

ELECTRIC AIR UKULELE

By

Ivan Setiawan

Satyo Iswara

Final Report for ECE 445, Senior Design, Spring 2012

TA: Jane Tu

28th April 2012

Project No. 32

ii

Abstract

The purpose of this report is to describe the design and the verifications of the electric air ukulele

project. The purpose of this project is to build a wireless device that senses user’s left hand movements

and distances to play notes in ukulele. This paper will first introduce the project then describe the design

for each module and as a whole. The design verification will then be described. Finally, the cost will be

evaluated and the success and possible future work of the project will be discussed.

iii

Contents

1. Introduction .. 1

1.1 Purpose ... 1

1.2 Project Function .. 1

1.3 Block Diagram and Description ... 2

1.3.1 Left Hand Module .. 2

1.3.2 Right Hand Module .. 3

2. Design .. 4

2.1 Design Procedure and Detail... 5

2.1.1 Arduino Uno Microcontroller... 6

2.1.2 Proximity Sensor .. 6

2.1.3 Potentiometer .. 7

2.1.4 RF Transmitter and Receiver .. 7

2.1.5 Power ... 7

2.1.6 Flex Sensor ... 7

3. Design Verification .. 8

3.1 Microcontroller ... 8

3.2 Power .. 9

3.3 Proximity Sensor ... 9

3.4 Fret potentiometer ... 10

3.5 RF Trans-receiver .. 11

3.6 Flex Sensor .. 12

4. Costs .. 14

4.1 Parts .. 14

4.2 Labor ... 14

5. Conclusion ... 15

5.1 Accomplishments .. 15

5.2 Uncertainties ... 15

5.3 Ethical considerations ... 15

5.4 Future work ... 15

iv

References .. 16

Appendix A Requirement and Verification Table ... 17

Appendix B Requirement and Verification Table ... 21

Appendix C Software Implementation ... 25

Appendix D Note Encoding ... 50

1

1. Introduction
The motivation behind this project is to design and build an electric air musical instrument where

the user can play music instruments with glove on the right hand and a portable and lightweight box

on the left hand. This design can replace a musical instrument, such as a ukulele or an electric guitar,

and can be cheaper than the actual ukulele or electric guitar.

1.1 Purpose
The purpose of this project is to design an electric air ukulele where the sound can be generated

based on the hands’ positions. This design includes microcontroller, proximity sensor, fret

potentiometer, and the RF transmitter on the left hand. On the right hand, there will be a glove with

flex sensors in each finger, except the thumb, another microcontroller, and RF transmitter. The

sound can be generated depending on the distance between the left and the right hands. On the left

hand, the potentiometers have functionalities like frets on the real ukulele. Then, depending on the

distance between the left and the right hands, the input will be processed through the

microcontroller. Then, those data will be sent into the right hand with the transmitter. The right

hand will receive and send those data into the microcontroller. On the right hand, the flex sensors

have functionalities like strings in the real ukulele. The inputs from the flex sensors will be sent into

the microcontroller on the right hand to for further processing. Finally, the speaker is connected into

the microcontroller so that the sound can be generated.

Benefits of this product to the customer include:

 Simplification of music playing since the frets are determined by the distance between the
left and right hands

 Compact and lightweight

 Pre-calibrated strings and that do not need adjustments

1.2 Project Function
The specifications for the design as a whole are given below. Individual modules have their own

verification requirements and will be explained in detail in later section.

 The proximity sensor can sense the distance of the right hand approximately 15 – 45 cm
away

 The RF can still transmit and receive data correctly up to 3 feet away

 No information loss. The microcontroller on the right hand will receive the exact data from
the left hand microcontroller via RF transceiver

 The power consumption is low enough so that both the left and right hands device can be
powered up using 9 volts battery each

 The delay time from a user input to the RF transceiver sending a signal to the
microcontroller to generate sounds should be less than 1 second

 The device can recognize which strings is being picked based on which finger is bent on the
right hand, the distance between the left and right hands, and the potentiometer at the left
hand

2

 The sound generated by a speaker will mimic the sound of the real ukulele strings at
particular frequencies

1.3 Block Diagram and Description
In this section we would present our block diagram and brief description of each block.

1.3.1 Left Hand Module

1.3.1.1 Microcontroller A

Arduino Uno is used for the microcontroller in this project. The microcontroller would be the overall

control center of the left hand module. The microcontroller is responsible for taking the input data

from the fret pressure sensor and the proximity sensor. The notes playing depending on the

distance between the two hands and the fret pressed are hard coded inside the Arduino Uno

platform. This microcontroller is also responsible for sending serial digital data into the right hand

via wireless connection using RF transmitter.

1.3.1.2 Fret Pressure Sensor

The fret pressure sensors consist of four potentiometers. These potentiometers will detect which

chords are being pressed, and the chords pressed will be sent into the microcontroller.

Power

Microcontroller A
Fret Pressure

Sensor

Fret Indicator

RF

Transmitter

Proximity

Sensor

Power

Speaker

Flex

Sensor

Microcontroller

B

RF

Receiver

Figure 1.3.1 Block Diagram of left hand and the right hand

3

1.3.1.3 Proximity Sensor

The proximity sensor is used to detect the distance between the left and the right hands. Depending

on the distance between the hands, different notes are played.

1.3.1.4 RF Transmitter

The RF transmitter has frequency of 434 MHz. This transmitter will be connected into the

microcontroller, which sends serial digital data. Using the VirtualWire library that has been provided

by Arduino Uno microcontroller, the data input will be sent to the right hand receiver for further

processing.

1.3.1.5 Power Regulator

Nine volts battery is used to power up this module in the left and right hand design. The nine volts

power supply can be directly connected into the microcontroller. For other parts, voltage regulator

is needed since potentiometer, RF transmitter, and proximity sensor only require at most 5 volts

supply.

1.3.2 Right Hand Module

1.3.2.1 Microcontroller B

For the right hand, Arduino Uno is once again used for the microcontroller. The microcontroller is

the most important part for the right hand module. It is responsible for detecting the input from the

flex sensors to determine which strings are being picked. The microcontroller is also responsible for

receiving the serial digital data transmitted from the left hand via RF receiver. Then, after receiving

the data, we use synthesis algorithm to mimic the sound of the real string. The speaker will be

connected directly to the microcontroller to generate the sounds.

1.3.2.2 Flex Sensors

Four flex sensors are implemented on each finger, except for the thumb, which functions as a string

in the ukulele instrument. Each flex sensor represents a string of real ukulele instrument, the string

C represented by the first flex sensor, the string G by the second flex sensor and so forth. By

bending a finger (thus bending a flex sensor), a string picking motion can be simulated.

1.3.2.3 RF Receiver

The RF receiver with 434 Mhz frequency is used to receive the digital serial data from the

transmitter using VirtualWire library in Arduino platform.

1.3.2.4 Speaker

The speaker with internal amplifier is used. The PWM signal from microcontroller B is passed

through low pass filter and blocking capacitor to generate analog sinusoidal wave. The blocking

capacitor is needed to cut off unwanted dc offset which is 2.5 V.

4

2. Design
Before designing the air ukulele, we need to know the physical dimension of ukulele. There are four

types of ukulele, but for this project we want to design the most common ukulele which is soprano

ukulele. The tuning for soprano ukulele is G4-C4-E4-A4 with G4 at the top string. The dimension of

typical ukulele is 53 cm for total length and 33 cm for scale length.

Figure 2.1 Soprano Ukulele

[cited from: http://www.uke-chords.com/ukulele-tunings.php]

The fret location and width then can be measured based on scale length. The location of fret is

determined by the position nut to fret plus remainder of scale length divided by fret constant which

is equal to 17.87.

 (2.1)

 (

)

(2.2)

Where B denotes bridge to fret, SL denotes scale length, N denotes nut to fret and n is integer

greater of equal to 1. To calculate actual value for all frets position we first need to know N[1]

which is easily SL divided by fret constant. In this case we are taking the actual physical data where

SL equal to 33 cm.

 (

)

(2.3)

Then we can easily calculate the position of 24 frets by calculating N for every n less or equal to 24.

Note that the fret distance is the distance from nut to the actual fret bridge. Results are tabulated

below.

