 (
Final Report for ECE 445, Senior Design,
Spring
 2013
TA:

Mustafa
Mukadam
) (
1
May
 201
3
Project No. 19
) (
Cory Edwards
Harrison
Kantner
Jon Kinney
) (
By
)
 (
Self Sustainable Electric Golf Bag
)

Abstract
This report documents the design, construction, verification, and cost of a solar powered golf bag that has the capability to control the temperature of beverages. This product also has the ability to charge electronic devices by means of a USB charger outlet, as well as provide the opportunity to keep track of round of golf through a digital scorecard. The final result proved to be successful with the exception of being unable to thoroughly cool the bag. This error was caused by a component malfunction and will be detailed later in the Temperature Module Verifications.
Although our design worked electronically there are still improvements that can be made concerning the construction of the device, mainly component housing and a cleaner wire layout.

Contents

1. Introduction	1
1.1	Objectives	1
1.1.1 Goals:	1
1.1.2 Functions:	1
1.1.3 Benefits:	1
1.1.4 Features:	1
1.2	High-Level Block Diagram	2
1.3	Block Descriptions	2
1.3.1 Power Module	2
1.3.2 USB Module	3
1.3.3 Display Module	4
1.3.4 Temperature Module	5
1.3.5 Scorecard Module	6
2 Design Procedure	7
2.1 Power Module	7
2.1.1 Solar Panels	7
2.1.2 Charging Unit	7
2.1.3 Battery	7
2.1.4 Power Supply	7
2.2 USB Module	8
2.3 Display Module	9
2.3.1 Power Supply	9
2.3.2 Controller	9
2.3.3 LCD	9
2.4 Temperature Module	9
2.4.1 Power Supply	9
2.4.2 User Input	9
2.4.3 Temperature Sensor	9
2.4.4 Thermoelectric Modules	10
2.4.5 Controller	10
2.5 ScoreCard Module	10
2.5.1 Power Supply	10
2.5.2 User Input	10
2.5.3 Controller	10
3. Design Details	10
3.1 Power Module	10
3.1.2 Charging Unit	10
3.1.3 Power Module	11
3.2 USB Module	13
3.3 Display Module	13
3.3.1 Power Supply	13
3.3.2 Controller	13
3.3.3 LCD	13
3.4 Temperature Module	14
3.4.1 Power Supply	14
3.4.2 User Input	14
3.4.3 Temperature Sensor	14
3.4.4 Thermoelectric Modules	14
3.4.5 Controller	15
3.5 Scorecard Module	15
3.5.1 Power Supply	15
3.5.2 User Input	15
3.5.3 Controller	15
4. Design Verification	16
4.1 Power Module	16
4.2 USB Module	17
4.3 Display Module	18
4.4 Scorecard Module	19
4.5 Temperature Module	19
5. Cost	21
5.1 Parts	21
5.2 Labor	22
6. Conclusion	22
6.1 Accomplishments	22
6.2 Uncertainties	22
6.3 Ethical Considerations (from IEEE code of ethics)	22
6.4 Safety	23
6.5 Future work	24
References	25
Appendix A: Requirement and Verification Table	26
A.1: Power Module Requirements and Verifications	26
A.2: USB Module Requirements and Verifications	28
A.3: Scorecard Module Requirements and Verifications	28
A.4: Temperature Module Requirements and Verifications	28
A.5: Display Requirements and Verifications	30
Appendix B: Schematics	32
Appendix C: Flowcharts	35
Appendix D: Pictures	37
Appendix E: Solar Panel System	39
Appendix F: Microcontoller Code	41

[bookmark: _Toc355184972]1. Introduction
This project was chosen because we feel there is a need to be able to keep beverages cool while enjoying a round of golf without the hassle of walking back and forth between the clubhouse. Currently, there are no similar items on the market that can complete this goal while also providing the added features proposed within our golf bag. Our group has had experience with golfing, and each member is excited about the idea of a golf bag that does more than simply hold your clubs. This is also a great opportunity to learn new concepts while also applying those we have learned throughout our academic careers.
1.1 [bookmark: _Toc355184973]Objectives
[bookmark: _Toc355184974]1.1.1 Goals:
· Create a solar rack that can be easily attached to a golf bag
· Design a cooling system that has variable temperatures
· Create a digital scorecard used to keep score
· Enable charging of battery via home outlet
· Allow charging of USB devices from on-bag battery
[bookmark: _Toc355184975]1.1.2 Functions:
· Solar Panel or AC input acts as source of power, charging battery
· Microcontroller used to regulate temperature as well as keep score
· Thermoelectric modules used to heat/cool insulated pouch
· Power electronics used to ramp up/step down voltages as needed
· LCD with keyboard to display temperature and score
[bookmark: _Toc355184976]1.1.3 Benefits:
· Allows golfers to have cold beverages in warm weather and vice versa
· Can now enjoy a round of golf without worrying about phone charge
· Can power any USB device
· Keep score in an easy to read format
· Have the most advanced golf bag on the course
[bookmark: _Toc355184977]1.1.4 Features:
· Heating and cooling pouch
· Temperature control via keyboard control
· Digital Scorecard displayed via LCD
· USB power
· Solar power
· AC outlet charging capabilities

1.2 [bookmark: _Toc355184978]High-Level Block Diagram

[image:]
Figure 1 Block Diagram
1.3 [bookmark: _Toc355184979]Block Descriptions
[bookmark: _Toc355184980]1.3.1 Power Module
 (
Solar Panels
Battery
Charging Unit
Power Supply
)

Figure 2 Power Module Block Diagram
Overall, the Power Modules acts as a power supply for the entire system by generating, storing, and distributing appropriate power to each component.
Solar Panels
Solar panels will be the primary power generation component of the power module. Under ideal conditions, the solar panels will generate all of the power used by the entire system. A power budget calculation estimates 25W as the maximum power consumed by the system. Therefore, panels rated at a total of 30W will be used. Power from the solar panels would not be consistent enough to directly power all of the components. Instead, the panels will recharge a battery.
Charging Unit
The charging unit allows the battery to be charged by a wall outlet for when solar panels cannot be used. An AC-DC converter will modulate the power which will be scaled into a usable source for a commercial battery charger.
Battery
The battery is responsible for storing power generated by the solar panels. In addition to being recharged by solar power, the battery will also be capable of being charged through an ordinary wall outlet (in case the weather does not favor solar power.) The battery will output the approximated 25W to a power supply sub-block.

Power Supply
The power supply takes the 25W power from the battery and converts it into usable voltages for every other component in the system (USB, Scorecard, Display, and Temperature Modules.) These voltages are 7.4V, 5V, and 3.3V.

[bookmark: _Toc355184981]1.3.2 USB Module
 (
Power
Supply
USB port
)

Figure 3 USB Module Block Diagram
The USB Module is a very simple component that takes power distributed from the power supply and sends it to a USB port. The power will already be scaled by the Power Module to our desired 2.5W for the USB port, so there will be very little circuitry.

[bookmark: _Toc355184982]1.3.3 Display Module
 (
Power
Supply
Controller
Display
)

Figure 4 Display Module Block Diagram
The Display Module consists of two LCD screens and a controller that will display the electronic scorecard GUI and temperature information, sent by the Scorecard and Temperature Module.
Power Supply
The power supply is a source of power (2 lines) from the Power Module, used by the controller and display. The appropriate power values will have already been determined by the Power Module and sent directly to these components.
Controller
The controller sub-block in the Display Module represents the controller in the Scorecard and Temperature Module. All information that needs to be displayed will have already been processed by each respective block. Therefore, the information will be ready to be displayed on screen.
Display
Low resolution LCD screens will be used to display the electronic scorecard and temperature information. This information will come from the controller. The display will be mounted on the bag in a location that is easy for the user to access. Similarly, the screen will need to be low-glare so that it is easy to use outside.

[bookmark: _Toc355184983]1.3.4 Temperature Module
 (
Power
Supply
Controller
Temperature Sensor
User Input
Thermoelectric Modules
)

Figure 5 Temperature Module Block Diagram
The Temperature Module is a feedback control system that will allow the user to set a desired temperature for an insulated pocket in the bag, and maintain that temperature through the use of thermoelectric modules.
Power Supply
The power supply is a source of power from the Power Module, used by the microcontroller in the Temperature Module. This power will already be regulated to the temperature module’s specifications as it enters the Temperature Module. The MC is run at battery voltage, 7.4V.
User Input
The user input for the Temperature Module will consist of two buttons used to set the desired temperature of the pocket (one to increase the temperature and another to decrease it.) Signals from the buttons are sent to the controller to be processed.
Temperature Sensor
A simple temperature sensor will be used to provide feedback into the control system. This sensor has a data output/input line that will send the temperature as a 16 bit, binary code. This value is then interpreted by the controller to determine if the modules should heat up, cool down, or simply turn off.
Thermoelectric Modules
Thermoelectric modules (Peltier coolers) will be used to change the temperature of the pocket. They are solid-state devices that convert an electric voltage into a temperature difference. When our controller determines that there is an error between the user-selected reference value and the temperature of the pocket, a voltage will be applied to these modules to create a temperature differential.
Controller
The controller will use the user-selected temperature as well as feedback from a temperature sensor to determine if the Peltier cooling devices need to be running. It will operate based on a closed-loop transfer function in which the output of the system is fed back through the sensor measurement to a reference value. The controller will take the error between these values and correct accordingly by enabling/disabling the Peltier devices to cool/heat the bag. This will be done by sending signals to a series of 4 MOSFETs, directing current in the appropriate direction through the modules.

