

LED SWIM PACER

By

Jonathan Lee

Yi-Liang Chen

Final Report for ECE 445, Senior Design, Spring 2012

TA: Ryan May

2 /May 2012

Project No. 23

ii

Abstract

The LED Swim Pacer allows a swimmer to pace and improve himself. This is a sequential LED strip to be

placed underwater and allows the swimmer to see and follow the LED lights. The swimmer can set his

pace from the waterproof control box on the side of the pool. Our swim pacer consists of different

modes for the user to choose from which allows the swim coach to interact with swimmers by

controlling the speed of the pacer.

The user interface from the controller box allows easy control over the pacer and lets the swim coach

monitor the performance of the swimmer with respect to the pacer speed.

Our project design was very successful and performed as intended. There are still improvements to be

made for the power source, brightness of the LED and the programming. The process of designing the

components of this project and the in-depth tests are extensively described in this document.

iii

Contents

1. Introduction .. 1

1.1 Purpose ... 1

1.2 Function .. 1

1.3 Block Diagram ... 1

1.3.1 Main Microcontroller ... 2

1.3.2 User Interface... 2

1.3.3 LED units... 2

1.3.4 Power supply .. 2

1.4 Performance Requirements .. 2

1.5 Changes ... 2

2 Design ... 3

2.1 Design Procedure .. 3

2.1.1 Main Microcontroller ... 3

2.1.2 User Interface... 3

2.1.3 LED Units .. 3

2.1.4 Power Supply ... 3

2.2 Design details .. 4

2.2.1 Main Microcontroller ... 4

2.2.2 User Interface... 6

2.2.3 LED Units .. 7

2.2.4 Power Supply ... 8

3. Design Verification .. 9

3.1 Testing ... 9

3.1.1 LCD ... 9

3.1.2 Main Microcontroller ... 10

3.1.3 LED units... 10

3.1.4 LED strip ... 11

3.1.5 Power Supply ... 11

3.2 Discussion of results and failed verifications .. 11

iv

4. Costs .. 12

4.1 Parts .. 12

4.2 Labor ... 13

5. Conclusion ... 14

5.1 Accomplishments .. 14

5.2 Uncertainties ... 14

5.3 Ethical considerations ... 14

5.4 Future work ... 14

References .. 15

Appendix A Flow Charts, Diagrams .. 16

Appendix B Schematics .. 20

Appendix C Test Data ... 23

Appendix D Requirement and Verification Table ... 25

Appendix E Pictures.. 28

Appendix F Swim Pacer Code ... 30

1

1. Introduction
This project is brought forth by Coach Howard as he wanted a training tool to help him improve the

performance of his swimmers. There are several running pacers on the market which trains the runners

to run faster as the pace increase; however there are no swimming pacers. Coach Howard wanted a

swim pacer that allows him to interact with his swimmers by setting paces for the swimmers to follow.

This is a more efficient method than just verbally telling swimmers to swim faster or telling them how

fast they swam for the previous laps.

1.1 Purpose
We designed and built a variable speed sequential strip of LED lights which can be controlled from a

control box. This allows the user, either the coach or the swimmer, to easily alter the speed of the LED

lights. The LED strip gives a visual representation of the pace which lets the swimmers be aware of their

speed and therefore improving their pace and consistency.

1.2 Function
This LED swim pacer uses sequential LED lights to pace the swimmers. Placing it directly under the

swimming pool, it will allow the swimmer to easily spot the LED as it turns on. The swim pacer strip is in

one inch clear tubing which is simple to deploy. The waterproof control box has a display and 4 push

buttons making it easy to operate. The LED strip consists of green and red LEDs with the red ones at

each end of the strip to warn swimmers that the end of the pool is close. The red LEDs are programmed

to be faster to account for the push off from the pool wall.

1.3 Block Diagram

Figure 1 Final Block Diagram

2

Our design can be split up into two different sections, one is the user interface and the other is the LED

units. Both are controlled by the main microcontroller.

1.3.1 Main Microcontroller

The main microcontroller controls the LCD display, user button inputs and computes that data. Using

the data set by the users, it calculates the correct clock cycle and sends it out to the LED units.

1.3.2 User Interface

The user interface includes a 16 character x 2 line LCD and also four push buttons. The LCD displays the

pacer menu and prompts the users for input. The four push buttons allows the user to select the modes

and the timing he desires.

1.3.3 LED units

The LED units are a strip with a total length of 25 meters. It consists of 6 bidirectional shift registers and

each of the shift register controls eight LEDs. Each of the LEDs unit consists of two 100 ohm resistor and

two LEDs.

1.3.4 Power supply

The power supply of this pacer is six AA alkaline batteries. They will provide a total of 9 volts to the main

microcontroller. From the main microcontroller, the on board voltage regulator will provide 5 volts to

the LCD display and LED units.

1.4 Performance Requirements
One of the main requirements for the swim pacer is that it needs to be accurate to the 100ms. Several

tests for different timings were made and a stopwatch was used to measure the time. The Swim Pacer is

verified to be accurate to the 100ms from the data in Appendix C, Tables 5 to 7. The LCD also correctly

displays the intended messages and changes the messages accordingly from the user inputs. The whole

pacer is designed to be waterproof and the control box is sealed tight by using silicone sealant. The first

4 meters of LEDs are programmed to be faster and they are also tested to ensure that the pacer is still

within the 100ms accuracy. More detailed process of the verification and design are further explained

below.