5

Table 2.1 Frets Position

Fret
number

N(cm) Fret
number

N(cm) Fret
number

N(cm)

1 1.846 9 13.378 17 20.639

2 3.600 10 14.479 18 21.333

3 5.250 11 15.519 19 21.988

4 6.808 12 16.5 20 22.606

5 8.278 13 17.426 21 23.189

6 9.665 14 18.3 22 23.74

7 10.975 15 19.125 23 24.259

8 12.211 16 19.904 24 24.75

From this result by subtracting N[n+1] and N[n], we then can calculate the width of each fret.

Results are tabulated below.

Table 2.2 Frets Width

Fret
number

ΔN(cm) Fret
number

ΔN(cm) Fret
number

ΔN(cm)

1 1.846 9 1.167 17 0.735

2 1.754 10 1.101 18 0.694

3 1.65 11 1.04 19 0.655

4 1.558 12 0.981 20 0.618

5 1.47 13 0.926 21 0.583

6 1.387 14 0.874 22 0.551

7 1.31 15 0.825 23 0.519

8 1.236 16 0.779 24 0.491

For our design we are limiting to 11th fret since width gets less than 1 cm after that. Also in terms of

practicality, average adult male finger tips are about 1 cm. So, any frets with width smaller than 1

cm will be difficult to be pressed accurately. But for our Final design we decided to keep the fret

width constant at 1.67 cm per fret. This way our potentiometer was limited to fit three frets at a

time.

2.1 Design Procedure and Detail
The original design is not modified significantly from the design review. Most of the components in

the final design are in accordance with the previous design, except for additional small components.

The slight modification in this design is the speaker. Since the speaker in the original design, AS5008-

32 manufactured by PUI Audio, was broken due to short circuit. In our final design we use

commercial available speaker. The overall design procedure for each component including the

software algorithm will be described below.

6

2.1.1 Arduino Uno Microcontroller

The main part of our project is to find a control platform, so the first step in designing our project is

to find a microcontroller that meets the project requirement: PWM pins for outputting digital

sound, four analog inputs for potentiometers, for flex sensors, one digital input/output for proximity

sensor, ability to transmit (TX) and receive (RX) through serial data process. With this consideration

we chose Arduino Uno with ATmega328 chip for our project. Both the left and the right hand use

Arduino Uno as the microcontroller.

The Arduino Uno has 16 MHz clock speed which enable operation at very high speed. The first goal

of our microcontroller is to generate an analog sinusoidal output. To generate analog output we use

Arduino capabilities to generate PWM (pulse width modulation signal). The analog output

amplitude is proportional to the duty cycle of PWM generated. To generate the desired PWM signal

at lower frequency, we want to modify the clock speed of Arduino Uno and we do this by taking

advantage of Timer2 register of AT Mega 328P-PU. First we write on TIMSK2 register which is

Timer2 interrupt mask register. For normal operation, this register usually not changed but for our

project time-sensitive purpose we want to modify this register. We first modify bit 0 in this register

which is TOIE2, Timer2 overflow interrupt enable. By modifying this register, we directly command

the program to perform the interrupt sub-routine when Timer2 overflow. Inside the interrupt

subroutine we determine the PWM duty cycle by modifying OCR2A, output compare register A. The

OCR2A value determines the duty cycle of PWM with 255 correspond 100% duty cycle. In order to

avoid any timing distortion we disable Timer0 functionality which disables the delay function in

Arduino software.

The last important step is to transmit and to receive digital data from one microcontroller to

another microcontroller. VirtualWire library is used in this step because this function provides

features that send a short message. For initial testing, the array of characters ‘Hello World’ is sent.

And, the other microcontroller is able to receive this message without any loss of information.

Therefore, two Arduino Uno as microcontrollers are used for this project.

2.1.1.1 Low Pass Filter

Before connecting the PWM output of the microcontroller into the speaker, we put it through low

pass filter. This filter has a purpose to pass the desired frequencies signals and block the unwanted

high frequencies signals.

2.1.2 Proximity Sensor

The Parallax’s PING))) ultrasonic proximity sensor is used for distance detection measurement. This

sensor only requires one I/O pin. The activity status of the LED indicator indicates if the sensor is

detecting an object. This sensor works by transmitting an ultrasonic burst and providing an output

pulse that corresponds to the time required for the burst echo to return to the sensor. By measuring

the echo pulse width, the distance to target can easily be determined. This device is chosen because

it can detect an object within the range of 2 cm to 3 m with narrow acceptance beam angle. This

device also provides reliability with 1cm resolution.

7

2.1.3 Potentiometer

Four soft membrane potentiometers manufactured by Spectra Symbol are used to determine which

frets are being pressed. Each membrane has an effective length of 50 mm. By pressing down on

various part of the strip, the resistance linearly changes from 1000Ohms to 10,000Ohms allowing

the user to accurately calculate the relative position on the strip. These four potentiometers are

connected into four analog inputs on the Arduino Uno microcontroller. One slight modification from

the design review is that the addition of resistors for each inputs into the microcontroller. When the

potentiometer was connected to digital multi-meter for testing, the resistance value of the

potentiometer decreases slowly to 1000Ohms. This behavior was not accurate enough to determine

the fret positions. So, an additional 33kOhms resistor is placed between the analog input of the

microcontroller and the potentiometer so that the resistance value of the potentiometer decreases

drastically to 1000Ohms when it is not pressed.

2.1.4 RF Transmitter and Receiver

For transmitter we use WRL-10534 with 434 MHz frequency manufactured by Wenshing

Corporation. This transmitter is chosen due to low cost and easy to use. The initial design with data

transmission is coded the Arduino platform with Serial.read() functionality. Binary data encoding is

transmitted into the receiver. However, when the receiver is tested using the oscilloscope, there are

some discrepancy between the data transmitted and data received. Therefore, VirtualWire library is

used for both transmitting and receiving data. The VirtualWire library provides features to send

short messages, without retransmit data.

For receiver module we use WRL-10532 with 434 MHz frequency which also manufactured by

Wenshing Corporation. The transmitter and receiver must have the same frequency value to ensure

correct data transmission. As same as the RF transmitter described in section 2.2.4, the VirtualWire

library is used to ensure correct data reading.

2.1.5 Power

A 9 volts battery will be used to power up all of the components on the left and right parts of the

projects. There are some modifications in this block. Four AA batteries were used for the initial

design. However, a 9 volts battery with power regulator is enough to ensure that all of the

components are powered up. The Arduino microcontroller needs 7 to 12 volts input voltage. So, it

can be powered up directly. However, the rest of the components only require at most 5 volts

power. So, the power regulator is used to ensure that the components won’t blow up.

2.1.6 Flex Sensor

Four flex sensors manufactured by the Spectra Symbol are used to detect which strings are being

picked. Each flex sensor has an effective length of 4.5 inch. The sensor changes in resistance

depending on the amount of bend of the sensor. The sensor converts the change in bend to

electrical resistance; the more the bend, the more the resistance value. The resistance can change

from 60kOhms to 110kOhms depending on the amount of the bend. The flex sensors will be

connected directly into four analog inputs of the Arduino Uno.

8

3. Design Verification
In order to make sure our components fulfill our requirements, we performed several tests on each

individual module. Refer to the requirement and verification table in appendix A for testing focus

and verification methodology.

3.1 Microcontroller
Our Microcontroller meets our requirement and specification. When connected with 5V input,

Arduino uno was able to generate PWM signal. When the PWM output passed through low pass

filter, it generated sinusoidal wave. The frequency of the sinusoidal wave fulfills the required range

of operation, which is between 196 Hz to 830 Hz.

Figure 3.1.1 Analog Sinusoidal output at 195.7 Hz

Figure 3.1.2 Analog Sinusoidal output at 826 Hz

9

3.2 Power
Our power module fulfills our requirement and work perfectly with our design. When connected

with regular nine volt battery, the voltage output of the power module will be five volt. The output

voltage does not show any peak spikes, which mean that power outputs at constant rate. The nine

volt input is shown as channel 1 and the five volt output is shown as channel 2 in the oscilloscope

graph.

Figure 3.2.1 Power module input/output

3.3 Proximity Sensor
The proximity sensor meets the requirements and specifications for this project. The sensor was

able to locate the object at a particular distance away from the sensor. Simple initial testing was

conducted to measure the accuracy of the sensor. The output of the sensor was connected to the

oscilloscope. The figure 3.3.1 below indicates a distance measurement. The red line below indicates

if the proximity sensor is on. Then, the area blue line indicates a sensor detects an object. The

sensor sends an ultrasonic pulse to the object, and it waits for the echo. The time between the pulse

and the echo is used to determine the distance as seen in the green line in figure 3.3.1 below. The

period of the measurement is 795 us. So, by taking the ultrasonic pulse velocity in the air to be 0.33

mm/us, the distance can be calculated as follow:

Distance = Velocity x Period (3.3.1)

Using the formula 3.3.1 above, the distance measured is 26.2 cm away from the sensor.