[bookmark: _Toc355184984]1.3.5 Scorecard Module
 (
User Input
Power
Supply
Controller
)

Figure 6 Scorecard Block Diagram
The Scorecard Module will be an electronic version of the scorecards received at any golf course. It will generate a grid for a single player to enter in their score after each hole. A running counter will keep a total for the player.

Power Supply
The power supply comes from the Power Module. It is a source of power (two lines) for both the display and microcontroller in the Scorecard Module. Because the display and microcontroller are used in other modules, this power supply component is shared between the Temperature and Display Modules.

User Input
The user input for the Scorecard Module is a group of buttons used to navigate the scorecard and enter in numbers. Signals from the buttons are sent to the controller to be processed.

Controller
The controller is a device responsible for processing our coded scorecard, powered by the power supply (7.4V) and driven by user input. We will code a GUI for the scorecard, load it on to the controller, and send it to the Display Module.
[bookmark: _Toc355184985]2 Design Procedure
[bookmark: _Toc355184986]2.1 Power Module
[bookmark: _Toc355184987]2.1.1 Solar Panels
As the power budget resulted in a total of 25 Watts, it was desired to have solar panels that supplied 30 Watts. It was difficult to find a single solar panel that supplied this power as well as fit our dimensions of 3’x1’. As a result, two panels were purchased that would be connected in parallel. Connecting the panels in parallel ensures a singular stable voltage and adds the two solar panel currents to supply the total power. The first panel was two feet by one foot and could supply 20 Watts. The second was a one foot by one foot panel that offered 10 Watts. These two panels combined to not only fit our required dimensions to mount on the golf bag, but also supplied the power deemed necessary. A mounting rack was fabricated by the machine shop to hold these panels. An alternative design would have been to purchase a custom solar panel that fit our dimensions and supplied 30 Watts. The two panel solution was chosen for economic reasons.
[bookmark: _Toc355184988]2.1.2 Charging Unit
The wall outlet charging unit for this device was initially going to be constructed from a 120 V to 7.4 V transformer and a full-wave diode bridge rectifier. It was found to be more convenient and better designed to purchase a commercial charger and use a standard barrel-plug wall adapter.
[bookmark: _Toc355184989]2.1.3 Battery
The battery used was a 7.4V Lithium Polymer with 10000mAhrs. This battery size was chosen because it can completely power the bag for up to three hours, the average time for a round of golf, without any power supplied by the panels. The commercial charger that was purchased is a sister product developed by the same company that manufactures the battery. This ensures proper charging will take place.
[bookmark: _Toc355184990]2.1.4 Power Supply
The power supply takes the 7.4V battery voltage and jumps it down to either 5V or 3.3V. To achieve these two different values, two different buck converters are used. The theoretical duty cycle for the 5V converter is 67.6%. The device was found to work at a smaller duty cycle of 39.2%. It was found in PSpice simulations that the higher the amplitude on the gate signal, the less duty cycle needed to achieve the desired output. The high-side drivers that were used to boost the microcontroller signal significantly boost the 3.3V microcontroller signal to around 9V. These high-side driver signals that go to the gates of the MOSFETs on the converters are square waves. The 3.3V converter had a theoretical duty ratio of 44.6%. It required a duty cycle of 62.7%. This duty cycle needed a higher percentage because the thermoelectric modules were such a demanding load. The 3.3V line supplies power to the thermoelectric modules which need 6 A. This large value dictates the kind of inductor (8111344ND) and MOSFET (IR1310N) that were used. The 5V buck converter powered the USB.

These converters were designed to work in Continuous Conduction Mode (CCM). To achieve this, the following calculations were done to determine the appropriate inductor values.

Buck Converters Inductors Minimums to avoid DCM
			(1)
				(2)
 			(3)
 		(4)
 		(5)

7.4V-5V
 		(6)
 			(7)

 		(8)
 			(9)
 			(10)

7.4V-3.3V

 		(11)
 			(12)

 			(13)
 				(14)
 		(15)
To ensure CCM operation, higher inductor values of 300uH and 100uH were used.

This device is designed to have the capability to both cool and heat beverages. The thermoelectric modules that were purchased are manufactured to cool with positive direction current and heat with negative direction current. In order to take advantage of this phenomenon, a switching circuit was needed. This design uses four MOSFETs, with two high-side drivers.
[bookmark: _Toc355184991]2.2 USB Module
The power supply for the USB Module is the 5V output of the 7.4V to 5V buck converter in the Power Module. This supply consists of two lines (Vcc and GND) that run up the lining of the bag from our main PCB to the USB port. Ideally, these power lines could be connected directly to the USB port power leads. The data pins could then be grounded given the purpose of the USB port is to charge a device, not sync data. However, Apple products require a voltage to be applied to the data pins to simply charge a device. Because of this, a voltage divider circuit was designed to apply the correct voltage to the data pins. The design worked as planned when connected to a power supply in the lab, but preliminary tests showed that the device did not act as a load when connected to the 5V converter (we observed the device acting as a short circuit). To achieve a regulated current draw, a load resistor was placed across the charger, between Vcc and GND.
[bookmark: _Toc355184992]2.3 Display Module
[bookmark: _Toc355184993]2.3.1 Power Supply
The power supply for the display module is made up of two lines, VCC and GND. These lines were ultimately determined to come from the Arduino Due microcontroller. Alternatively, the LCD displays could be powered by either of the other two voltage lines, 5 V or 3.3 V. The decision to use the arduino’s 3.3 V output was decided upon because the entire display would now only need wiring to one component, the arduino. This helps with wiring layout and neatness.
[bookmark: _Toc355184994]2.3.2 Controller
Each display, 2x8 and 4x20, will be completely controlled by the arduino. The arduino will interpret the data received from the temperature and scorecard module and send out the corresponding signals to each display. It was decided to use the 4 bit data transfer scheme of the display library on the arduino. There is an 8 bit data transfer scheme that allows faster transfer rates, but this is more difficult to implement. Since the display only updates when a button is pressed, or when the temperature is updated, this faster transfer system is not needed. Most controllers would work for this application, but the arduino has a built in library that makes character displays quite easy to use.
[bookmark: _Toc355184995]2.3.3 LCD
Low resolution character LCD screens will be used to display the electronic scorecard and temperature information. If a large enough screen was procured, one screen could be used. These larger displays were costly and would be too cluttered to read easily. Thus, two LCDs is a better route due to neatness and ease of programming.
[bookmark: _Toc355184996]2.4 Temperature Module
The Temperature Module is a feedback control system that will allow the user to set a desired temperature for an insulated pocket in the bag, and maintain that temperature through the use of thermoelectric modules.
[bookmark: _Toc355184997]2.4.1 Power Supply
The power supply is a source of power from the Power Module, used by the microcontroller in the Temperature Module. This power will already be regulated to the temperature module’s specifications as it enters the Temperature Module. The MC is run at battery voltage, 7.4 V. The 3.3 V output from the arduino is to be used for the buttons and temperature sensor.
[bookmark: _Toc355184998]2.4.2 User Input
The user input for the Temperature Module will consist of five buttons, shared with the scorecard module, used to set the desired temperature of the pocket (one to increase the temperature and another to decrease it.) Signals from the buttons are sent to the controller to be processed.
[bookmark: _Toc355184999]2.4.3 Temperature Sensor
The DS18B20-PAR+T&R was chosen as the temperature sensor due to its popularity amongst arduino users. Although there were problems implementing this sensor because of the relative newness of our arduino, online forums were able to address the problem. Any kind of temperature sensor could be used in its place, but may be more difficult to implement. The sensor uses the same 3.3V arduino output as the display module.
[bookmark: _Toc355185000]2.4.4 Thermoelectric Modules
The thermal coolers that are used are rated at nine watts. This led to the decision to use only two modules instead of the planned three due to power constraints (see power budget). If power was not a concern, more modules could be used. Any type of coolers would work. These coolers, 03111-5L31-03CG, were chosen because of cost and wattage. The power for these modules is supplied by the 3.3 V output of our 7.4 V to 3.3 V buck converter.
[bookmark: _Toc355185001]2.4.5 Controller
The selected controller, the Arduino Due, will effectively control the temperature. It will control the direction of current flow via gating signals sent to each of the MOSFETs. MOSFETs were determined to be the best component, but relays could work as well. The controller will also interpret button presses to decide how to control the temperature.