1.5 Changes
One of the major changes that we made was that in the original design, we planned on using two

microcontrollers: one for controlling the user interface and the other for controlling the LED units. After

analysis and testing, we decided to use one microcontroller to control the whole pacer. This decreases

the space in the control box and makes the pacer more efficient.

3

2 Design

2.1 Design Procedure

2.1.1 Main Microcontroller

In our initial design, we plan on using two microcontrollers, one for user interface and the other for LED

units. We had programmed most of the code for the two microcontrollers; however, after analysis and

testing, we decided that one microcontroller is sufficient. Using just one microcontroller makes the

project more efficient and also save space in the control box. We also had plans to design several

microcontrollers inside the tubing but it’s more efficient to just use one microcontroller to control all the

LEDs. The whole design schematics can be found in Appendix B, Figure 20.

2.1.2 User Interface

There are several options for the user interface. We can get different LCD and buttons however, since

the ECE parts shop had a 16x2 LCD with 4 push buttons embedded, we decided to implement our user

interface design over it. We tried to reduce the buttons required for this swim pacer because we don’t

want the user interface to be too complicated for the users.

2.1.3 LED Units

We planned on making this swim pacer a sequential LED strip because it’s easy to deploy and simple for

the swimmers to utilize. Placing it under the pool also allows the swimmers to spot the lights easily

because swimmers are always looking down at a line which guides them to swim straight. We could

have reduced the LEDs to just 1 meter separation and easily decrease the amount of wiring and design

needed. However we found that it’s more suitable to make the LED in an increment distance of 50cm so

that the gap is not too big for slow swimmers. One other design is to wire all the LEDs to the

microcontroller without using any shift registers. It will end up with about 50 wires going through the

tube which is very inefficient. So for our design, only 13 wires are connected to the microcontroller and

the rest of the 50 LEDs are controlled by bidirectional shift registers built into the LED strip. This

significantly reduces the wiring needed.

2.1.4 Power Supply

In our original design, we wanted to connect four AA alkaline batteries in series and add another four AA

alkaline batteries in parallel. This will supply the microcontrollers with 6 volts. After some testing, we

decided to make the batteries by connecting 6 of them in series. This will provide 9 volts to the

microcontroller. Another design is to use an AC outlet for power, however this pacer will be placed

under the pool and we can’t afford to create electrical hazards for the swimmers. Although this will

improve the usage time of the pacer, we found it to be safer to stick with alkaline batteries.

4

2.2 Design details

2.2.1 Main Microcontroller

The main microcontroller controls both the user interface and the LED unit.

For the user interface, the microcontroller displays the menu system and also prompts the user for

inputs. Looking at Appendix A, Figure 15, it shows the flowchart of how the LCD message changes as it

responds to the user inputs. Figure 16, shows the flowchart of how the microcontroller prompt the user

for input and stores that data, waiting for the user to begin the pacer.

The swim pacer consists of 3 different modes for the users to choose from. The mode overview is in

Appendix A, Figure 13. Mode 1 allows user to select one timing for the lap, mode 2 allows users to

choose from two different timings. In mode 2, users can choose to swim at a faster pace and then a slow

pace or vice versa. In mode 3, there will be 3 different timings for the users to select from. The pacer in

mode 3 can vary from fast, slow, fast to slow, slow fast. It all depends on how the user wants to train

himself. Figure 2 below gives a general idea about the different modes

In appendix A, figure 17, it shows the microcontroller flowchart for how the timing selected by the user

get computed and sent out to the shift registers. If the speed updates or the reset button is push, the

microcontroller will act accordingly.

Mode 1:

Mode 2:

Mode 3:

1

1 2

1 2 3

Figure 2 Different timings to choose for in different modes

5

The calculation for the clock cycle time is very important because the pacer needs to be accurate to the

100ms. One of the functions of the swim pacer is that in the first 4 meters, the LEDs will move at a faster

pace to account for the push off from the pool wall. In the first calculation below, it will ignore this

function.

Not accounting for increased pace for first 4 meters

 *1000 / 50ClockCycleTime SEC (2.1)

Looking at equation 2.1, it shows how to get the clock cycle time. SEC is the timing that the user selected

and it’s converted to milliseconds by multiplying it by 1000. It is then divided by 50 LEDs. Note that there

are 51 LEDs but the one at the ends doesn’t count in the number of clock cycles. Using an example of 25

seconds, we get a clock cycle time of 500ms. This means that the first LED delays for 500ms and turns off

and the next LED will turn on and so on.

Accounting for increased pace for first 4 meters

 {[4 / (25 /)] / 2}*1000 / 8ClockCycleTime SEC (2.2)

 { {[4 / (25 /)] / 2}}*1000 / 42ClockCycleTime SEC SEC  (2.3)

For the first 4 meters, it is now programmed to run faster. Looking at equation 2.2, 4 meters is divided

by the speed that the user selected. This will give the total time to travel the first 4 meters. This time is

then divided by 2 to increase the speed and then it’s divided by 8 LEDs. 8 is the number of LEDs in the

first 4 meters.