10

Figure 3.3.1 Proximity sensor module input/output

3.4 Fret potentiometer
The fret potentiometer fulfills our specification. The potentiometer works perfectly by reducing the

output voltage linearly as a function of position. We recorded several data points.

Table 3.4.1 Measured voltage output

Distance
Pressed(cm) Vout (V)

0 4.96

1 3.72

2 2.68

3 1.85

4 1.81

5 5.10E-04

Figure 3.4.1 Linear function of voltage output

0

2

4

6

0 2 4 6

V
o

u
t

(V
)

Distance (cm)

Vout vs Distance

Vout

Linear (Vout)

11

3.5 RF Trans-receiver
The RF transceiver generates bit errors when measured with high frequency value. For the initial

testing of the transceiver, both transmitter and receiver were connected to the oscilloscope.

Channel 1 indicates the data transmitted and channel 2 indicates the data received. The transmitter

and receiver were set one meter apart. The transmitter was supplied with 35.7 Hz frequency from

the pulse generator. At this frequency, the data transmitted and the data received are identical;

there is no bit error in the received data as shown in figure 3.5.1 below.

Figure 3.5.1 Data Transmission Recorded with Oscilloscope

However, as the frequency increased to 68.5 Hz, the RF trans-receiver generates error in the bits

received. The red line in the figure 3.5.2 below indicates an error bit in the RF trans-receiver

measurement due to the noise introduced by the environment.

Figure 3.5.2 The RF Transceiver Generates Bits Errors

12

However, as we implement the RF transceiver in the system, the bits errors does not affect the

device’s performance. The RF trans-receiver is able to transmit and receive data correctly.

3.6 Flex Sensor
The flex sensor meets the requirements and specifications in this project. The flex sensor is sensitive

enough so that the small amount of bending changes the resistance value. The sensor was

connected to the digital multi-meter and the resistance values were measured. The flex sensor was

bent down each 0.5 cm. The table below measured the flex sensor’s resistance with digital multi-

meter.

Table 3.5.1 Measurement of Flex Sensor Resistance

Effective Length
(cm)

Resistance
(kΩ)

0.5 25

1 25.54

1.5 23.93

2 24.79

2.5 23.14

3 23.53

3.5 23.56

4 24.2

4.5 26.07

5 26.4

5.5 28.92

6 28.4

6.5 27.74

7 25.39

7.5 24.83

8 24.88

8.5 23.93

9 25.7

9.5 23.8

10 21

10.5 19.2

11 19.9

From the table above, a plot was drawn using Excel. From the plot below, a quadratic interpolation

was drawn. From the plot in figure 3.6.1 below, the peak point was observed when the effective

length at 5.5 cm. Therefore, in order to get a sensitive response, the effective length of the flex

sensor would be placed at the top of the finger joint.

13

Figure 3.6.1 Flex Sensor Bending Response

y = -0.569ln(x) + 25.398
R² = 0.0378

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12

R
e

si
st

an
ce

 (
k-

o
h

m
s)

Effective Length (cm)

Flex Sensor Bending Response

Series1

Poly. (Series1)

14

4. Costs

4.1 Parts
The following table below is a table for part costs in the project.

Table 4.1.1 Cost of Parts

Part Manufacturer Quantity
Retail Cost

($)
Bulk Purchase Cost

($)
Actual

Cost ($)

Proximity Sensor Parallax 1 29.95 29.95 29.95

Battery Duracell 1 2 2 2

Flex Sensor
Spectra
Symbol 4 12.95 51.8 51.8

RF Transmitter Wenshing 1 3.95 3.95 3.95

RF Receiver Wenshing 1 4.95 4.95 4.95

Microcontrollers Arduino 2 22.12 44.24 0

Resistors, Capacitors, Wire Various 2 2 2

Potentiometers
Spectra
Symbol 4 14.25 57 57

Voltage Regulator Parts Express 2 1 2 2

Total Cost 93.17 197.89 153.65

4.2 Labor
The following table below is the cost of labors table.

Table 4.2.1 Cost of Labors

Person
Ideal Salary / Hour

($)
Actual Hours
Spent (hours)

Labor
(x2.5)($)

Ivan Setiawan 20 240 12000

Satyo Iswara 20 240 12000

We estimate the time spent in this project to be approximately 240 hours. Using 4.1, the labor cost

for each person is $12,000. Combining the labor’s cost and the parts’ cost, the total cost of this

project is $24,197.89.

15

5. Conclusion

5.1 Accomplishments
Majority of the individual components in this project were functioning as expected. The proximity

sensor was able to sense the distance of the right hand accurately. The inputs from the

potentiometers and from the proximity sensor were able to determine the frets positions of the

ukulele. Then, the left hand was able to send the data to the right hand via RF transceiver. The right

hand device was able to get the correct notes. When connecting the PWM output pin to the

speaker, the ukulele like sounds were generated.

5.2 Uncertainties
There are some uncertainties we encounter in integrating the whole project. The proximity sensor

of the left hand system is not accurate enough for detecting the object’s distance. The sensor has 1

cm resolution. However, if the object is 24.7 cm away from the sensor, the distance measured will

be 25 cm. This problem would cause an uncertainty in the note that is being played.

The RF trans-receiver has lot of noise as explained in section 3.5. So, the noise will cause incorrect

data transfer to the right hand. Since the transmitted data is also calculated to determine the

notes, the generated sound might not be the note that is intended to play.

5.3 Ethical considerations
There are several ethical issues to consider when designing our idea. Our group adheres to the IEEE

Code of Conduct and Ethical Guidelines. Our project is intended to improve the understanding of

technology, applications, and the consequences. For example, this project combines the flex

sensor, proximity sensor, and as well as microcontroller to design an air-ukulele. Furthermore, all

voltages will be safely regulated and all components will be shielded from user contact. So, this

project accepts the responsibility in making decisions with the safety, health, and welfare of the

public.

5.4 Future work
Below are the lists of improvements that would improve the performance of the device:

 Replace current RF trans-receiver with another RF trans-receiver with higher bps (bits per

second). Our current trans-receiver has 4800 bps. Increasing the data rate transfer would allow

more information to be sent.

 Replace current proximity sensor with more accurate distance sensing device. The proximity

sensor in this project can only measure the object with the accuracy of 1 cm resolution. So, if

the accuracy can be improved by 0.1 cm or maybe even less than 0.1 cm, then the sensor will

be able to sense more accurately than the current proximity sensor.

 Code the microcontroller to get rid of the delay in the system.

 Remove the Arduino platform to reduce the budget cost significantly.

16

References

[1] "Arduino Uno SMD - SparkFun Electronics." News - SparkFun Electronics. N.p., n.d. Web. 12 Feb.

2012. Avalible at : http://www.sparkfun.com/products/10356

[2] "Basic LED - Red - SparkFun Electronics." News - SparkFun Electronics. N.p., n.d. Web. 21 Feb. 2012.

Avalible at : http://www.sparkfun.com/products/533

[3] "Flex Sensor." Sparkfun.com. spectrasymbol.com, n.d. Web. 2 Nov. 2012.

Avalible at : www.sparkfun.com/datasheets/Sensors/Flex/FLEXSENSOR(REVA1).pdf

[4] "LV-MaxSonar Â® -EZ." maxbotix.com. N.p., n.d. Web. 10 Feb. 2010.

Avalible at : www.maxbotix.com/documents/MB1040_Datasheet.pdf

[5] "RF module datasheet." Sparkfun.com. Sparkfun.com, n.d. Web. 12 Feb. 2012.

Avalible at : dlnmh9ip6v2uc.cloudfront.net/datasheets/Wireless/General/RWS-371-

6_433.92MHz_ASK_RF_Receiver_Module_Data_Sheet.pdf

[6] "TWS-BS RF MODULE Series." Sparkfun.com. Sparkfun.com, n.d. Web. 2 Dec. 2012.

Avalible at : dlnmh9ip6v2uc.cloudfront.net/datasheets/Wireless/General/TWS-BS-

3_433.92MHz_ASK_RF_Transmitter_Module_Data_Sheet.pdf

[7] "Variable Potentiometer Membrane Strip, 50mm (SoftP." MicroControllerShop.com Micro-

Controller Development Tools. N.p., n.d. Web. 20 Feb. 2012.