[bookmark: _Toc355185002]2.5 ScoreCard Module
[bookmark: _Toc355185003]2.5.1 Power Supply
The scorecard module uses two different voltages as its power sources. It uses the 7.4 V output of the battery to power the microcontroller as well as the 3.3 V output of the arduino to be used as VCC for the buttons. The 3.3 V buck converter could also be used as the buttons’ power source, but it was determined that the arduino’s output is better suited because it is more stable.

[bookmark: _Toc355185004]2.5.2 User Input
The user input for the Scorecard Module is a group of five buttons used to navigate the scorecard and enter in numbers. Signals from the buttons are sent to the controller to be processed.
[bookmark: _Toc355185005]2.5.3 Controller
The arduino was suitable to act as the controller for the scorecard module. It is able to accurately process the inputs from buttons and then create the correct data to be used by the display module. Any microcontroller would be able to create the data used in the scoring algorithm, but the arduino was chosen because of display module requirements.
[bookmark: _Toc355185006]3. Design Details
[bookmark: _Toc355185007]3.1 Power Module
[bookmark: _Toc355185008]3.1.2 Charging Unit
To combine the solar panel output with the charging unit output, a small circuit was required. The commercial charger that was purchased only functions in the range of 18 V to 11 V. On a clear, sunny day the solar panels have an average voltage output of 21 V. To address this problem, a simple 15V voltage regulator (LM340-15) was added into the line to regulate the voltage. Diodes were also placed in line from the solar panels and wall outlet to the charger to ensure there wasn’t any power confliction. Figure 2.1 is a schematic of this circuit. This circuit replaced the 12 V to 7.4V converter that was initially proposed in the design review. It was found to be a smarter design and an easier implementation.

[image:]
Figure 7 Charging Unit Schematic
[bookmark: _Toc355185009]3.1.3 Power Module
For the initial design, Op-Amps were used in the simulations. During construction it was determined that Op-Amps were not a reasonable choice to boost the 3.3V signal from the Microcontroller to run the gate signal on the buck converter MOSFETS. After some research it was determined that High-Side drivers were the appropriate component. The first High-Side driver chosen was IR2117. This driver did not work in the circuit as it was later found that its minimal input signal amplitude to produce logic ‘1’ was 6.4V, and the microcontroller signal is effectively 3.3V. The next high-side driver was IR2301 which had logic ‘1’ amplitude of 2.9V which fit the 3.3V requirement.

Unlike the 5V and 3.3V converter high-side driver signals, which were square waves with duty cycles, the gate signals for the switching circuit are DC signals. They boost the 3.3V DC signal from the microcontroller to around a 9V DC signal.

The 5V converter design can be seen in Figure 8. The 3.3V converter design can be seen in Figure 9 and the switching circuit is shown in Figure 10. A full schematic connecting the 5V converter, the 3.3V converter, and the switching circuit can be seen in Appendix B.

[image:]
Figure 8 5V Buck Converter with High-Side Driver
[image:]
Figure 9 3.3V Buck Converter with High-Side Driver
[image:]

Figure 10 3.3V Switching Circuit with High-Side Drivers
[bookmark: _Toc355185010]3.2 USB Module
[image:]
Figure 11 USB power circuit
USB Operating Voltage: 4.6V - 5.4V
USB Current: 500mA

Max Power: 5.4V*0.5A = 2.7W

D+ and D- are the USB data pins that require power in order to charge our Apple device. A 1kΩ resistor was soldered between Vcc and the data pins to achieve this power (see Figure 11). A 39Ω load resistor was placed on our PCB to allow for the converter to "see" the USB port as a load. As seen by the simple calculations above, the USB port should draw no more than 2.7W assuming our converters are operating within specifications. This lead us to use a load resistor rated at 3W.

[bookmark: _Toc355185011]3.3 Display Module
[bookmark: _Toc355185012]3.3.1 Power Supply
As stated in 2.3.1, the power needed by the LCDs is supplied by the 3.3 V output from the Arduino Due. The 7.4 V battery voltage is used to power the arduino.
[bookmark: _Toc355185013]3.3.2 Controller
The display module makes extensive use of the LiquidCrystal.h library found on all arduino boards. This library asks for six data inputs, RS, Enable, and the four data lines mentioned in the 2.3.2. This means that 12 digital pins are used to send data to both of the LCDs. The 2x8 LCD receives data from pins 22 through 27. Pins 30 through 35 are used by the 4x20 LCD. The controller updates the LCDs during two situations. Whenever a button is pressed, both the 4x20 and 2x8 LCDs are updated. Whenever the pouch’s temperature is read, only the 2x8 LCD is updated. This scheme stops the LCDs from needlessly updating, keeping the screens readable and saving power.
[bookmark: _Toc355185014]3.3.3 LCD
Each LCD has 16 pins in total. These pins are VCC, GND, V0 (contrast), RS, RW, Enable, eight data pins, and V+ and V- pins for the LED backlight. VCC and V+ are both connected to the 3.3 V output of the arduino. GND, V-, V0, and RW, are all connected to the GND output from the arduino. This sets the display to “write” mode at all times, and sets the maximum contrast within the LCD. The other six pins are connected to their respective arduino outputs (22 through 27 or 30 through 35). Every connection can be seen within the arduino pin-out, seen in Appendix B, Figure 20.
[bookmark: _Toc355185015] 3.4 Temperature Module
Although the temperature module is always running, the user is only interacting with it when lcdchange is set to HIGH.
[bookmark: _Toc355185016]3.4.1 Power Supply
The temperature module, like the display module, uses two different sources for power. The controller uses the 7.4 V battery voltage and the peltier coolers use the 3.3 V output of a buck converter.
[bookmark: _Toc355185017]3.4.2 User Input
The user input for the temperature module is also the user input for the scorecard module. It consists of five tactile switches that are connected to pins 42 through 46. The button layout can be seen in Figure 12. Each button press is read by the arduino, setting off a rising-edged triggered chain of events that acts as a debouncer. If the microcontroller is in the correct state, the up and down buttons serve as ways to change the desired temperature; increasing or decreasing the temperature by 5⁰ Fahrenheit, respectively.
 (
TAB
RESET
UP
ENTER
DOWN
)

Figure 12 Button Layout
[bookmark: _Toc355185018]3.4.3 Temperature Sensor
The DS18B20-PAR+T&R acts as an analog to digital converter in that it converts the temperature to a 16 bit digital signal that is sent to pin 50 of the arduino. Pin two of the sensor acts as the data out pin, with pins one and three both grounded. Normally, pin one would be connected to VCC, but this particular model works off of parasitic power. Thus, a 4.7 kΩ resistor is connected between the data line, pin two, and the 3.3 V line from the arduino. This resistor specification comes from the manufacturer.
[bookmark: _Toc355185019]3.4.4 Thermoelectric Modules
The thermoelectric modules act as heaters or coolers depending on the direction of current through the modules. This direction of current is controlled by a group of 4 MOSFETs. These modules are connected to the 3.3 V buck converter’s output by way of these MOSFETs. The gating signals of these MOSFETs come from pins 52 and 53 of the arduino. When cooling, pin 52 goes to HIGH and 53 goes LOW. When warming, pin 52 goes LOW and pin 53 goes HIGH. To better understand the current flow, see Appendix B, Figure 21.
[bookmark: _Toc354911252][bookmark: _Toc355185020]3.4.5 Controller
The arduino acts as a thermostat in this module. Pin 50 is connected to the data output of the temperature sensor. Through the code, seen in Appendix F, the arduino is able to interpret the 16 bit output of the sensor and convert it to degrees Fahrenheit, which will then be displayed via display module. The controller also reads the user input via buttons (pins 42 through 46) and sets the desired pouch temperature. If in the correct editing zone, when lcdchange= HIGH and enterstate=HIGH, the up and down buttons will change temperature as described in 3.4.2. This set temperature is then compared to the current pouch temperature. If the pouch is outside of ±3⁰ Fahrenheit, the controller will set pins 52 and 53 to control the direction of current through the peltiers. When cooling, pin 52 is set to HIGH and 53 is set to LOW. When warming, pin 52 is LOW and pin 53 is HIGH. If the reset button is pressed, the temperature will be reset to 70⁰ Fahrenheit and the user will be switched back to the scorecard module with lcdchange=LOW and enterstate=HIGH. While controlling the modules, the controller also sends out data to the 2x8 LCD to show the current total, and temperature. The layout can be seen in Figure 13. The only time the set temperature is shown is when it is being edited, prefixed by a “*” symbol. Pressing tab while editing the temperature switches lcdchange to LOW, meaning the user is now within the scorecard module. See Appendix C, Figure 23 for a detailed flowchart of the logic used.
[bookmark: _Toc354911253][bookmark: _Toc355185021]3.5 Scorecard Module
The user is within the scorecard module portion of the arduino whenever lcdchange is set to LOW, which is the default.
[bookmark: _Toc354911254][bookmark: _Toc355185022]3.5.1 Power Supply
The scorecard module uses the battery voltage, 7.4 V, to power the arduino, which in turn powers the buttons via 3.3 V output.
[bookmark: _Toc354911255][bookmark: _Toc355185023]3.5.2 User Input
The user input for the temperature module is also the user input for the scorecard module. It consists of five tactile switches that are connected to pins 42 through 46. Each button press is read by the arduino, setting off a rising-edged triggered chain of events that acts as a debouncer. Depending on the current state of the controller, the user is able to use the up and down buttons to adjust what hole is to be edited, or the score of the current hole selection.
[bookmark: _Toc354911256][bookmark: _Toc355185024]3.5.3 Controller
The controller acts as the overall digital scorekeeper. It uses the user inputs to determine current scores. This is done by setting up a score array that has 18 cells, a cell for each hole on a course, and a total value that is the sum of all cells. At the start of the game, each cell has a zero as the score. Data to create a grid on the 4x20 LCD is then sent to the display module, seen in Figure 13. At this point, there is an arrow next to the holes to show that the user is currently using the scorecard module, and editing the hole number. This is and indicator that lcdchange is LOW and enterstate is LOW. When a user wants to edit the score, they will press enter, switching enterstate to HIGH. The arrow that was pointing to holes will now be pointing to the score row. High signals from the up and down buttons will then be used to alter the score of the hole. Whenever the score is updated, new information is sent to the display module to make sure both LCDs reflect the changes immediately. Once the user finishes editing the score, they can press enter again, moving back to hole editing mode, and use up and down to select a new hole. Should the user press reset, all scores will be set to zero, changing the total to zero, the cursor will return to the first hole, and lcdchange and enterstate will be set to LOW.