For the rest of the swim pacer, looking at equation 2.3; the time required to swim the first 4 meters is

subtracted from the total time that the user selected. With the remaining time, it’s divided by the rest of

the LEDs. These two equations allows the pacer to be fast at the beginning and the total time for the lap

will still be the same as what the user selected.

With the rest of the modes, using the same equations just different number of LEDs, it allows the LED

strip to move at different speeds and the accuracy of each lap in mode 2 and 3 are also accurate to the

100ms.

After the main microcontroller received the data from user input, and it processes the data and

calculates the clock cycle. Then it sends out individual data input, universal clock and left/right shift

select to the 6 LED units. At the same time the microcontroller will update the LCD monitor as well. Any

adjustment from the user will be updated to the main microcontroller which will alter the speed

accordingly.

 The swim pacer code is located in Appendix F.

6

2.2.2 User Interface

The user interface consist of a 16x2 LCD and 4 push buttons. The LCD will display the menu and prompt

user for input. The push buttons allows the user to input their desired mode and timings. The detail LCD

logic diagram is in Appendix B, figure 18 and the LCD pin I/O is in Appendix B, Table 4. Figure 3 below

shows how the LCD is connected to the main microcontroller. The LCD connected by 4-bit mode which

only requires DB4 to DB7. It requires fewer wires to be connected to the microcontroller. On the bottom

of the Figure 3 circuit, are the four push buttons. Each of the buttons has a maximum rating of 24Vdc

and 50mA. Since the max current is only 50mA, the current from the power supply needs to be reduced,

that’s why there’s a 100 ohm resistor between the 5v source and switch. The power from the

microcontroller has a power of 5volts and 0.33A.

 V IR (2.4)

 /R V I

 5 / 0.33 15.1515R V A   (2.5)

Add 100 resistor

 / 5 /115.1515 0.0434I V R V A   (2.6)

The current is reduced to 0.43A which is less than it’s max current of 0.05A. This allows the buttons to

work properly.

Figure 3 LCD circuit

7

The instructions for the buttons can be found in Appendix A, Figure 14. The user interface isn’t that

complex and users can easily understand and memorize how to operate the swim pacer within minutes

of practice.

2.2.3 LED Units

The LED unit contains one 8-bit bidirectional shift register (MC74HC299N) and 8 sets of parallel LED

bulb, and each LED is connected with a 100Ω resister. The shift register gets input data, shift left/right

select, and clock signals from main microcontroller. The shift register will shift the input data to left or

right according to the select signal input, and the shift speed is determine by the clock we created in

microcontroller. The schematics can be found in Appendix B, Figure 19.

Since the LED strip is 25meters long, we calculated the wire resistance to make sure that it won’t cause

any significant resistance that will result in the design failing to work. 22 guage wires were used in the

swim pacer and we calculated the resistance for 24meters.

 (/)R l A (2.7)

 Re :0.01614 /sistivity ft (2.8)

 0.01614*78.74 1.271R ft   (2.9)

We get a resistivity of roughly 1.271 which is not significant enough to affect the bidirectional shift

register or the LEDs.

The following Figure 4 is the shift register simulation. Once the pacer begins, a high signal is sent from

the microcontroller to register 1 and the signal is shifted through all 8 LEDs and then the next register

will get a high data signal from the microcontroller and so on.

CLK

Register 1
data signal

Register 2
data signal

Register 3
data signal

Register 4
data signal

Register 5
data signal

Register 6
data signal

Figure 4 Shift Register simulation

8

In Appendix C, Figure 21, it shows the simulation for 48 LEDs. As you can see, at each clock cycle only

one LED is high. The LEDs turns on one at a time without overlapping. This is tested in our verification in

part 3.

2.2.4 Power Supply

We are using 6 AA alkaline batteries with a total of 18watts-hour. This will be used to power the main

microcontroller. The LCD and LED units will get their power from the main microcontroller.

Looking at Table 1, you can see the modules and their power usage.

Table 1 Power Supply Overview

Modules Power Usage(watts)

LED 0.1362 watts(for a pair)

Microcontrollers 0.21 watts

Shift registers 1.50 watts

LCD 1.5 watts

Total 3.3462 watts

 18 / 3.3462 5.38watt hour watts hours  (2.10)

From the equation 2.10, the 6 AA alkaline batteries can provide more than 5 hours of continuous swim

pacer usage. This is a good amount of time for a day’s swim session.

9

3. Design Verification
The testing began with verifying each of the modules individually. Once each modular section was

verified and confirmed to have the correct operation, in theory, the whole design will work correctly.

The whole system was tested together to check if they are indeed working correctly.

Please refer to Appendix D for the Requirement and Verification Table. All the instruments required to

test our project were provided by the ECE445 laboratory. The sections below describe our successful

verifications of each module.