Avalible at : http://microcontrollershop.com/product_info.php?products_id=3803

[8] “Calculating Fret Position.” Lutherie Information Website. Mon. 5 Mar. 2012.

Avalible at : http://liutaiomottola.com/formulae/fret.htm

[9] “Arduino DDS Sinewave Generator.” Laboratory for Experimental Computer Science at the Academy

of Media Arts Cologne. 7 April.2012. Available at:

http://interface.khm.de/index.php/lab/experiments/arduino-dds-sinewave-generator/

[10] “Ping Ultrasonic Sensor Data Manual”, Parallax, Inc, 2012. Available at:

http://www.parallax.com/Store/Sensors/AccelerationTilt/tabid/172/List/0/ProductID/543/Default.a

spx?SortField=ProductName%2CProductName

[11] A. Outi, “From Technology to Art”. 19 July. 2011. Web. 10 Mar.

2012. http://fromtechnologytoart.blogspot.com/2011/07/how-to-connect-flex-sensor-to-

arduino.html

[12] Y. Ning, and A. Beech. “Wearable Air Guitar”. Web. 3 Mar 2012. Available

at: http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2004/ddb25/complete2.html

http://liutaiomottola.com/formulae/fret.htm
http://interface.khm.de/index.php/lab/experiments/arduino-dds-sinewave-generator/
http://www.parallax.com/Store/Sensors/AccelerationTilt/tabid/172/List/0/ProductID/543/Default.aspx?SortField=ProductName%2CProductName
http://www.parallax.com/Store/Sensors/AccelerationTilt/tabid/172/List/0/ProductID/543/Default.aspx?SortField=ProductName%2CProductName
http://fromtechnologytoart.blogspot.com/2011/07/how-to-connect-flex-sensor-to-arduino.html
http://fromtechnologytoart.blogspot.com/2011/07/how-to-connect-flex-sensor-to-arduino.html
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2004/ddb25/complete2.html

17

Appendix A Requirement and Verification Table

Requirement Verification Verification
Status

Microcontroller (A)

Testing Focus:
For microcontroller A, the computation of
the fret location is the most important
part because the fret will be sent into the
right hand for further decoding. In order
to compute the fret location, we will code
the microcontroller.

The microcontroller functions correctly
under voltage range of 7V – 12V
Be able to send the signal at 4800 bps.
Correctly decode one octave frequency
range (262 Hz – 523 Hz)
The delay time between the data input
from the proximity sensor must be less
than 200 ms
Successfully output the analog signal into
the fret indicator in the range of 0 – 5
volts with input above 2.5 V considered as
high
Be able to receive the signal from the fret
potentiometer under 0 – 5 volts

Acceptable Range of Operation:
The microcontroller A can send the data
to the transmitter within one octave
range (196 Hz – 830 Hz).

Connect to the power supply at 7, 9, 12 V,
and verify the correct input with function
generator and correct output with LED
and oscilloscope
Code the microcontroller with 4800 bps
data. Then, we connect the digital pin out
of the microcontroller to the oscilloscope.
Using the trigger function and sample the
time in 10ms, we can see the data bits are
generated.
Code the microcontroller with one octave
range every 1 second, and then connect
the digital pin out to the oscilloscope.
Using math function in the oscilloscope
and convert the signal into frequency
domain, we can measure the peak to peak
voltage.
Program the microcontroller with the
delay phase less than 200ms and connect
it to the oscilloscope to convert the signal
into frequency domain. Then, we can use
the delay sweep function to verify if the
delay is less than 200ms.
Wire the digital output pin of the
microcontroller to the digital high (5V)
and digital low (0V), and wire the LED at
the output pin to check if it is on or off.
Wire the digital output pin of the
microcontroller to the digital high (5V)
and digital low (0V), and wire the LED at
the output pin to check if it is on or off

18

Microcontroller (B)

Testing Focus:
For microcontroller B, the decoding is the
most important part because the
microcontroller will output the generated
the sound into the speaker.

The microcontroller functions correctly
under voltage range of 7V – 12V
Be able to generate correct notes within
one octave in frequency range of 262 Hz –
523 Hz
Correctly generate note C (262 Hz)
Correctly read the digital encoding of note
C (262 Hz)
The sounds must be damped after 10ms
using the Karplus Strong synthesis
The delay time between the input and the
output must be less than 200ms
Successfully receive analog signal from
flex sensor in range 0 – 5 V with input
above 2.5 V consider as high

Acceptable Range of Operation:
The microcontroller B can generate
analog sinusoidal signal with frequency
between 196 Hz – 830 Hz.

Connect to the power supply at 7, 9, 12 V,
and verify the correct input with function
generator and correct output with LED
and oscilloscope
Connect the output to the speaker and be
able to hear the correct sound of the
entire octave in a sequence and the
expected output must be match to the
tuner
Code the microcontroller to generate
note C every 1 second and connect it to
the oscilloscope. Using the math function
in the oscilloscope and convert the signal
to frequency domain, we can measure the
peak of the frequency pulse
Wire the digital input pin of the
microcontroller to the digital high (9V)
and digital low (0V), and wire the LED at
the output pin to check if it is on or off.
Program the synthesizer to the
microcontroller and connect it to the
oscilloscope. If the amplitude of the note
C is reduced by 50% of the initial and less
than 10% after 10ms, then the synthesizer
behaves correctly.
Program the microcontroller with the
delay phase less than 200ms and connect
it to the oscilloscope to convert the signal
into frequency domain. Then, we can use
the delay sweep function to verify if the
delay is less than 200ms.
Wire up the analog input pin of the
microcontroller with 0, 2.5, and 5V. Then,
wire the LED at the analog pin output to
check if it is on or off.

Power

Testing Focus:
The most important for power are the
voltage and the maximum current. The
voltage and the current will determine

Acceptable Range of Operation:
The voltage has 9V input and output
constant output of 5 V.

19

total power supplied. We need to ensure
that each device is supplied with
appropriate power in order to function
properly.

Four AA batteries will be used to generate
9V DC input power since most of the
components must have voltage range of
5V – 9V

Connect battery to volt meter and check
the output voltage with voltmeter and
oscilloscope. The voltage input measure
should stay constant at 9 V and output
constant at 5V.

Proximity Sensor

Testing Focus:
The proximity sensor must be able to
detect object in the range of 30 cm – 2
meters. The output of the sensor is the
voltage where the closer the object to the
sensor, the voltage read will be smaller.

Proximity sensor function correctly under
5 V input
Be able to generate 2.5 – 5 volts output
for distance between 30 cm to 2 m.
Be able to generate correct output at
fixed distance of 50 cm

Acceptable Range of Operation:
The proximity sensor has .772V output for
object detection at 2m and .116 V for 30
cm detection. So the expected range of
proximity sensor should be between
.116V and .772V with output increase as
object detected farther.

Connect to power supply and read output
change indicating device working
Connect to power supply and vary
distance between proximity sensor and
the object. The voltage will vary 0.98mV /
inch

Fret Potentiometer

Testing Focus:
Resistance is the most important
parameter. The change of resistance on
the sensor depends on whether the
sensor is pressed or not. And, the change
of resistance will determine which fret is
being pressed.

Fret potentiometer able to generate
resistance ranging from 1 kΩ to 10 kΩ.
Generate 1 kΩ when not pressed

Acceptable Range of Operation:
The sensor has 0V – 5V output. The zero
volt output correspond to potentiometer
not being pressed and 5 volt output
correspond to pressing the edge of
potentiometer.

Connect the potentiometer into the
digital multi-meter, and then check the
resistance output.
Press the potentiometer then checks the
output resistance with Digital Multimeter.
The output resistance is 1 kΩ.

RF Trans-receiver

Testing Focus:
For the transceiver, frequency is the most
important parameter because the
receiver must be able to receive the data
from transmitter with specific frequency.
For example, if note C (262 Hz) is sent

Acceptable Range of Operation:
The transceiver can transmit and receive
the data within 1 m radius.

Digital signal will be sent from the
microcontroller to the transmitter. A

20

from transmitter, the receiver must be
able to receive the data.