	 (
j
i
)H
	:
	
	1
	
	2
	
	3
	
	4
	
	5
	
	6
	
	7
	
	8
	
	9

	S
	:
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	H
	:
	1
	0
	1
	1
	1
	2
	1
	3
	1
	4
	1
	5
	1
	6
	1
	7
	1
	8

	S
	:
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	T
	O
	T
	
	T
	E
	M
	P

	X
	X
	X
	
	
	X
	X
	F

Figure 13 LCD layouts
[bookmark: _Toc355185025][bookmark: _GoBack]4. Design Verification
[bookmark: _Toc355185026]4.1 Power Module
For the power module to function properly three high-level tests need to succeed. The first test is ensuring that the commercial charger that was purchased powers on when connected to either a wall outlet or the solar panels. The wall outlet scenario is an easy test, the charger was plugged into the wall and successfully power on and charged the battery to 7.4V. To test that the solar panels worked, the device was brought outside and set under the sun. The charger turned on and successfully charged the 7.4V battery.
The second and third tests are to verify that the converters output either 5V or 3.3V. This can be verified by connecting the VCC inputs on the PCB to the 7.4V battery and monitoring the outputs with a differential probe connected to an oscilloscope. A differential probe is preferred as the 3.3V thermoelectric modules have a relative ground as its current direction is switched depending on whether they are designated to heat or cool. All three tests proved to be successful, as can be seen in Figures 14 and 15.
[image:]
Figure 14 3.3V Converter Gating Signal (channel 1) and Output (channel 4)
[image:]
Figure 15 5V Converter Gating Signal (channel 3) and Output (channel 4)
[bookmark: _Toc355185027]4.2 USB Module
For the USB module to be working correctly the only test is to plug in a USB charger and to charge a device such as a cell phone, iPod, or MP3 player. When the battery is powering the 5V converter it is successfully powering an iPod.
[image:]
Figure 16 Charging a USB Device

[bookmark: _Toc355185028]4.3 Display Module
There are two verifications that must succeed to ensure the display module is working properly. The first is that when power is connected, the backlights turn on. This can be easily confirmed when the power switch it turned on. The second test is that it clearly displays the proper image designated by the microcontroller. For the 4x20 display this means it properly displays the scorecard grid which can be confirmed by inspection. The 2x8 LCD should correctly display the total score as well as the temperature reading. This also can be confirmed upon visual inspection. Both requirements were successful. Figure 17 contains an image of the working LCDs.
		[image:]

Figure 17 LCDs Displaying Appropriate Information
[bookmark: _Toc355185029] 4.4 Scorecard Module
The scorecard module has two high-level requirements that must prove successful. The first is the LCD image must navigate properly when the buttons are pressed on the user interface. This was tested by traversing the scorecard and adding strokes to different holes on the 4x20 LCD. The second test is that the 2x8 LCD simultaneously updates the total score to match the 4x20 LCD. Both tests were successful.
[bookmark: _Toc355185030]4.5 Temperature Module
For the Temperature Module to perform correctly three main tests must succeed. The first test is that when the temperature is set through the user interface, the thermoelectric modules act accordingly. This was confirmed by setting the temperature to either 80 degrees or 45 degrees and feeling the thermoelectric modules to see if they either heated or cooled. A separate temperature probe was also used to determine if the thermoelectric modules were working. It was found that the heat mode works perfectly, registering the correct 80 degrees. It was found that the cool mode did not perform as expected. It failed to reach 45 degrees. This is because one of the two thermoelectric modules broke while testing the heat mode during previous sessions. The thermoelectric modules are supposed to provide a 50 degree differential. This was tested with two temperature probes and results are offered in Figure 18. It is clear that this test was passed.
 The second test is to confirm that the temperature sensor in the bag read the correct temperature when compared to a separate temperature probe. This test was successful as seen in figure 19.
The last test is to ensure proper heat dissipation. This can be confirmed by ensuring the thermoelectric modules operate at high temperature. One of the modules did break as a result of its heat sink not being properly attached. Once this was addressed heat dissipation proved to be successful.

[image:][image:]

Figure 18 50⁰F Temperature Differential

[image:][image:]

Figure 19 Temperature Sensor Output Compared to Temperature Probe

[bookmark: _Toc355185031]5. Cost
The total cost of our project is $38,881.94; $631.94 for parts and $38,250 for labor. See sections 5.1 and 5.2 for details.
[bookmark: _Toc355185032]5.1 Parts
	Item
	Quantity
	Unit Cost ($)
	Cost ($)

	Arduino Due Board
 (1050-1049-ND)
	1
	50.57
	50.57

	4X20 CHAR LCD GRY
(NHD-0420H1Z-FSW-GBW-33V3)
	1
	18.75
	18.75

	2X8 CHAR LCD GRY
(NHD-0208BZ-FSW-GBW-33V3-ND)
	1
	10.10
	10.10

	StarTech 6in USB 2.0 Cable
(USBMBADAPT)
	1
	3.39
	3.39

	Thermoelectric/Peltier Module
(03111-5L31-03CG)
	2
	$16.50
	33.00

	Instapark 20W Solar Power Panel
(SP-20)
	1
	64.25
	64.25

	Instapark 10W Solar Power Panel
(SP-10)
	1
	39.95
	39.95

	Gen Ace 120V to 7.4V adaptor
(98P-Adaptor)
	1
	17.66
	17.66

	1N4005 Diode
	8
	0.20
	1.20

	Golf Bag
	1
	20.00
	20.00

	NMos Transistor (IRF1310N)
	6
	1.57
	9.42

	Metal Rack
	1
	100.00
	100.00

	Resistors, Capacitors, and Inductors
	-
	40.00
	40.00

	PCB
	2
	40.00
	80.00

	Temperature Sensor (DS18B20-PAR+T&R)
	1
	4.51
	4.51

	Red Tactile switch (1825910-7)
	5
	0.10
	0.50

	Rocker Switch Switch (RD221-MB-B-0-N)
	1
	1.61
	1.61

	Turnigy nano-tech 10000mah 2S 40~80C Lipo Pack (TRA2854 Stampede/Rustler/Bandit compatible) (USA)
	1
	60.98
	60.98

	Turnigy Accucel-6 50W 6A Balancer/Charger w/ accessories (USA Warehouse)
	1
	24.07
	24.07

	IR2301 High Side Driver
	5
	4.61
	23.05

	Heat Sink System
	2
	9.27
	18.54

	Insulated Lunch Bag
	1
	5.19
	5.19

	Traxxas to XT-60 male-male adapter
	1
	5.20
	5.20

	Total Parts
	$631.94

[bookmark: _Toc355185033]5.2 Labor
	Name
	Hourly Rate
	Total Hours Invested
	Total = Hourly Rate x 2.5 x Total Hours Invested