3.1 Testing

3.1.1 LCD

The LCD needs to display the main menu when it’s turned on. Powered by the 5V from the

microcontroller, the LCD is programmed to display “Hello World”. Once that test is verified, we can

confirm that the wires and LCD are working properly. After that, the main menu is programmed in the

microcontroller and the LCD can display it correctly (Figure 5). We then tested each of the buttons to

make sure that the microcontroller is receiving the signals from them. Looking at Figure 6, it shows that

the microcontroller reads the inputs from the user and responds to the button that is pushed. When the

LCD prompted the user to select the desired timing, the microcontroller correctly read the data and

reconfirmed the timing that he selected (Figure 7). The LCD is tested and verified to be working

correctly.

Figure 5 LCD displaying the main menu

Figure 6 Reading the user inputs

Figure 7 Received correct timing from user
input

10

3.1.2 Main Microcontroller

The main microcontroller doesn’t only need to send signals to the LCD and receive data from the user

inputs; it has to calculate the correct clock cycle time according to the user input and send it to the LED

units. Referring back to part 2, design, it shows the clock cycle time equation, Equation (2.1). To test if

the microcontroller is processing the data correctly, a test speed of 25seconds was sent to the

microcontroller and after calculation, the clock cycle time is displayed on the LCD, Figure 8. This shows

that the clock cycle time is 500ms which is correct.

 *50 /1000Time ClockCycleTime LEDs (3.1)

500 *50 /1000 25secms LEDs 

From equation 3.1, it shows that the sum of each of the clock cycle time adds up to match the timing

that the user selected.

3.1.3 LED units

The LED units should light up when it receives a high signal from the shift registers and turn off

accordingly. The LED and shift registers are tested on a breadboard to confirm that they turn on and off

correctly. Looking at Figure 9, at any moment, there is only one LED lit up. Several tests on the

breadboard verify that the LED units are working as intended and passed the test. This matches with our

simulation located in Appendix C, Figure 21.

Figure 8 Clock cycle time (ms) from the test data

Figure 9 LED strip prototype on breadboard

11

3.1.4 LED strip

The LED strip has a minimum of 10 seconds (Figure 10) and maximum time of 40 seconds (Figure 11).

The program prevents the user to select times out of that range. To test if the LED strip correctly shows

a pace of 10 seconds and 40 seconds, a stop watch is used to verify that the pace is accurate to the

100ms. Refer to Appendix C, Tables 5 to 7 for the test results. Some of the times were off by more than

100ms however, this is caused by the reaction time that the stopwatch user has. Overall, the pacer is

accurate to the 100ms and passes the verification.

3.1.5 Power Supply

6 Energizer AA alkaline batteries are connected in series to provide power to the main microcontroller.

Looking at Figure 12, the input voltage from the batteries has a voltage of 8.56V. The microcontroller’s

on board voltage regulator provides 4.98V to the LCD and the LED units. This passes the verification

which required the microcontroller to provide a voltage not less than 2 volts or more than 7 volts.

3.2 Discussion of results and failed verifications
All of the verifications have passed. Each of the modules was verified individually and all of them met

the functional performance requirements. Since each of the modules worked as designed, this indicated

that our whole design should work. Combining them together, the whole project was once again

verified. We are pleased with the performance of our project as it can display the main menu once it

powers on and is able to read the timing that the user selected. Using that data, the microcontroller can

then correctly compute the right clock cycle time and send them to the bidirectional shift registers.

Figure 12 Input voltage from batteries: 8.56V
 Output voltage from regulator 4.98V

Figure 11 Minimum of 10 seconds for the
pacer

Figure 10 Maximum of 40 seconds for the
pacer

12

4. Costs

4.1 Parts

Table 2 Parts Costs

Part Name Part Number Manufacturer Quantity Retail
Cost ($)

Bulk
Purchase
Cost ($)

Actual
Cost ($)

16x2 LCD display
with 4 push

buttons

HD44780 Hitachi 1 $13.95 $8.95 Free

Arduino Mega
2560

ATmega2560 Arduino 1 $69.99 $53.95 $69.99

LED (Green) LTL-4238 Lite-On Inc. 60 $16.80 $6.00 Free

LED (Red) LTL-307EE Lite-On Inc. 40 $11.20 $4.00 Free

Wire(100ft)
22 Gauge

- Alpha 7 $34.93 $28.00 Free

Energizer alkaline
Battery AA

- Energizer 6 $9.42 $9.00 $9.42

Resister ¼ watt
100 ohm

- Ohmite 100 $15.00 $12.00 Free

Clear PVC Tubing
(1 inch) 100 ft

- Anderson
Barrows
Metals

1 $82.92 $69.69 $82.92

Clear Silicone
Sealant

00684 Dap Corning 1 $6.95 $6.90 $6.95

6.7x4.7x2 Nema
Plastic Box

PN-1324 BUD 1 $13.47 $13.00 Free

Bidirectional shift
register

MC74HC299N Motorola 6 $9.00 $6.00 Free

Dual AA battery
holder

12BH322B-GR Mouser 3 $2.61 $2.40 Free

4.5x6.5 inch
Solderable Perf

Boards

276-147 Radio Shack 6 $22.56 $19.50 Free

9Volt battery clip Keystone233 Keystone 3 $0.63 $0.30 Free

Total $309.43 $239.69 $169.28

The majority of the parts are reimbursed by the ECE department and obtained from the ECE parts shop.