RF transmitter will accept an input and
transmit it through the antenna. Signal
should be receivable at least 1 meter
away. The turn on time for the
transmitter after being powered up
should be 1 ms.
The RF receiver should receive signal from
RF transmitter for at least 1 meter away.

distance test will measure the signal to
noise ratio of the receiver to determine
the maximum RF transmission distance.
Additionally, the unit will be powered on
and data will be inputted. Then, the
antenna output will be measured to
ensure it can transmit within 1ms power-
on.
We will continuously transmit data and
then measure the output vs. distance. The
point at which the data outputted cannot
be recognized will be the maximum
distance.

Flex Sensor

Testing Focus:
Resistance is the most important
parameter. The change of resistance on
the sensor depends on the amount of
bend on the sensor. And, the more the
bend, the more the resistance value. The
change in resistance will determine which
string is being picked.
Flex sensor able to generate resistance
ranging from 10 kΩ to 30 kΩ.
Generate 10kOhm when not bend

Acceptable Range of Operation:
The flex sensor has 10kΩ - 30kΩ
resistance range. When the sensor is not
bent, the resistance is 10 kΩ. When the
sensor is bent, the maximum resistance is
30 kΩ.

Connect the flex sensor into the digital
multi-meter, and then check the
resistance.
When the flex sensor is not bent down
then checks the output resistance with
the DMM. The output resistance is 10kΩ.

21

Appendix B Requirement and Verification Table
Flex Sensor

22

Potentiometers

Proximity Sensor

23

Left Hand

24

Right Hand

25

Appendix C Software Implementation

Left hand implementation

#include <VirtualWire.h>
//Poximity sensor pin assignment
const int pingPin = 2; //ping

//Potentiometer pin assignment
const int fret_in = 0; // potentiometer 1
const int fret2_in = 1; //potentiometer 2
const int fret3_in = 2; //potentiometer 3
const int fret4_in = 3; //potentiometer 4
//later might want to change to higher resolution indicator
//resolution .5 cm
//green LED
const int LEDG_1 = 12; // LED 1
const int LEDG_2 = 11; // LED 2
const int LEDG_3 = 10; // LED 3
const int LEDG_4 = 9; // LED 4
//red LED
const int LEDR_1 = 8; // LED 5
const int LEDR_2 = 7; // LED 6
const int LEDR_3 = 6; // LED 7
const int LEDR_4 = 5; // LED 8
const int LEDR_5 = 4; // LED 9
const int LEDR_6 = 3; // LED 10

//mock demo const
const int speakerPin = 12;

//Variable used as transmission data
const int transmit_pin = 13;
const int transmit_en_pin = 1;
const int receive_pin = 2;

byte count = 1;

void setup() {
 //Integrating transmitter to left hand
 vw_set_tx_pin(transmit_pin);
 vw_set_rx_pin(receive_pin);
 vw_set_ptt_pin(transmit_en_pin);
 vw_setup(2000);
 Serial.begin(9600);
}

26

void loop()
{
 //universal variable for in range
 boolean on_neck;
 //var for prox sensor
 long duration, inches, cm;
 long cm_1;
 //cm for the closest edge to the right hand
 //cm_1 for the fathest edge to the right hand
 //var for potentiometer
 int volt_in;
 int volt_in2;
 int volt_in3;
 int volt_in4;

 float fret_press_cm; //for potentiometer 1
 float fret_press_cm2; //for potentiometer 2
 float fret_press_cm3; //for potentiometer 3
 float fret_press_cm4; //for potentiometer 4

 float nut_to_fret_press;
 float nut_to_fret_press2;
 float nut_to_fret_press3;
 float nut_to_fret_press4;

 //ping process
 //ping active signal
 pinMode(pingPin, OUTPUT);
 digitalWrite(pingPin, LOW);
 delayMicroseconds(2);
 digitalWrite(pingPin, HIGH);
 delayMicroseconds(5);
 digitalWrite(pingPin, LOW);

 pinMode(pingPin, INPUT);
 duration = pulseIn(pingPin, HIGH);

 inches = microsecondsToInches(duration);
 cm = microsecondsToCentimeters(duration);
 cm_1 = cm + 5;

 Serial.print(cm);
 Serial.print("cm");
 Serial.println();

 //end of ping process

 //fret indicator process

27

 pinMode(LEDG_1, OUTPUT);
 pinMode(LEDG_2, OUTPUT);
 pinMode(LEDG_3, OUTPUT);
 pinMode(LEDG_4, OUTPUT);
 pinMode(LEDR_1, OUTPUT);
 pinMode(LEDR_2, OUTPUT);
 pinMode(LEDR_3, OUTPUT);
 pinMode(LEDR_4, OUTPUT);
 pinMode(LEDR_5, OUTPUT);
 pinMode(LEDR_6, OUTPUT);

 if ((cm > 35)||(cm < 16))//outside range all LED blink
 {
 on_neck = false;
 digitalWrite(LEDG_1, LOW);
 digitalWrite(LEDG_2, LOW);
 digitalWrite(LEDG_3, LOW);
 digitalWrite(LEDG_4, LOW);
 digitalWrite(LEDR_1, HIGH);
 digitalWrite(LEDR_2, HIGH);
 digitalWrite(LEDR_3, HIGH);
 digitalWrite(LEDR_4, HIGH);
 digitalWrite(LEDR_5, HIGH);
 digitalWrite(LEDR_6, HIGH);
 delay(50);
 digitalWrite(LEDR_1, LOW);
 digitalWrite(LEDR_2, LOW);
 digitalWrite(LEDR_3, LOW);
 digitalWrite(LEDR_4, LOW);
 digitalWrite(LEDR_5, LOW);
 digitalWrite(LEDR_6, LOW);
 delay(50);
 }
 else
 {
 on_neck = true;
 digitalWrite(LEDG_1, HIGH);
 digitalWrite(LEDG_2, HIGH);
 digitalWrite(LEDG_3, HIGH);
 digitalWrite(LEDG_4, HIGH);
 }

 //end fret indicator process

 //fret pressure process
 volt_in = analogRead(fret_in);

28

 //Adding more potentiometer input
 volt_in2 = analogRead(fret2_in);
 volt_in3 = analogRead(fret3_in);
 volt_in3 = analogRead(fret4_in);

 fret_press_cm = voltageToCentimeters(volt_in);
 //Integrating for all potentiometers
 fret_press_cm2 = voltageToCentimeters(volt_in2);
 fret_press_cm3 = voltageToCentimeters(volt_in3);
 fret_press_cm4 = voltageToCentimeters(volt_in4);

 Serial.print(fret_press_cm);
 Serial.print("cm");
 Serial.println();
 Serial.print(fret_press_cm2);
 Serial.print("cm");
 Serial.println();
 Serial.print(fret_press_cm3);
 Serial.print("cm");
 Serial.println();
 Serial.print(fret_press_cm4);
 Serial.print("cm");
 Serial.println();

 //For fret 1 if it is being pressed
 if ((fret_press_cm != 0) && (on_neck == true)) // fret 1 being press
 {
 nut_to_fret_press = cm + fret_press_cm;
 }
 else // not pressed
 {
 nut_to_fret_press = 0;
 }

 //Adding for more input
 //If fret 2 is being pressed
 if ((fret_press_cm2 != 0) && (on_neck == true)) // fret 2 being press
 {
 nut_to_fret_press2 = cm + fret_press_cm2;
 }
 else // not pressed
 {
 nut_to_fret_press2 = 0;
 }

29

 //If fret 3 is being pressed
 if ((fret_press_cm3 != 0) && (on_neck == true)) // fret 3 being press
 {
 nut_to_fret_press3 = cm + fret_press_cm3;
 }
 else // not pressed
 {
 nut_to_fret_press3 = 0;
 }

 //If fret 4 is being pressed
 if ((fret_press_cm4 != 0) && (on_neck == true)) // fret 4 being press
 {
 nut_to_fret_press4 = cm + fret_press_cm4;
 }
 else // not pressed
 {
 nut_to_fret_press4 = 0;
 }

 //Data to be sent
 char msg[10] = {'g','0','c','0','e','0','a','0',' ','#'};
 //int msg[4] = {392, 415, 440, 466};

 //(lower_bound && high_bound)
 // G4 string for mock demo purpose instead of send, we plays

 //The Note Playing for string 1 (potentiometer 1)
 if(nut_to_fret_press == 0)
 {
 //send G4 open
 tone(speakerPin,392);
 delay(150);
 msg[0] = 'g';
 msg[1] = '0';
 }
 else if((nut_to_fret_press > 33.33) && (nut_to_fret_press < 35))
 {
 //send G#4 1st
 tone(speakerPin,415);
 delay(150);
 msg[0] = 'g';
 msg[1] = '1';