	Cory Edwards
	$30.00
	170
	$12,750

	Jon Kinney
	$30.00
	170
	$12,750

	Harrison Kantner
	$30.00
	170
	$12,750

	Total Labor
	
	510
	$38,250

[bookmark: _Toc354913855]
[bookmark: _Toc355185034]6. Conclusion
[bookmark: _Toc354913856][bookmark: _Toc355185035]6.1 Accomplishments
We are very pleased with the end product of our project; nearly all goals were accomplished. The electric golf bag is fully self-sustainable due to solar panels that are easily attached to the bag. The power generated by the panels is properly scaled and split between a temperature regulation system that allows for heating and cooling, a digital scorecard, and a USB port. Finally, if the weather forecast is cloudy the bag is capable of being charged via a wall outlet and supplying power for over three hours on a single charge. This should be long enough for the average golfer to finish a round. The only components that do not function as well as expected are the peltier modules when cooling.
[bookmark: _Toc354913857][bookmark: _Toc355185036]6.2 Uncertainties
The only uncertainty with our project is the capability of the peltier modules. We were unable to fully test cooling the insulated pouch before one of our peltier modules disconnected from its heat sink and burnt up in seconds. With one module running, we are able to heat the pouch as expected. However, we are unable to cool down to temperatures as low as 35⁰F-45⁰F with a single cooler. Given more time, we could order more coolers and test the cooling capabilities of multiple units.
[bookmark: _Toc354913858][bookmark: _Toc355185037]6.3 Ethical Considerations (from IEEE code of ethics)
1. "To accept responsibility in making decisions consistent with the safety, health, and welfare of the public, and to disclose promptly factors that might endanger the public or the environment"

In achieving functionality, we will design our product with the welfare of its users in mind.

3. "To be honest and realistic in stating claims or estimates based on available data"

We will ensure to the best of our ability that all calculations are accurate and simulations are realistic. All experimental claims will be supported by such calculations and simulations in order to provide honest data.

6. "To maintain and improve our technical competence and to undertake technological tasks for others only if qualified by training or experience, or after full disclosure of pertinent limitations"

We will strive to create a safe, working product by applying the knowledge and experience of all group members. Similarly, we understand our limitations and will not allow them to compromise the well-being of others.

7. "To seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit properly the contributions of others"

Within the group, we will communicate our ideas, provide feedback, and accept criticism with an open mind. All members will act towards accomplishing a common goal of bettering the quality of our project. Information collected for outside sources will be properly credited.

[bookmark: _Toc354913859][bookmark: _Toc355185038]6.4 Safety
As designers, it is our responsibility to provide a product that does not compromise the safety of its users when operated properly. Our project contains circuitry that drives potentially dangerous power levels. Therefore, these circuits will be isolated such that no components are exposed to the user. Similarly, our product may be used under non-ideal circumstances. While we encourage careful behavior, we understand that the product may be left outside for long periods of time or dropped. Our design must not be affected by weather or unintentional user error. Our design also involves thermoelectric cooling/heating modules. The modules operate by creating a temperature differential across the plates of the devices (up to 72⁰C.) When running the temperature system at cold temperatures, the eternal plates will heat up. These plates cannot be exposed and the heat will be vented to avoid harm to the user.

When building our product, we must consider these hazards and apply our knowledge of lab safety procedures. It is the user's responsibility to understand the risks involved with improper use of this product. Altering circuit elements or reckless behavior can negate all safety provisions made by the designer.

The following are safety tips for working with lithium polymer batteries, compiled from those written by Jim McPherson:

1. Use only a charger approved for lithium batteries.

2. Make certain that the correct cell count is set on your charger. Watch the charger very closely for the first few minutes to ensure that the correct cell count continues to be displayed.

3. Use the Taps. Before you charge a new Lithium pack, check the voltage of each cell individually. Then do this after every tenth cycle. This is absolutely critical in that an unbalanced pack can explode while charging even if the correct cell count is chosen.

4. NEVER charge the batteries unattended.

5. DO NOT puncture the cell, ever. If a cell balloons quickly place it in a fire safe place, especially if you were charging it when it ballooned. After you have let the cell sit in the fire safe place for at least 2 hours, discharge the cell/pack slowly.

If you drop your lithium cells they may be damaged such that they are shorted inside. The cells may look just fine. If you drop them in any way, carefully remove the battery pack from the system and watch it carefully for at least the next 20 minutes.
[bookmark: _Toc354913860][bookmark: _Toc355185039]6.5 Future work
Moving forward, we would focus primarily on improving the hardware and mechanical aspects of the project. The housing of our LCDs, arduino, and interface PCB could have been made much cleaner. Ideally we would house everything in an acrylic box more securely mounted to the bag. Similarly, we would clean up the wiring inside of the bag.

Mechanically we would adjust the setup of our peltier coolers. We need to add more in order to provide the cooling capabilities hypothesized in the design review. Another option is to experiment with placement of the coolers throughout the bag. More contact area between the heat sinks and beverages would result in better temperature differentials.

The main electrical improvement is to work towards more efficient circuits. For example, instead of using a voltage regulator (which dissipates quite a bit of power) between the solar panels and battery charger, we could use a buck-boost converter with feedback. The feedback would tell the converter to either increase or decrease the output voltage to 15V based upon the solar panel open circuit voltage. This would also allow for greater control of the output voltage.

[bookmark: _Toc354913861][bookmark: _Toc355185040]References

"03111-5L31-03CG TEC Specifications." 03111-5L31-03CG. N.p., n.d. Web. 17 Feb. 2013.

"Arduino Digital Temperature Sensor Tutorial." Hacktronics. N.p., n.d. Web. 24 Feb. 2013.

"Arduino Due." Arduino. N.p., n.d. Web. 24 Feb. 2013.

Ardumania.es. N.p., n.d. Web.

Brain, Marshall. "How Microcontrollers Work." HowStuffWorks. N.p., n.d. Web. 10 Feb. 2013.

"GENS ACE 10000mAh 7.4V 40C HardCase Lipo Battery." GENS ACE 10000mAh 7.4V 40C HardCase Lipo Battery (Direct). N.p., n.d. Web. 10 Feb. 2013.

"How to Interface Graphics LCD with 8051 Microcontroller (AT89C52)." EngineersGarage. N.p., n.d. Web. 10 Feb. 2013.

"IEEE Code of Ethics." IEEE - Advancing Technology for Humanity. N.p., n.d. Web. 18 Feb. 2013.

Krein, Philip T. Elements of Power Electronics. New York: Oxford UP, 1998. Print.

Ladyada. "Character LCDs for Use with Arduino." Adafruit Learning System. N.p., n.d. Web. 24 Feb. 2013.

McPherson, Jim. "Images." RC Groups RSS. N.p., 20 Sept. 2003. Web. 25 Apr. 2013.

"NHD-0208BZ-FSW-GBW-33V3." Digikey.com. N.p., n.d. Web.

"NHD-0420H1Z-FSW-GBW-33V3." Digikey.com. N.p., n.d. Web.

"StarTech USBMBADAPT Spec Sheet." StarTech.com. N.p., n.d. Web. 17 Feb. 2013.

[bookmark: _Toc354911269][bookmark: _Toc355185041]Appendix A: Requirement and Verification Table
[bookmark: _Toc355185042]A.1: Power Module Requirements and Verifications

	Requirements
	Verification
	Pass/Fail

	Main Solar Module:
1) Main solar panel open circuit voltage is near rated value when operating outside under typical golf conditions

2) Solar panel voltage is reduced to battery charger voltage

Wall Source:
1) Wall adapter properly converts wall AC voltage to battery DC voltage

Battery:
1. Open circuit voltage is near rated value when powered by the main solar panel operating outside under typical golf conditions.
1. Open circuit voltage is near rated value when powered by the wall outlet.
2. A/C wall signal is full wave rectified to ensure proper charging capacity

1. Ensure stable battery operating when connected to both the main solar panel and wall source

5V Power Supply:
1) Battery voltage is reduced to necessary module voltage

a. High-side driver amplifies gating signal

b. Converter gate switches at necessary frequency with correct duty ratio.

3.3V Power Supply:
1) Battery voltage is reduced to necessary module voltage

a. High-side driver amplifies gating signal

b. Converter gate switches at necessary frequency with correct duty ratio.