We believe that we can replace the AA batteries with other types of batteries and reduce the size of the

LED module. This will decrease the size of our clear PVC tubing from 1 inch in diameter to something

thinner. It will also lower the total budget. The wires used in the LED strip could also be reduced to save

some cost. Looking at Table 4, it shows that the retail cost of one unit is $309.43. The cost of mass

13

production using the bulk purchase is roughly $239.69. The amount that our team and the department

paid for is $169.28 for this swim pacer unit.

4.2 Labor

Table 3 Labor Cost

Name Hourly
Rate($/hr)

Total hours
to complete

(hrs)

Total ($) Total x 2.5 ($)

Jonathan Lee $32/hr 150hrs $4800 $12,000

Yi-Liang Chen $32/hr 150hrs $4800 $12,000

 Grand Total $24,000

Using the equation:

Total Labor Cost($) = # of group members*ideal salary(hourly rate)*actual hours
spent*2.5(multiplier)

(4.1)

In equation 4.1, the number of group members is two and factoring in a multiplier of 2.5 for electronics

and machine shop hours, we get the total labor cost of $24,000.

The total cost of the entire project using equation 4.2, we get a final amount of $24,169.28.

Total Cost($) = Total Labor Cost($) + Total Parts Actual Costs($) (4.2)

14

5. Conclusion

5.1 Accomplishments
We are very pleased with the result of what we were able to accomplish. All the goals where met and

we were able to get the swim pacer to work during the demonstration. We managed to make our whole

product waterproof and ready to be placed under the swimming pool for testing whereas other swim

pacer groups wasn’t able to do so during the demonstration. During the testing stage, when both of our

microcontrollers failed to work, we redesigned our project immediately, changing two microcontrollers

into one. There wasn’t might needed changes in our programming and we managed to save space inside

the controller box. Although we had to make changes to the microcontroller and batteries in our design,

it didn’t hinder our project and we still managed to get the swim pacer to work accordingly.

5.2 Uncertainties
Although the swim pacer is built to be waterproof, it hasn’t yet been tested under the pool for an

extended period of time. The 100 feet tube needs to be underwater and the amount of weights needed

to keep it submerged and stable is also unconfirmed.

5.3 Ethical considerations
The safety of the users is very important and we don’t believe the project have any ethical issues

conflicting with the IEEE ethic code. IEEE Code of Ethics issue #9 states, “to avoid injuring others, their

property, reputation, or employment by false or malicious action”. Since the product will be submerged

underwater, there might be a chance of causing electric shock to users. Therefore the product will be

sealed tight and waterproofed. The main controller will also be waterproofed even though it will be on

the ground most of the time. The power is supplied by batteries, not AC line input therefore it will

reduce the potential danger of electric shock.

5.4 Future work
Due to the limited amount of time to design, build and test this project, we could not get everything the

way we wanted to. There had to be changes in our design during the built but it turns out to be better

than what we initially designed. For future work, we plan to use more powerful LED lights to allow the

swimmers to see better in outdoor pools. We also plan to make allow the controller box to be powered

by an AC outlet. This can save the trouble of changing batteries and bringing extra batteries during a

swim session. With our swim pacer built, we realized that we can cut down on the size of the tubing and

reduce the weight of the product. We also plan to make the control box wireless so that it doesn’t have

to be connected to the LED strip.

15

References

[1] “Arduino Examples”, 2012. Available at:

http://arduino.cc/en/Guide/Windows

[2] “Arduino Forum”, 2012. Available at:

http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238350686

[3] “LCD interfacing with Microcontrollers tutorial”, 2012. Available at:

http://www.8051projects.net/lcd-interfacing/lcd-4-bit.php

[4] IEEE code of ethics, 2012. Available at:

http://www.ieee.org/portal/pages/iportals/aboutus/ethics/code.html

[5] LCD Front Panel Set with HD44780 controller, 4 push buttons data sheet. Available at:

http://www.piclist.com/techref/io/lcd/panel1.htm

[6] 8-bit bidirectional shift register, MC74HC299 Data Sheet. Available at:

http://www.alldatasheet.com/datasheet-pdf/pdf/167380/MOTOROLA/MC74HC299.html

16

Appendix A Flow Charts, Diagrams

Main Menu

Mode 1

Set time

Mode 2 Mode 3

Set time Set time

Figure 13 Program Overview

Select

Mode 1

Select

Mode 2

Select

Mode 3
-

Buttons:

LCD

Increase

Time

Decrease

Time
Reset Enter

- - Reset Enter

Figure 14 Swim pacer instructions

17

Main Menu

Mode Button

Pressed

No

Yes

Start

Exit Button

Pressed

No

Display Mode

Button +, -

Pressed

Update Parameter

Value

Yes

Yes Return to

Main Menu

Exit Button

Pressed

No

No

Enter Button

Pressed

Yes Return to

Main Menu

Yes

Save Setting

No

Display Speed

Figure 15 LCD flowchart

18

Receive mode

selection

No

Yes

Start

Exit Button

Pressed

No

Request for time

inputs from user

Received time

inputs

Yes

Yes Return to

start

Exit Button

Pressed

No

No

Start Button

Pressed

Yes

Stores data

No

Calculates speed and

displays it on the LCD

Yes Return to

start

Figure 16 Microcontroller flowchart (LCD)