 }

30

 else if((nut_to_fret_press > 31.67) && (nut_to_fret_press < 33.33))
 {
 //send A4 2nd
 tone(speakerPin,440);
 delay(150);
 msg[0] = 'a';
 msg[1] = '0';

 }

 else if((nut_to_fret_press > 30) && (nut_to_fret_press < 31.67))
 {
 //send A#4 3rd
 tone(speakerPin,466);
 delay(150);
 msg[0] = 'a';
 msg[1] = '1';

 }
 else if((nut_to_fret_press > 28.33) && (nut_to_fret_press < 30))
 {
 //send B4 4th
 tone(speakerPin,494);
 delay(150);
 msg[0] = 'b';
 msg[1] = '0';

 }
 else if((nut_to_fret_press > 26.67) && (nut_to_fret_press < 28.33))
 {
 //send C5 5th
 tone(speakerPin,523);
 delay(150);
 msg[0] = 'c';
 msg[1] = '0';

 }

 else if((nut_to_fret_press > 25) && (nut_to_fret_press < 26.67))
 {
 //send C#5 6th
 tone(speakerPin,554);
 delay(150);
 msg[0] = 'c';
 msg[1] = '1';

 }
 else if((nut_to_fret_press > 23.33) && (nut_to_fret_press < 25))

31

 {
 //send D5 7th
 tone(speakerPin,587);
 delay(150);
 msg[0] = 'd';
 msg[1] = '0';

 }

 else if((nut_to_fret_press > 21.67) && (nut_to_fret_press < 23.33))
 {
 //send D#5 8th
 tone(speakerPin,622);
 delay(150);
 msg[0] = 'd';
 msg[1] = '1';

 }

 else if((nut_to_fret_press > 20) && (nut_to_fret_press < 21.67))
 {
 //send E5 9th
 tone(speakerPin,659);
 delay(150);
 msg[0] = 'e';
 msg[1] = '0';

 }
 else if((nut_to_fret_press > 18.33) && (nut_to_fret_press < 20))
 {
 //send F5 10th
 tone(speakerPin,698);
 delay(150);
 msg[0] = 'f';
 msg[1] = '0';

 }
 else if((nut_to_fret_press > 16.67) && (nut_to_fret_press < 18.33))
 {
 //send F#5 11th
 tone(speakerPin,740);
 delay(150);
 msg[0] = 'f';
 msg[1] = '1';

 }

32

 //If string 2 is being picked
 if(nut_to_fret_press2 == 0)
 {
 //send G4 open
 tone(speakerPin,392);
 delay(150);
 msg[0] = 'c';
 msg[1] = '0';
 }
 else if((nut_to_fret_press2 > 33.33) && (nut_to_fret_press2 < 35))
 {
 //send G#4 1st
 tone(speakerPin,415);
 delay(150);
 msg[0] = 'c';
 msg[1] = '1';

 }
 else if((nut_to_fret_press2 > 31.67) && (nut_to_fret_press2 < 33.33))
 {
 //send A4 2nd
 tone(speakerPin,440);
 delay(150);
 msg[0] = 'd';
 msg[1] = '0';

 }

 else if((nut_to_fret_press2 > 30) && (nut_to_fret_press2 < 31.67))
 {
 //send A#4 3rd
 tone(speakerPin,466);
 delay(150);
 msg[0] = 'd';
 msg[1] = '1';

 }
 else if((nut_to_fret_press2 > 28.33) && (nut_to_fret_press2 < 30))
 {
 //send B4 4th
 tone(speakerPin,494);
 delay(150);
 msg[0] = 'e';
 msg[1] = '0';

 }
 else if((nut_to_fret_press2 > 26.67) && (nut_to_fret_press2 < 28.33))

33

 {
 //send C5 5th
 tone(speakerPin,523);
 delay(150);
 msg[0] = 'f';
 msg[1] = '0';

 }

 else if((nut_to_fret_press2 > 25) && (nut_to_fret_press2 < 26.67))
 {
 //send C#5 6th
 tone(speakerPin,554);
 delay(150);
 msg[0] = 'f';
 msg[1] = '1';

 }
 else if((nut_to_fret_press2 > 23.33) && (nut_to_fret_press2 < 25))
 {
 //send D5 7th
 tone(speakerPin,587);
 delay(150);
 msg[0] = 'g';
 msg[1] = '0';

 }

 else if((nut_to_fret_press2 > 21.67) && (nut_to_fret_press2 < 23.33))
 {
 //send D#5 8th
 tone(speakerPin,622);
 delay(150);
 msg[0] = 'g';
 msg[1] = '1';

 }

 else if((nut_to_fret_press2 > 20) && (nut_to_fret_press2 < 21.67))
 {
 //send E5 9th
 tone(speakerPin,659);
 delay(150);
 msg[0] = 'a';
 msg[1] = '0';

 }
 else if((nut_to_fret_press2 > 18.33) && (nut_to_fret_press2 < 20))

34

 {
 //send F5 10th
 tone(speakerPin,698);
 delay(150);
 msg[0] = 'a';
 msg[1] = '1';

 }
 else if((nut_to_fret_press2 > 16.67) && (nut_to_fret_press2 < 18.33))
 {
 //send F#5 11th
 tone(speakerPin,740);
 delay(150);
 msg[0] = 'b';
 msg[1] = '0';

 }

 //If string 3 is being picked
 if(nut_to_fret_press3 == 0)
 {
 //send G4 open
 tone(speakerPin,392);
 delay(150);
 msg[0] = 'e';
 msg[1] = '0';
 }
 else if((nut_to_fret_press3 > 33.33) && (nut_to_fret_press3 < 35))
 {
 //send G#4 1st
 tone(speakerPin,415);
 delay(150);
 msg[0] = 'f';
 msg[1] = '0';

 }
 else if((nut_to_fret_press3 > 31.67) && (nut_to_fret_press3 < 33.33))
 {
 //send A4 2nd
 tone(speakerPin,440);
 delay(150);
 msg[0] = 'f';
 msg[1] = '1';

 }

35

 else if((nut_to_fret_press3 > 30) && (nut_to_fret_press3 < 31.67))
 {
 //send A#4 3rd
 tone(speakerPin,466);
 delay(150);
 msg[0] = 'g';
 msg[1] = '0';

 }
 else if((nut_to_fret_press3 > 28.33) && (nut_to_fret_press3 < 30))
 {
 //send B4 4th
 tone(speakerPin,494);
 delay(150);
 msg[0] = 'g';
 msg[1] = '1';

 }
 else if((nut_to_fret_press3 > 26.67) && (nut_to_fret_press3 < 28.33))
 {
 //send C5 5th
 tone(speakerPin,523);
 delay(150);
 msg[0] = 'a';
 msg[1] = '0';

 }

 else if((nut_to_fret_press3 > 25) && (nut_to_fret_press3 < 26.67))
 {
 //send C#5 6th
 tone(speakerPin,554);
 delay(150);
 msg[0] = 'a';
 msg[1] = '1';

 }
 else if((nut_to_fret_press3 > 23.33) && (nut_to_fret_press3 < 25))
 {
 //send D5 7th
 tone(speakerPin,587);
 delay(150);
 msg[0] = 'b';
 msg[1] = '0';

 }

36

 else if((nut_to_fret_press3 > 21.67) && (nut_to_fret_press3 < 23.33))
 {
 //send D#5 8th
 tone(speakerPin,622);
 delay(150);
 msg[0] = 'c';
 msg[1] = '0';

 }

 else if((nut_to_fret_press3 > 20) && (nut_to_fret_press3 < 21.67))
 {
 //send E5 9th
 tone(speakerPin,659);
 delay(150);
 msg[0] = 'c';
 msg[1] = '1';

 }
 else if((nut_to_fret_press3 > 18.33) && (nut_to_fret_press3 < 20))
 {
 //send F5 10th
 tone(speakerPin,698);
 delay(150);
 msg[0] = 'd';
 msg[1] = '0';

 }
 else if((nut_to_fret_press3 > 16.67) && (nut_to_fret_press3 < 18.33))
 {
 //send F#5 11th
 tone(speakerPin,740);
 delay(150);
 msg[0] = 'd';
 msg[1] = '1';

