
 Serial.println("Door Closed");
 closed = true;
 }
 }
}

void BumpClose()
{
 if (digitalRead(Bump1) == HIGH)
 {
 Hit1 = false;
 }
 else if (digitalRead(Bump1) == LOW)
 {
 Hit1 = true;
 }
}

void BumpOpen()
{
 if (digitalRead(Bump2) == HIGH)
 {
 Hit2 = false;
 }
 else if (digitalRead(Bump2) == LOW)
 {
 Hit2 = true;
 }
}

void LineTrip()
{
 if (direct == true)
 {
 }

 else if (direct == false)
 {
 if (digitalRead(19) == 0)
 {
 trip = true;
 }

 else if (digitalRead(19) == 1)
 {
 trip = false;
 }
 }
}

Appendix E - Final Product Picture

[image:]

Appendix F - DSP Excel Spreadsheet

[bookmark: _GoBack]Appendix F uploaded as separate file to retain Excel spreadsheet formatting. The spreadsheet is located on the team 20 project page and is name File 1.

image1.jpg
T . D
(_ Door Closed

Yes ~
\ No & b

/ \

\ — Motion within >
s N 350cm? -

Fuly 3
. Closed? ~ N
\ Y Yes

Close Door

o \ 4
R ‘ Yes
Line Sensor Camera Operations |

[Trippea? =% Take picture with camera 1

Yes 7 v |
Store picture on SD card

i |

No Image storage

< Success? ———HO—p error,
\ Notify user
i Yes |
Take picture with camera 2

— i —

Store picture on SD card

y N No ‘
< Success? -

[Yes

Ethernet Operation
Start the Ethernet connection L Orgrations)

e

Connect to SMTP server
7)7 |
\
No o
“Successul?——NC g Email failed
‘* Yes
Send greeting

e —

Authorize email sender

P |

No |

<Successful?>
O |
Yes
|
‘Specify sender and recipient

v

Populate Message

v !
Send
v N |
Wait for user response
Door 7;
Fuly >
Parse user response

b S =

Open Door No ~ open
Command?

Yee‘

image2.png
edr

image3.jpg