19

Yes

Start

Receive Start signal from

User

No

Calculates clock cycle

for shift registers

Received Stop signal from

User

No

Yes Stop signal data

to shift registers

Yes

Sends signal and clock

cycle to shift registers

Received updated speed

data from LCD

microcontroller

Yes Update clock cycle to

shift registers

No

Figure 17 Microcontroller flowchart (LED units)

20

Appendix B Schematics

Table 4 LCD pin I/O

Pin NO Symbol Function

1 VDD +5V

2 VSS Ground

3 RS Register select

4 NC No connection

5 E Read/write enable

6 R/W Read/write

7 DB1 Data bit

8 DB0 Data bit

9 DB3 Data bit

10 DB2 Data bit

11 DB5 Data bit

12 DB4 Data bit

13 DB7 Data bit

14 DB6 Data bit

15 CLED LED C(+)

16 ALED LED A(+)

17 S1 Switch 1

18 BLED LED B(+)

19 S3 Switch 3

20 S2 Switch 2

21 S4 Switch 4

22 NC No connection

23 VSS Ground

24 VDD +5V

Figure 18 LCD Logic Diagram

21

8
 b

it Sh
ift

register

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15
16

17

18

19

20

VCC

CLK

Shift Right select

Shift Left select

Data Input (left)

Data Input (right)

LED Units

100Ω

100Ω

100Ω

100Ω

100Ω

100Ω

100Ω

100Ω

100Ω

100Ω

100Ω

100Ω

100Ω

100Ω

100Ω

100Ω

MC74HC299N

Figure 19 Shift Register Schematics

22

Figure 20 Design Schematics

23

Appendix C Test Data

The following tables are testing timings for each for the 3 modes. Different times are set for the pacer

and a stop watch is used to determine the actual time for the swim pacer to run a lap. Several trials are

made and the average is at the bottom.

Table 5 Mode 1: Timing

Set time: 10 sec Set time: 25 sec Set time: 40 sec

Actual time(sec) Actual time(sec) Actual time(sec)

10.0 25.1 40.0

10.1 25.1 40.1

9.9 25.0 40.0

10.0 25.1 40.1

10.2 24.9 40.0

10.0 25.0 40.0

Average: 10.03 Average: 25.03 Average: 40.03

Figure 21 Simulation for 48 LED lights. This shows that each LED turns on and off without repeating for a distance of
25meters

24

Table 6 Mode 2: Timing

Set times: 7 sec, 13 sec Set times: 5 sec, 7 sec Set times: 10 sec, 20 sec

Actual total time(sec) Actual total time(sec) Actual total time(sec)

20.0 12.2 30.0

20.1 12.1 30.0

20.1 12.1 30.1

20.0 12.0 30.0

20.1 12.0 30.1

20.2 12.1 30.1

Average: 20.08 Average: 12.08 Average: 30.05

Table 7 Mode 3: Timing

Set times: 7 sec, 3 sec, 4 sec Set times: 7 sec, 7 sec, 12 sec Set times: 14 sec, 14 sec,10 sec

Actual total time(sec) Actual total time(sec) Actual total time(sec)

14.3 26.2 38.0

14.2 26.0 38.1

14.0 26.0 38.1

13.9 26.1 38.0

14.0 26.0 38.0

14.1 26.1 38.0

Average: 14.08 Average: 26.07 Average: 38.03

25

Appendix D Requirement and Verification Table

Table 8 System Requirements and Verifications

Requirement Verification Verification
status

(Y or N)

1. LCD display information and
interact with user inputs correctly

a. Display main menu when
the power is turned on
and the mode it’s in

b. Print and retrieve data
c. Transmit data to main

microcontroller

1. LCD display information and
interact with user inputs
correctly

a. Powered by the
microcontroller, LCD will
be tested by receiving a
test data from the LCD
microcontroller to
confirm that it’s
displaying the
information correctly

b. A test data will be sent
from the user input
which can be displayed
on the Arduino serial
monitor to confirm
accurate information is
received

c. A test data from the
user input will be
transmitted to the main
microcontroller and
these data will be
displayed on the
Arduino serial monitor
to inspect the
correctness of the data

Y

2. Main microcontroller computes
data correctly

a. Display the computed
clock cycle time on the
LCD

b. Sum of each of the clock
cycle time has to be
added up to match the
timing that the user
selected

2. Main microcontroller computes
data correctly

a. A test timing is use in
the clock calculation
equation and displayed
on the LCD to confirm
that it’s correct

b. Since the pacer has
different clock cycle
times for each sections,
the LCD will display the
total clock cycle time for

Y

26

each section and added
up to verify that the
total clock cycle time is
equal to the timing that
the user selected