	Main Solar Panel:
1) Verify open circuit voltage is 22V +/- 10% under bright sun light using a DMM

2) Verify that solar panel voltage is reduced from the 20V open circuit voltage to 15V +/- 25% under the load of the battery charger

Wall Source:
1) Verify adapter open circuit voltage is 12V +/- 5% DC

Battery:
1. Verify open circuit voltage is 7.4V +/- 5% using a DMM

1. Verify open circuit voltage is 7.4V +/- 5% using a DMM
1. An oscilloscope across the rectifier output yields a full wave signal

1. Charge battery outside using the main solar panel under typical golf conditions. Simultaneously charge the battery with the wall source rectifier. Confirm voltage does not exceed 7.4V +10%

5V Power Supply:
1) Verify that the battery voltage is converted down from 7.4 V to 5 V +/- 10% under the load of the buck converter
a. Verify that the output voltage is 8.8V +/- 10% using a 3.3 V DC source input and differential voltage probe across the output

b. With an 8kHz, 39.2% duty cycle square wave (created by function generator) applied to the gate of our IRFZ20, use an oscilloscope to monitor drain voltage

3.3V Power Supply:
1) Verify that the battery voltage is converted down from 7.4 V to 3.3 V +/- 10% under the load of the buck converter
a. Verify that the output voltage is 8.8V +/- 10% using a 3.3 V DC source input and differential voltage probe across the output

b. With an 8kHz, 62.7% duty cycle square wave (created by function generator) applied to the gate of our IRFZ20, use an oscilloscope to monitor drain voltage
	Main Solar Panel:
1) Pass

2) Pass

Wall Source:
1) Pass

Battery:
1) Pass

2) Pass

3) Pass

5V Power Supply:
1) Pass

3.3V Power Supply:
1) Pass

[bookmark: _Toc355185043]A.2: USB Module Requirements and Verifications

	Requirements
	Verifications
	Pass/Fail

	USB Port:
1) USB port must be able to power all USB devices
a. USB leads must have rated voltage across leads

	USB Port:
1) Plug in a USB device to see if it charges
a. Use DMM to perform continuity test and measure the voltage supplied to USB leads to verify 5V +/- 10%

	USB Port:
1) Pass

[bookmark: _Toc355185044]A.3: Scorecard Module Requirements and Verifications

	Requirements
	Verifications
	Pass/Fail

	Controller:
1) Bug-free software
2. Displays constant scorecard images

2. Toggle between “move mode” and “write mode”

2. Able to change score in “write mode”

2. Scorecard keeps running total

2. Scores are cleared and cursor position moves back to hole 1 when Reset is pressed twice

	Controller:
1) Test scorecard program
a. Confirm image upon startup

b. Press enter to switch between modes

c. Set to “write mode” and use up/down buttons to change score

d. Enter multiple hole scores and verify that sum is updating correctly each time

e. Press reset after adding in scores
	Controller:
1) Pass

[bookmark: _Toc355185045]A.4: Temperature Module Requirements and Verifications

	Requirements
	Verifications
	Pass/Fail

	Temperature Sensor:
1) DS18B20-PAR outputs a 16-bit temperature

Controller:
1) Must be able to accurately interpret the data received from DS18B20-PAR temperature sensor.

2) Receives and interprets key presses regarding temperature

3) Sends correct output signals to Thermoelectric Modules

a. Cools pouch when lower temperature is set

b. Warms pouch when higher temperature is set

Thermoelectric Modules:
1. Ensure that proper regulated voltage is supplied to the modules

1. Temperature differential is consistent based on ambient temperature

1. When current direction is changed modules switch from heating to cooling

1. Heat by-product dissipates safely

	Temperature Sensor:
1) Check the DS18B20-PAR output for non-zero data using oscilloscope. (square wave)

Controller:
1) Compare the temperature reading from our DS18B20-PAR to another thermocouple

2) Use DMM to measure that a signal is sent when a key is pressed. Verify that temperature on display changes.

3) Use DMM to verify that controller outputs gating signals to Thermo Module MOSFET gates
a. Set a temperature that is colder than pouch temperature and use oscilloscope to verify “cold” signal goes high

b. Set a temperature that is colder than pouch temperature and use oscilloscope to verify “heat” signal goes high.

Thermoelectric Modules:
1) Verify supply voltage to thermoelectric modules is 3.3V +/- 10% using DMM

2) Measure temperature across the thermoelectric plates using temperature probe. Ensure difference is greater than 50°F

3) Switch control MOSFETs to change current direction. Use a temperature probe to verify temperature change on thermoelectric plates

4) Measure the air temperature immediately outside of the pocket. Confirm that air temperature is < 160⁰
	Temperature Sensor:
1) Pass

Controller:
1) Pass

2) Pass

3) Pass

Thermoelectric Modules:
1) Pass

2) Pass

3) Pass

4) Pass

[bookmark: _Toc355185046]A.5: Display Requirements and Verifications

	Requirements
	Verifications
	Pass/Fail

	Display:
1. 4x20 display turns on when given supply voltage (NHD-0420H1Z-FSW-GBW-33V3)
a. Backlight operates

1. 2x8 display turns on when given supply voltage (NHD-0208BZ-FSW-GBW-33V3-ND)
1. Backlight operates

Controller:
1. 4x20 LCD (NHD-0420H1Z-FSW-GBW-33V3) displays correct images sent from the Arduino
1. LCD updates image when controller reads new user input

1. 2x8 LCD (NHD-0208BZ-FSW-GBW-33V3-ND) displays correct images sent from the Arduino
1. LCD updates image when controller reads new user input
	Display:
1) Input voltage to the NHD-0420H1Z-FSW-GBW-33V3 display is 5V
a. Verify when Pin 15 is connected to 3.3V the screen illuminates

2) Input voltage to the NHD-0208BZ-FSW-GBW-33V3-ND display is 5V
a. Verify when Pin 15 is connected to 3.3V the screen illuminates

Controller:
1) Send test code to display (NHD-0420H1Z-FSW-GBW-33V3) and confirm image

a. User inputs request and confirm that change was made to display

2) Confirm image Send test code to display (NHD-0208BZ-FSW-GBW-33V3-ND)

a. User inputs request and confirm that change was made to display
	Display:
1) Pass

2) Pass

Controller:
1) Pass

2) Pass

[bookmark: _Toc355185047]Appendix B: Schematics
Figure 10: Full Power Circuit

[image:]

Figure 20 Controller Pinout

[image:]

[bookmark: _Toc354911270]Figure 21 Full Power Module Schematic
[image:]

Figure 22 Interface PCB Schematic and Layout

[bookmark: _Toc355185048]Appendix C: Flowcharts
[image:]

Figure 23 Temperature Module Flowchart

Abbreviations for Scorecard Flowchart:
R = Reset
U = Up button pressed
D = Down button pressed
E = Enter button pressed
i = Cursor i position (1:4)
j = Cursor j position (1:20)
Sij = Score at position i,j (1:9)

[image:]

Figure 24 Scorecard Module Flowchart
[bookmark: _Toc355185049]Appendix D: Pictures

[image:]

Figure 25 Top-Down Arduino Due Board (1050-1049-ND) [Ardumania]
[image:]
Figure 26 Top-Down 4x20 Display (NHD-0420H1Z-FSW-GBW-33V3) [Digikey]

[image:]
Figure 27 Top-Down 2x8 Display (NHD-0208BZ-FSW-GBW-33V3-ND) [Digikey]

[bookmark: _Toc355185050]Appendix E: Solar Panel System
[image:][image:]

Figure 28 Solar Panel Dimensions

[image:][image:]

Figure 29 Solar Panels with Fabricated Rack and Charging Unit

[bookmark: _Toc355185051]Appendix F: Microcontoller Code

//Final
#include <OneWire.h>
#include <LiquidCrystal.h>

// DutyCycle Connections:
// G1 (Gate of 5V converter) to Arduino pin 6
// G2 (Gate of 3.6V converter)to Arduino pin 7
// G3 (Gate of Solar to bat converter) to Arduino pin 8

//TempSense Connections
// rs (LCD pin 4) to Arduino pin 22
// rw (LCD pin 5) to Arduino pin 11 Ground
// enable (LCD pin 6) to Arduino pin 23
// LCD pin 15 to Arduino pin 13
// LCD pins d4, d5, d6, d7 to Arduino pins 24, 25, 26, 27

//ScoreCard Connections:
// Enter (button) to Arduino Pin 42
// Reset (button) to Arduino Pin 43
// Tab (button) to Arduino Pin 44
// Up (button) to Arduino Pin 45
// Down (button) to Arduino Pin 46
// rs (LCD pin 4) to Arduino pin 30
// rw (LCD pin 5) to Arduino pin 11 Ground
// enable (LCD pin 6) to Arduino pin 31
// LCD pin 15 to Arduino pin 13
// LCD pins d4, d5, d6, d7 to Arduino pins 32, 33, 34, 35

//Duty Cycle Stuff:
int G1 = 9; //connected to PWM pin 6
int G2 = 8; //connected to PWM pin 7
int G3 = 5; //connected to PWM pin 8

//TempSens Stuff:
LiquidCrystal lcd(22, 23, 24, 25, 26, 27);
int backLight = 13; // pin 13 will control the backlight NO! just use potentiometer
volatile int temp; // temperature to set to
volatile int cool = 52; //peltier cooling gate signal
volatile int heat = 53; //peltier heating gate signal
volatile int MAX; //upper limit of temp control
volatile int MIN; //lower limit of temp control
volatile int hotcold = LOW; //determines if cooler was heating or cooling
volatile int choice = LOW; //used for first check to see if heating up or cooling down.
volatile int enterstate = LOW;
long tracker = 0;
long screener = 0;
volatile int lcdchange = LOW;
OneWire ds(50); // ds18b20 pin #2 (middle pin) to Arduino pin 50

byte i;
byte present = 0;
byte data[12];
byte addr[8];

int HighByte, LowByte, SignBit, Whole, Fract, TReading, Tc_100, FWhole;
float celsius, fahrenheit;