 }

 //If string 4 is being picked
 if(nut_to_fret_press4 == 0)
 {
 //send G4 open
 //tone(speakerPin,392);
 //delay(150);
 msg[0] = 'a';

37

 msg[1] = '0';
 }
 else if((nut_to_fret_press4 > 33.33) && (nut_to_fret_press4 < 35))
 {
 //send G#4 1st
 //tone(speakerPin,415);
 //delay(150);
 msg[0] = 'a';
 msg[1] = '1';

 }
 else if((nut_to_fret_press4 > 31.67) && (nut_to_fret_press4 < 33.33))
 {
 //send A4 2nd
 //tone(speakerPin,440);
 //delay(150);
 msg[0] = 'b';
 msg[1] = '0';

 }

 else if((nut_to_fret_press4 > 30) && (nut_to_fret_press4 < 31.67))
 {
 //send A#4 3rd
 //tone(speakerPin,466);
 //delay(150);
 msg[0] = 'c';
 msg[1] = '0';

 }
 else if((nut_to_fret_press4 > 28.33) && (nut_to_fret_press4 < 30))
 {
 //send B4 4th
 //tone(speakerPin,494);
 //delay(150);
 msg[0] = 'c';
 msg[1] = '1';

 }
 else if((nut_to_fret_press4 > 26.67) && (nut_to_fret_press4 < 28.33))
 {
 //send C5 5th
 //tone(speakerPin,523);
 //delay(150);
 msg[0] = 'd';
 msg[1] = '0';

 }

38

 else if((nut_to_fret_press4 > 25) && (nut_to_fret_press4 < 26.67))
 {
 //send C#5 6th
 //tone(speakerPin,554);
 //delay(150);
 msg[0] = 'd';
 msg[1] = '1';

 }
 else if((nut_to_fret_press4 > 23.33) && (nut_to_fret_press4 < 25))
 {
 //send D5 7th
 //tone(speakerPin,587);
 //delay(150);
 msg[0] = 'e';
 msg[1] = '0';

 }

 else if((nut_to_fret_press4 > 21.67) && (nut_to_fret_press4 < 23.33))
 {
 //send D#5 8th
 //tone(speakerPin,622);
 //delay(150);
 msg[0] = 'f';
 msg[1] = '0';

 }

 else if((nut_to_fret_press4 > 20) && (nut_to_fret_press4 < 21.67))
 {
 //send E5 9th
 //tone(speakerPin,659);
 //delay(150);
 msg[0] = 'f';
 msg[1] = '1';

 }
 else if((nut_to_fret_press4 > 18.33) && (nut_to_fret_press4 < 20))
 {
 //send F5 10th
 //tone(speakerPin,698);
 //delay(150);
 msg[0] = 'g';
 msg[1] = '0';

 }

39

 else if((nut_to_fret_press4 > 16.67) && (nut_to_fret_press4 < 18.33))
 {
 //send F#5 11th
 //tone(speakerPin,740);
 //delay(150);
 msg[0] = 'g';
 msg[1] = '1';
 }

 noTone(speakerPin);

 //Send the data into the receiver
 vw_send((uint8_t *)msg, 2);
 vw_wait_tx();
 delay(150);
}

//aditional function
long microsecondsToInches(long microseconds)
{
 return microseconds / 74 / 2;
}

long microsecondsToCentimeters(long microseconds)
{
 return microseconds / 29 / 2;
}

float voltageToCentimeters(int voltage_in)
{
 return voltage_in * .0049;
}

Right Hand implementation

/*
 *
 * DDS Sine Generator mit ATMEGS 168
 * Timer2 generates the 31250 KHz Clock Interrupt
 *
 * KHM 2009 / Martin Nawrath
 * Kunsthochschule fuer Medien Koeln
 * Academy of Media Arts Cologne
 * Modified by Satyo Iswara UIUC 2012

40

 */

#include "avr/pgmspace.h"
#include <VirtualWire.h>

// table of 256 sine values / one sine period / stored in flash memory
PROGMEM prog_uchar sine256[] = {

127,130,133,136,139,143,146,149,152,155,158,161,164,167,170,173,176,178,181,184,187,190,192,195,
198,200,203,205,208,210,212,215,217,219,221,223,225,227,229,231,233,234,236,238,239,240,

242,243,244,245,247,248,249,249,250,251,252,252,253,253,253,254,254,254,254,254,254,254,253,253,
253,252,252,251,250,249,249,248,247,245,244,243,242,240,239,238,236,234,233,231,229,227,225,223,

221,219,217,215,212,210,208,205,203,200,198,195,192,190,187,184,181,178,176,173,170,167,164,161,
158,155,152,149,146,143,139,136,133,130,127,124,121,118,115,111,108,105,102,99,96,93,90,87,84,81,
78,

76,73,70,67,64,62,59,56,54,51,49,46,44,42,39,37,35,33,31,29,27,25,23,21,20,18,16,15,14,12,11,10,9,7,6
,5,5,4,3,2,2,1,1,1,0,0,0,0,0,0,0,1,1,1,2,2,3,4,5,5,6,7,9,10,11,12,14,15,16,18,20,21,23,25,27,29,31,

33,35,37,39,42,44,46,49,51,54,56,59,62,64,67,70,73,76,78,81,84,87,90,93,96,99,102,105,108,111,115,1
18,121,124

};

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))

int ledPin = 13; // LED pin 7
int testPin = 7;
int t2Pin = 6;
byte bb;

double dfreq;
// const double refclk=31372.549; // =16MHz / 510
const double refclk=31376.6; // measured

// variables used inside interrupt service declared as voilatile
volatile byte icnt; // var inside interrupt
volatile byte icnt1; // var inside interrupt
volatile byte c4ms; // counter incremented all 4ms
volatile unsigned long phaccu; // pahse accumulator
volatile unsigned long tword_m; // dds tuning word m
//add-on
volatile float reducer = 1;
volatile byte count;

41

volatile byte count2 = 0;
volatile byte adder = 0;

//flex sensor variable
int string_G = 0;
int string_C = 1;
int string_E = 2;
int string_A = 3;
double freq_G = 385;
double freq_C = 515;
double freq_E = 648;
double freq_A = 865;

//receiver pin
const int receive_pin = 3;
const int led_pin = 13;

//for dfreq
volatile byte ready = 1;
boolean pressed = false;

//dont change this setup
void setup()
{
 delay(1000);

 pinMode(ledPin, OUTPUT); // sets the digital pin as output
 Serial.begin(9600); // connect to the serial port
 Serial.println("DDS Test");

 pinMode(6, OUTPUT); // sets the digital pin as output
 pinMode(7, OUTPUT); // sets the digital pin as output
 pinMode(11, OUTPUT); // pin11= PWM output / frequency output

 Setup_timer2();

 // disable interrupts to avoid timing distortion
 //cbi (TIMSK0,TOIE0); // disable Timer0 !!! delay() is now not available
 sbi (TIMSK2,TOIE2); // enable Timer2 Interrupt

 //dfreq=1000; // initial output frequency = 1000.o Hz
 tword_m=pow(2,32)*dfreq/refclk; // calulate DDS new tuning word

 //for rx
 vw_set_rx_pin(receive_pin);
 vw_set_ptt_inverted(true);
 vw_setup(2000);
 vw_rx_start();

42

}

void loop()
{

 //rx
 uint8_t buf[VW_MAX_MESSAGE_LEN];
 uint8_t buflen = VW_MAX_MESSAGE_LEN;

 if(vw_get_message(buf, &buflen)){
 int i;
 digitalWrite(led_pin, HIGH);
 Serial.print("Got: ");
 for(i = 0; i < buflen; i++)
 {
 Serial.print(char(buf[i]));
 Serial.print(' ');
 }
 freq_G = determine_freq(char(buf[1]), char(buf[2]));
 freq_C = determine_freq(char(buf[4]), char(buf[5]));
 freq_E = determine_freq(char(buf[7]), char(buf[8]));
 freq_A = determine_freq(char(buf[10]), char(buf[11]));
 Serial.println();
 digitalWrite(led_pin, LOW);
 }
 //rx_end

 //determine frequency first

 //somehow we should store the buf[i]

// freq_G = determine_freq(buf[1], buf[2]);
// freq_C = determine_freq(buf[4], buf[5]);
// freq_E = determine_freq(buf[7], buf[8]);
// freq_A = determine_freq(buf[10], buf[11]);
 Serial.print("f_G :");
 Serial.println(freq_G);
 Serial.print("f_C :");
 Serial.println(freq_C);
 Serial.print("f_E :");
 Serial.println(freq_E);
 Serial.print("f_A :");
 Serial.println(freq_A);