3. LED unit should accurately light
up when it receives a high signal
from the shift registers

a. Turn on and off
accordingly

3. LED unit should accurately light
up when it receives a high signal
from the shift registers

a. The LED and the shift
register will be tested on
a breadboard to confirm
that it can be turned on
and off correctly from
the signal of the shift
registers

Y

4. The LED strip will have a
minimum time of 10 seconds and
maximum time of 40 seconds

a. Microcontroller only
allows users to select a
minimum of 10 seconds
and the LEDs will travel
25meters at the
minimum time of 10
seconds

b. Microcontroller only
allows users to select a
maximum speed of 40
seconds and the LEDs will
travel 25 meters at the
maximum of 40 seconds

4. The LED strip will have a
minimum time of 10 seconds
and maximum time of 40
seconds

a. The value of the time
will be displayed on the
LCD, if it is less than 10
seconds, then the test
fails. If it passes the test,
the LED strip will be
tested at a time of 10
seconds and the LEDs
needs to run a lap in 10
seconds, accurate to the
100ms. If difference is
more than 100ms, test
will fail

b. The value of the time
will be displayed on the
LCD, if it is more than 40
seconds, then the test
fails. If it passes the test,
the LED strip will be
tested at a time of 40
seconds and the LEDs
needs to run a lap in 40
seconds, accurate to the
100ms. If difference is
more than 100ms, test
will fail

Y

5. Power Supply
a. Supply +5V to the

microcontrollers

5. Power Supply
a. The power supply will be

tested with a

Y

27

multimeter to ensure
that it can power the
microcontrollers and all
six of the shift registers.
It should measure 5v for
a pass and if it’s less
than 2v or more than 7v,
then the test will fail

28

Appendix E Pictures

Figure 22 LED prototype

Figure 23 LED Strip

29

Figure 24 Control Box containing LCD, microcontroller
and batteries

Figure 25 Final LED Swim Pacer

30

Appendix F Swim Pacer Code

// set pin numbers:
/*
Swim Pacer
The circuit:
* LCD RS pin to digital pin 13
* LCD Enable pin to digital pin 12
* LCD D4 pin to digital pin 11
* LCD D5 pin to digital pin 10
* LCD D6 pin to digital pin 9
* LCD D7 pin to digital pin 8
* LCD R/W pin to ground
* switch 1 to Analog 0
* switch 2 to Analog 1
* switch 3 to Analog 2
* switch 4 to Analog 3

 */

// include the library code:
#include <LiquidCrystal.h>
// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(13, 12, 11, 10, 9, 8);
const int analogPin0 = A0;
const int analogPin1 = A1;
const int analogPin2 = A2;
const int analogPin3 = A3;
const int threshold = 100;
int analog0 = 0;
int analog1 = 0;
int analog2 = 0;
int analog3 = 0;
int entered = false;
int entersec=false;
int entersec2a=false;
int entersec2b=false;
int entersec3a=false;
int entersec3b=false;
int entersec3c=false;
int enterstart= false;
int enterstop = false;
int check = 0; // check if the timing has a 0.5 in it
int check2 =0;
int mode = 0;
float sec = 25; // time
float sec2a = 12; // time
float sec2b = 12; // time
float sec2t = 0; // time total for mode 2
float sec3a = 8; // time
float sec3b = 8; // time
float sec3c = 8; // time
float sec3t = 0; // time total for mode 3
float secinc = 0.5; // time increment
float spd=0; // speed
int sectrans = 0; // speed that is transferred to main controller
const int led1 = 26; // the number of first LED pin
const int select2 = 28;
const int led3 = 30; // the number of third LED pin
const int r1 = 32; // the number of first shift register pin
const int r2 = 34; // the number of second shift register pin
const int r3 = 36; // the number of third shift register pin
const int r4 = 38; // the number of fourth shift register pin

31

const int r5 = 40; // the number of fifth shift register pin
const int r6 = 42; // the number of sixth shift register pin
const int select = 44; // the number of the slect signal pin
const int slclk = 46; // the number of the slow clock pin
const int startbit = 48;
const int led2 = 50; // the number of second LED pin

int num=0;
int x=0; //clock number
int time=250;
int time2=250;
int time2a;
int time2b;
int time3a;
int time3b;
int time3c;

void setup()
 {
 // set the digital pin as output:
 pinMode(slclk, OUTPUT);
 pinMode(select, OUTPUT);
 pinMode(select2, OUTPUT);
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);
 pinMode(led3, OUTPUT);
 pinMode(r1, OUTPUT);
 pinMode(r2, OUTPUT);
 pinMode(r3, OUTPUT);
 pinMode(r4, OUTPUT);
 pinMode(r5, OUTPUT);
 pinMode(r6, OUTPUT);
 lcd.begin(16, 2);
 // Print a message to the LCD.
 lcd.print("SWIM PACER");
 pinMode(22, OUTPUT); // reset
 }

void loop()
{
 digitalWrite(22,HIGH);
 while (entered ==false) // when a mode is selected
 {
 entersec = false;
 entersec2a =false;
 entersec2b =false;
 entersec3a =false;
 entersec3b =false;
 entersec3c =false;
 enterstart = false;
 enterstop = false;
 lcd.setCursor(0, 1);
 lcd.print("Select Mode");
 // read the state of the pushbutton value:
 int analog0 = analogRead(analogPin0);
 int analog1 = analogRead(analogPin1);
 int analog2 = analogRead(analogPin2);
 int analog3 = analogRead(analogPin3);
 // check if the pushbutton is pressed.
 // if it is, the buttonState is HIGH:
 if (analog0 <threshold)
 {
 lcd.setCursor(0, 1);