//Scorecard Stuff:
LiquidCrystal lcdb(30, 31, 32, 33, 34, 35);
int Total; // total score
volatile int Scores[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; //array holding scores
//volatile int lcdchange = LOW; // holds value to determine if altering score (LOW) or temp (HIGH) displays
//volatile int enterstate = LOW; // holds value to determine if changing hole (LOWS) or score/temp (HIGH)
volatile int hole; // holds number of hole to edit
//volatile int temp; // temperature to set to in Far
volatile int doubletap = LOW; // needed to safely reset
volatile int j;
//volatile int MAX; //temp control upper limit
//volatile int MIN; //temp control lower limit
//volatile int choice;
int reading;
int checker;
int previousE, previousR, previousT, previousU, previousD;

const int Enter = 42; //NOTE THAT THESE ARE DIFFERENT THAN ORIGINAL SCHEMATIC
const int Reset = 43;
const int Tab = 44;
const int Up = 45;
const int Down = 46;

void setup()
 {
 //DutyCycle Setup
 pinMode(G1, OUTPUT); //sets pins as output
 pinMode(G2, OUTPUT);
 pinMode(G3, OUTPUT);

 //Duty cycle Loop
 analogWrite(G1, 100); //creates square wave to make 5.0V from 7.4V
 PWMC_ConfigureClocks(8000 * PWM_MAX_DUTY_CYCLE , 0, VARIANT_MCK);
 analogWrite(G2, 160); //creates square wave to make 3.3V from 7.4V
 PWMC_ConfigureClocks(8000 * PWM_MAX_DUTY_CYCLE , 0, VARIANT_MCK);
 analogWrite(G3, 111); //creates square wave to make 7.4V from 18V
 PWMC_ConfigureClocks(8000 * PWM_MAX_DUTY_CYCLE , 0, VARIANT_MCK);

 //TempSense Setup
 lcd.begin(2,8); //sets up 4x20 lcd parameters
 lcd.setCursor(0,0); //places cursor at start
 randomSeed(analogRead(60));
 pinMode(cool, OUTPUT);
 pinMode(heat, OUTPUT);
 tracker = 490000;

 //ScoreCard Setup
 pinMode(Enter, INPUT); //Designate buttons as inputs
 pinMode(Reset, INPUT);
 pinMode(Tab, INPUT);
 pinMode(Up, INPUT);
 pinMode(Down, INPUT);

 lcdb.begin(4,20); //sets up 4x20 lcd parameters
 lcd.setCursor(0,0); //places cursor at start
 temp = 70;
 printScore();

 // attachInterrupt(42, changeState , FALLING);
 // attachInterrupt(43, FullReset , FALLING);
 // attachInterrupt(44, changeDisplay , FALLING);
 // attachInterrupt(45, uppress , FALLING);
 // attachInterrupt(46, downpress , FALLING);
 }

 //TempSens Functions
void getTemp() {
 byte i;
 byte present = 0;
 byte data[12];

 ds.reset();
 ds.skip();
 ds.write(0x44, 1); // start conversion, with parasite power on at the end

 //delay(500);
 delay(1000);

 Start: // Used by Error Handler
 present = ds.reset();
 ds.skip();
 ds.write(0xBE); // Read Scratchpad
 for (i = 0; i < 9; i++) {
 data[i] = ds.read();
 }

 if(OneWire::crc8(data, 8)==0xC9) start:; // Error Handler: Misread Detector

 int16_t raw = (data[1] << 8) | data[0];
 celsius = (float)raw / 16.0;
 fahrenheit = celsius * 1.8 + 32.0;

 }

void printTemp(void) {
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("TOT TEMP");
 lcd.setCursor(0,1);
 lcd.print(Total);

 lcd.setCursor(3,1);
 if (SignBit) {
 lcd.print(" ");
 }
 if (lcdchange == HIGH) //This if statement alters between displaying the Actual Temperature
 { //and the desired Temp. It only shows desired temp when they are in
 if (enterstate == HIGH) //the correct spot to edit Temp. We can remove if you don't like idea
 {lcd.write(0x2a);
 lcd.print(temp);}
 else
 {lcd.print(" ");
 lcd.print(fahrenheit);}
 }
 else
 {lcd.print(fahrenheit);}
 lcd.print("F");
}

void tempcontrolchoice(void) //figures out if trying to heat or cool pouch
 {
 //MAX = temp + 3;
 //MIN = temp - 3;
 if(fahrenheit > MAX) //sets the pouch to warming and states
 { //a choice has been made.
 digitalWrite(heat, LOW);
 digitalWrite(cool, HIGH);
 hotcold = LOW;
 choice = HIGH;
 }
 else if (fahrenheit < MIN) //sets the pouch to warming and states
 { //a choice has been made.
 digitalWrite(cool, LOW);
 digitalWrite(heat, HIGH);
 hotcold = HIGH;
 choice = HIGH;
 }
 else
 {digitalWrite(cool, LOW);
 digitalWrite(heat, LOW);
 choice = LOW;
 }
 }

void tempcontrol(void) //determines overall temp control
 {
 if(hotcold == LOW) //means the pouch is cooling
 {
 if(fahrenheit > MAX) //start cooling if 3 F over desired temp
 {digitalWrite(heat, LOW);
 digitalWrite(cool, HIGH);}
 else if (fahrenheit < MIN) //Stop cooling if 3F below desired temp
 {digitalWrite(heat, LOW);
 digitalWrite(cool, LOW);}
 }

 else if(hotcold == HIGH) //means pouch is warming
 {
 if(fahrenheit < MIN) //opposite of cooling above
 {digitalWrite(cool, LOW);
 digitalWrite(heat, HIGH);}
 else if(fahrenheit > MAX)
 {digitalWrite(cool, LOW);
 digitalWrite(heat, LOW);}
 }
 }

//ScoreCard Functions
void printScore(void)
 {
 lcdb.clear();

 lcdb.setCursor(0,0); // Row 1
 if(lcdchange == LOW)
 {
 if(enterstate == LOW)
 {lcdb.write(0x7e);
 lcdb.print(": 1 2 3 4 5 6 7 8 9");}
 else if(enterstate == HIGH)
 {lcdb.print("H: 1 2 3 4 5 6 7 8 9");}
 }
 else
 {lcdb.print("H: 1 2 3 4 5 6 7 8 9");}

 lcdb.setCursor(0,1); // Row 2 long because cannot link characters with array values.
 if(lcdchange == LOW)
 {
 if(enterstate == HIGH)
 {lcdb.write(0x7e);
 lcdb.print(": ");}
 else
 {lcdb.print("S: ");}
 }
 else
 {lcdb.print("S:");}
 //lcdb.print("S: "); // All it does is put in a score then a space.
 lcdb.print(Scores[0]);
 lcdb.print(" ");
 lcdb.print(Scores[1]);
 lcdb.print(" ");
 lcdb.print(Scores[2]);
 lcdb.print(" ");
 lcdb.print(Scores[3]);
 lcdb.print(" ");
 lcdb.print(Scores[4]);
 lcdb.print(" ");
 lcdb.print(Scores[5]);
 lcdb.print(" ");
 lcdb.print(Scores[6]);
 lcdb.print(" ");
 lcdb.print(Scores[7]);
 lcdb.print(" ");
 lcdb.print(Scores[8]);

 lcdb.setCursor(0,2); // Row 3
 lcdb.print("H:101112131415161718");

 lcdb.setCursor(0,3); // Row 4 same as row two
 lcdb.print("S: ");
 lcdb.print(Scores[9]);
 lcdb.print(" ");
 lcdb.print(Scores[10]);
 lcdb.print(" ");
 lcdb.print(Scores[11]);
 lcdb.print(" ");
 lcdb.print(Scores[12]);
 lcdb.print(" ");
 lcdb.print(Scores[13]);
 lcdb.print(" ");
 lcdb.print(Scores[14]);
 lcdb.print(" ");
 lcdb.print(Scores[15]);
 lcdb.print(" ");
 lcdb.print(Scores[16]);
 lcdb.print(" ");
 lcdb.print(Scores[17]);
 }

void changeDisplay(void) // when tab is released
 {
 lcdchange = !lcdchange; // switches between temp or score display
 doubletap = LOW;
 }

void changeState(void) // when enter is released
 {
 enterstate = !enterstate; // switches between hole or score/temp edit
 doubletap = LOW;
 }