 //flex_sensor

43

 if (string_pick(string_G))
 {
 ready = 0;
 //sbi (TIMSK2,TOIE2);
 dfreq = freq_G;
 Serial.println("string_g");
 pressed = true;
 }
 else if (string_pick(string_C))
 {
 ready = 0;
 //sbi (TIMSK2,TOIE2);
 dfreq = freq_C;
 Serial.println("string_c");
 pressed = true;
 }
 else if (string_pick(string_E))
 {
 ready = 0;
 //sbi (TIMSK2,TOIE2);
 dfreq = freq_E;
 Serial.println("string_e");
 pressed = true;
 }
 else if (string_pick(string_A))
 {
 ready = 0;
 //sbi (TIMSK2,TOIE2);
 dfreq = freq_A;
 Serial.println("string_a");
 pressed = true;
 }
 //flex_end

 Serial.print("f :");
 Serial.println(dfreq);

 //if (c4ms > 250) { // timer / wait fou a full second
 // c4ms=0;

 //decide frequency // determine the frequency played
 //dfreq=analogRead(0); // read Poti on analog pin 0 to adjust output frequency from 0..1023 Hz
 //dfreq = 600;

 cbi (TIMSK2,TOIE2); // disble Timer2 Interrupt
 tword_m=pow(2,32)*dfreq/refclk; // calulate DDS new tuning word
 sbi (TIMSK2,TOIE2); // enable Timer2 Interrupt

44

 if (pressed == true)
 {
 reducer = 1;
 pressed = false;
 }
 else
 {
 pressed = true;
 }

 //Serial.print(dfreq);
 //Serial.print(" ");
 //Serial.println(tword_m);
 //Serial.println(reducer);

 /*
 sbi(PORTD,6); // Test / set PORTD,7 high to observe timing with a scope
 cbi(PORTD,6); // Test /reset PORTD,7 high to observe timing with a scope
 */

 //}

}
//**
// timer2 setup
// set prscaler to 1, PWM mode to phase correct PWM, 16000000/510 = 31372.55 Hz clock
void Setup_timer2() {

// Timer2 Clock Prescaler to : 1
 sbi (TCCR2B, CS20);
 cbi (TCCR2B, CS21);
 cbi (TCCR2B, CS22);

 // Timer2 PWM Mode set to Phase Correct PWM
 cbi (TCCR2A, COM2A0); // clear Compare Match
 sbi (TCCR2A, COM2A1);

 sbi (TCCR2A, WGM20); // Mode 1 / Phase Correct PWM
 cbi (TCCR2A, WGM21);
 cbi (TCCR2B, WGM22);
}

boolean string_pick(int x)
{
 int y = analogRead(x);
 //Serial.print("int val");

45

 //Serial.println(y);
 if (y >= 430)
 {
 //Serial.println("not picked");
 return false;
 }
 else if ((y <= 430) && (y >= 409)) // 2.1 v
 {
 //Serial.println("picked");
 return true;
 }
 else if (y < 409)
 {
 return false;
 }
 else //general condition
 {
 return false;
 }
}

//determine the frequency played
double determine_freq(char note, char sharp)
{
 double freq;

 if (note == 'g')//G3
 {
 if (sharp =='0')
 {
 freq = 385.0;
 }
 else if(sharp == '1')
 {
 freq = 408.0;
 }
 }
 else if (note == 'a')
 {
 if (sharp =='0')
 {
 freq = 432.0;
 }
 else if(sharp == '1')
 {
 freq = 458.0;
 }
 }

46

 else if (note == 'b')
 {
 freq = 486.0;
 }
 else if (note == 'C')
 {
 if (sharp =='0')
 {
 freq = 515.0;
 }
 else if(sharp == '1')
 {
 freq = 545.0;
 }
 }
 else if (note == 'D')
 {
 if (sharp =='0')
 {
 freq = 578.0;
 }
 else if(sharp == '1')
 {
 freq = 612.0;
 }
 }
 else if (note == 'E')
 {
 freq = 648.0;
 }
 else if (note == 'F')
 {
 if (sharp =='0')
 {
 freq = 687.0;
 }
 else if(sharp == '1')
 {
 freq = 728.0;
 }
 }
 else if (note == 'G')//G3
 {
 if (sharp =='0')
 {
 freq = 771.0;
 }
 else if(sharp == '1')

47

 {
 freq = 817.0;
 }
 }
 else if (note == 'A')
 {
 if (sharp =='0')
 {
 freq = 865.0;
 }
 else if(sharp == '1')
 {
 freq = 917.0;
 }
 }
 else if (note == 'B')
 {
 freq = 971.0;

 }
 else if (note == 'H')
 {
 if (sharp =='0')
 {
 freq = 1029.0;
 }
 else if(sharp == '1')
 {
 freq = 1090.0;
 }
 }
 else if (note == 'I')
 {
 if (sharp =='0')
 {
 freq = 1155.0;
 }
 else if(sharp == '1')
 {
 freq = 1224.0;
 }
 }
 else if (note == 'J')
 {
 freq = 1297.0;
 }
 else if (note == 'K')
 {

48

 if (sharp =='0')
 {
 freq = 1374.0;
 }
 else if(sharp == '1')
 {
 freq = 1456.0;
 }
 }
 else if (note == 'L')//G3
 {
 if (sharp =='0')
 {
 freq = 1542.0;
 }
 else if(sharp == '1')
 {
 freq = 1634.0;
 }
 }
 else
 {
 //prevent error f != 0;
 freq = 600;
 }

 return freq;
}

//**
// Timer2 Interrupt Service at 31372,550 KHz = 32uSec
// this is the timebase REFCLOCK for the DDS generator
// FOUT = (M (REFCLK)) / (2 exp 32)
// runtime : 8 microseconds (inclusive push and pop)
ISR(TIMER2_OVF_vect) {

 sbi(PORTD,7); // Test / set PORTD,7 high to observe timing with a oscope

 phaccu=phaccu+tword_m; // soft DDS, phase accu with 32 bits
 icnt=phaccu >> 24; // use upper 8 bits for phase accu as frequency information
 // read value fron ROM sine table and send to PWM DAC

 //add-on
 count = count++;
 count2 = count2++;

 if(count == 100)
 {

49

 if ((reducer == 127))
 {
 reducer = 1;
 }
 reducer = reducer + .2;
 count = 0;
 count2 ++;
 adder = 127 - (127/reducer);
 }

 if (reducer > 68)
 {
 //ready to receive a new note
 ready = 1;
 //cbi (TIMSK2,TOIE2);
 }
 else
 {
 OCR2A=(pgm_read_byte_near(sine256 + icnt)/reducer)+adder;
 }

 //OCR2A=(pgm_read_byte_near(sine256_2 + icnt) >> reducer)+127;//"/2;" to reduce Vout to half
//determine the output analog voltage directly
 //idea divided with speed that depends on the frequency

 if(icnt1++ == 125) { // increment variable c4ms all 4 milliseconds
 c4ms++;
 icnt1=0;
 }

 cbi(PORTD,7); // reset PORTD,7
}

50

Appendix D Note Encoding

Note
real

frequency(Hz)
programmed
frequency(Hz)

Comment

G3 196 385.532 open freq string_g

G
#
3/A

b
3 207.65 408.4476

A3 220 432.74

A

#
3/B

b
3 233.08 458.4684

B3 246.94 485.731

C4 261.63 514.6262 open freq string_c

C
#
4/D

b
4 277.18 545.2131

D4 293.66 577.6292

D

#
4/E

b
4 311.13 611.9927

E4 329.63 648.3822 open freq string_e

F4 349.23 686.9354

F
#

4/G
b

4 369.99 727.7703

G4 392 771.064

G
#
4/A

b
4 415.3 816.8951

A4 440 865.48 open freq string_a

A
#
4/B

b
4 466.16 916.9367

B4 493.88 971.462

C5 523.25 1029.233

C

#
5/D

b
5 554.37 1090.446

D5 587.33 1155.278

D

#
5/E

b
5 622.25 1223.966

E5 659.26 1296.764

F5 698.46 1373.871

F

#
5/G

b
5 739.99 1455.56

G5 783.99 1542.108

G

#
5/A

b
5 830.61 1633.81