void uppress(void) // when up is released
 {
 if (lcdchange == LOW)
 {
 if (enterstate == LOW)
 {
 hole = hole + 1;
 if (hole > 17)
 {hole = 0;}
 doubletap = LOW;
 }
 else
 {
 Scores[hole] = Scores[hole] + 1;
 if(Scores[hole] > 9)
 {Scores[hole] = 9;}
 doubletap = LOW;
 }
 }
 else
 {
 if (enterstate == HIGH)
 {
 temp = temp + 5;
 if(temp > 80)
 {temp = 80;}
 MAX = temp + 3 ;
 MIN = temp - 3;
 doubletap = LOW;
 choice = LOW;
 }
 }
 Total = Scores[0] + Scores[1] + Scores[2] + Scores[3] + Scores[4] + Scores[5] + Scores[6] + Scores[7] + Scores[8] + Scores[9] + Scores[10] + Scores[11] + Scores[12] + Scores[13] + Scores[14] + Scores[15] + Scores[16] + Scores[17];
 }

void downpress(void) // when down is released
 {
 if (lcdchange == LOW)
 {
 if (enterstate == LOW)
 {
 hole = hole - 1;
 if (hole < 0)
 {hole = 17;}
 doubletap = LOW;
 }
 else
 {
 Scores[hole] = Scores[hole] - 1;
 if(Scores[hole] < 0)
 {Scores[hole] = 0;}
 doubletap = LOW;
 }
 }
 else
 {
 if (enterstate == HIGH)
 {
 temp = temp - 5;
 if(temp < 35)
 {temp = 35;}
 MAX = temp + 3;
 MIN = temp -3;
 doubletap = LOW;
 choice = LOW;
 }
 }
 Total = Scores[0] + Scores[1] + Scores[2] + Scores[3] + Scores[4] + Scores[5] + Scores[6] + Scores[7] + Scores[8] + Scores[9] + Scores[10] + Scores[11] + Scores[12] + Scores[13] + Scores[14] + Scores[15] + Scores[16] + Scores[17];
 }

void FullReset(void) // must press reset twice to completely reset it.
 {
 if(doubletap = HIGH)
 {
 for (j = 0; j<17; j++) //resets all scores to 0
 {
 Scores[j] = 0;
 }
 hole = 0; //sets hole marker to zero
 temp = 70; //sets base temp of 50
 Total = Scores[0] + Scores[1] + Scores[2] + Scores[3] + Scores[4] + Scores[5] + Scores[6] + Scores[7] + Scores[8] + Scores[9] + Scores[10] + Scores[11] + Scores[12] + Scores[13] + Scores[14] + Scores[15] + Scores[16] + Scores[17];
 doubletap = LOW; //resets reset button
 lcdchange = LOW;
 enterstate = LOW;
 }
 else
 {doubletap = !doubletap;}
 }

void loop()
 {
 //TempSense Loop
 //if(screener > 20000)
 //{printTemp();
 // screener = 0;}
 if(tracker > 800000) // acts as counter for when to check temp and update display. Value discovered experimentally
 {
 getTemp(); //reads the temperature
 if(choice == LOW) //if needed, figures out heating or cooling
 {tempcontrolchoice();}
 tempcontrol(); //performs temp logic
 printTemp(); //prints the temperature
 tracker = 0;
 }

 //ScoreCard Loop
 reading = digitalRead(Enter);
 if(reading == HIGH && previousE == LOW)
 {delay(500);
 reading = digitalRead(Enter);
 if(reading = HIGH)
 {changeState();
 printScore();
 printTemp();}
 }
 previousE = reading;

 reading = digitalRead(Reset);
 if(reading == HIGH && previousR == LOW)
 {delay(500);
 reading = digitalRead(Reset);
 if(reading = HIGH)
 {FullReset();
 printScore();
 printTemp();} // add printTemp here in golfbag
 }
 previousR = reading;

 reading = digitalRead(Tab);
 if(reading == HIGH && previousT == LOW)
 {delay(500);
 reading = digitalRead(Tab);
 if(reading = HIGH)
 {changeDisplay();
 printScore();
 printTemp();}
 }

 previousT = reading;

 reading = digitalRead(Up);
 if(reading == HIGH && previousU == LOW)
 {delay(500);
 reading = digitalRead(Up);
 if(reading = HIGH)
 {uppress();
 printScore();
 printTemp();}
 }
 previousU = reading;

 reading = digitalRead(Down);
 if(reading == HIGH && previousD == LOW)
 {delay(500);
 reading = digitalRead(Down);
 if(reading = HIGH)
 {delay(250);
 downpress();
 printScore();
 printTemp();}
 }
 previousD = reading;
 tracker = tracker + 1;
 //screener = screener +1;
 }

image1.png
Power Module

Temperature

Module

UsB Module

scorecard

Module

image2.png
oo
i Outt (Tb_r - - —‘ Comerciat cacger
15V olizgs Rt - -
5 o e
—+-

s Panel 1 St Panel 2

image3.png
HOLE

oioe

MoSFET

> 4 4
! s J 2

)| & 1
o5 n) &
cou | con ve L
e Sl ES B
i e
B - s
]

)
&

image4.png
DIODE
.
z 3
_]] MOSFET
= 5
= & 2
(U] a 12
4—LeC vee vB (B
=
HOLE_‘ c1 |y Ho |HO == . 1
= G
com Vs
coM vs L g -
GND iy s Ls HOLE _fe), . 4
N =
HSd
ive E -
2 o~ obr
+ Eé
w
+ 2
a
N
L L
GND

OLE

image5.png
VW
ZOWHIHL
LOWH3HL
R
i - [*
% o gt &
2 T =
[l
= =ncs [g
il gETSY ¢
N
R
[kl RESIES © o
g
jm [l
@ NwNa Q
2 T 2
g 105 | 550s
o o
[
.
o ’ o
Sl > o 2
\ o 2
- .
o | ot ol
EIEE El
o @ o g © o o
. T[22 v, R T |e o
= g = £ H 8
2z 8 o $ =
N[MW
FEEE FEEE
B s E 3|
3 =l 5 =l
— e
& G
o
=
N O
O 4
g

HOLE

image6.png
from SVconverter

R1
R2

390hm (3watt)

1k

0

vee

D+

GND

image7.png
Ch1 +Duty
62.79 %

Ch1 Pk-Pk
9.20V

Ch4 Mean
3.30V

5.00 V M[40.0us| Al Ch1 S 4.00V|

Chd[5.00V 28 Apr 2013
>+ [0.00000 s 1 48

image8.png
Home: TDS 3034 BENCH_4 (128.174.112.227)

TekStop_| g
-
u
= e pr— ——
| i | «
i ch3 Pk-Pk
o 8.90v
i Chd Mean
B i 5.69V

M[40.0us A Ch3 S 5.30V|

ch3[5.00V 5.00V 16 Apr 2013
@+ [0.00000 s 21:16:57

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg
DDA

image15.png
a

B aaogne $3
E Mg ny 55
Eanacgns 5
Z s ns

23V Gate 5V Gae

wo

1

] anag n 10
2 ndiag n 11
sZbace
g pact

2 canrx
5 cantx

Astin

P soar
s
—E e me
2 Lo ex
= aso)
*E wos)
T k)
—F tecse)
T (unconnectea)

oA

Ser
Dighs! Fin 22
Dighs! Fin 23

Dighs! Fin 2¢

Dighs! Fin 25

Dighs! in 28

Dighs! Fin 27
Digis! Fin 23
Dighs! Fin 29

Digis! Fin 3

Digis! Fin 31

Dighs! Fin 2

Digis! Fin 33
Dighs! Fin 3¢
Digis! in 35
Dighs! in 38
Dighs! in 37
Digis! Fin 38
Digtsl Fin 33

- R2
74 (Baten) J:W\AW 2
L=l g i .
555555553558358 82882 - x— os0
1w 2(={e(=|3(e[=x 2 2(8[a (/3|0 8 a | x‘—ig:;
s o =
E 2] D3¢ xum-osdomto-roe-cee-2a73
& oa i oes
2 re 7o 022
| mhimramn kL
YU -

o

image16.png
=
ot L]

Stiizang

wosFEr

wosFEr

€|

1

o

3.3V Converter

5V Converter

A

wosFEr

wosFEr

Thermal Switch

image17.png
()

@

@

(G

@

(G

£l £ HoLE
n] i ©
il [s
% 4
= i e @
i3 1
I s 4
L) pia [EIT
i) ol i HolE g
- e
] . 4]
P 10e)
@ s0c)
s e @)
s e @)
P 10e)
b g soe @y
iz A i >
i "% 5
W
| = = |
5)
=
e =
H e =)
P ., 10e)
@ s0c)
s e @)
s e @)

image18.png
User-set A

No
Temperature B>a?
s
Yes
Temperature
ofPocket

SendRelay
signalto
invertcurrent

image19.png
Userinput
from buttons

Clearsj entriss
nd reset
cursor positins

Si-si+1

Si=si-1

image20.png

image21.png
e

A

image22.png
v-0_°
12 “\oﬁéﬁm >

image23.png
1

Hole Diameter: 0.25"

2"

image24.png
11"

*
|
|
|

& 0.5"

Hole Diameter: 0.25"

—»

image25.jpeg

image26.jpeg