32

 lcd.print("Mode 1 "); // display mode 1
 mode=1;
 entered=true;
 }
 if (analog1 <threshold)
 {
 lcd.setCursor(0, 1);
 lcd.print("Mode 2 "); // display mode 2
 mode=2;
 entered=true;
 }
 if (analog2 <threshold)
 {
 lcd.setCursor(0, 1);
 lcd.print("Mode 3 "); // display mode 3
 mode=3;
 entered=true;
 }
 }
// next level after mode is selected ***
 switch (mode)
 {
 case 1:
 delay(2000);
 lcd.clear();
 lcd.begin(16, 2);
 lcd.print("Mode 1 ");
 lcd.setCursor(0, 1);
 lcd.print("Select time(sec) ");
 delay(1000);
 while (entersec==false) //press 1 or 2 to increase or decrease speed
 {
 analog0 = analogRead(analogPin0);
 analog1 = analogRead(analogPin1);
 analog2 = analogRead(analogPin2);
 analog3 = analogRead(analogPin3);
 if (analog0 <threshold) //increase speed when button 1 is pushed
 {
 if (sec <= 39.5)
 {
 sec = sec + secinc;
 }
 else
 {
 sec=40;
 }
 delay(300);
 }
 if (analog1 <threshold) //decrease speed when button 1 is pushed
 {
 if (sec >= 10.5)
 {
 sec = sec - secinc;
 }
 else
 {
 sec=10;
 }
 delay(300);
 }
 if (analog2 <threshold) // enter is pressed
 {
 entersec= true;
 }
 if (analog3 <threshold) // exit is pressed
 {

33

 reset();
 }
 if (sec == 10) // set the minimum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Min is 10 sec ");
 }
 else if (sec == 40) // set the maximum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Max is 40 sec ");
 }
 else // display current timing
 {
 lcd.setCursor(0, 1);
 lcd.print(sec,1);
 lcd.print(" sec ");
 }
 }
 break;
// next level after mode2 is selected ***
 case 2:
 delay(2000);
 lcd.clear();
 lcd.begin(16, 2);
 lcd.print("Mode 2 ");
 lcd.setCursor(0, 1);
 lcd.print("Select 1st time ");
 delay(1000);
 while (entersec2a==false) //press 1 or 2 to increase or decrease speed
 {
 analog0 = analogRead(analogPin0);
 analog1 = analogRead(analogPin1);
 analog2 = analogRead(analogPin2);
 analog3 = analogRead(analogPin3);
 if (analog0 <threshold) //increase speed when button 1 is pushed
 {
 if (sec2a <= 19.5)
 {
 sec2a = sec2a + secinc;
 }
 else
 {
 sec2a=20;
 }
 delay(300);
 }
 if (analog1 <threshold) //decrease speed when button 1 is pushed
 {
 if (sec2a >= 5.5)
 {
 sec2a = sec2a - secinc;
 }
 else
 {
 sec2a=5;
 }
 delay(300);
 }
 if (analog2 <threshold) // enter is pressed
 {
 entersec2a= true;
 }
 if (analog3 <threshold) // exit is pressed
 {
 reset();

34

 }
 if (sec2a == 5) // set the minimum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Min is 5 sec ");
 }
 else if (sec2a == 20) // set the maximum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Max is 20 sec ");
 }
 else // display current timing
 {
 lcd.setCursor(0, 1);
 lcd.print(sec2a,1);
 lcd.print(" sec ");
 }
 }
 lcd.clear();
 lcd.begin(16, 2);
 lcd.print("Mode 2 ");
 lcd.setCursor(0, 1);
 lcd.print("Select 2nd time ");
 delay(1000);
 while (entersec2b==false) //press 1 or 2 to increase or decrease speed
 {
 analog0 = analogRead(analogPin0);
 analog1 = analogRead(analogPin1);
 analog2 = analogRead(analogPin2);
 analog3 = analogRead(analogPin3);
 if (analog0 <threshold) //increase speed when button 1 is pushed
 {
 if (sec2b <= 19.5)
 {
 sec2b = sec2b + secinc;
 }
 else
 {
 sec2b=20;
 }
 delay(300);
 }
 if (analog1 <threshold) //decrease speed when button 1 is pushed
 {
 if (sec2b >= 5.5)
 {
 sec2b = sec2b - secinc;
 }
 else
 {
 sec2b=5;
 }
 delay(300);
 }
 if (analog2 <threshold)
 { // enter is pressed
 entersec2b= true;
 }
 if (analog3 <threshold)
 { // exit is pressed
 reset();
 }
 if (sec2b == 5) // set the minimum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Min is 5 sec ");

35

 }
 else if (sec2b == 20) // set the maximum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Max is 20 sec ");
 }
 else // display current timing
 {
 lcd.setCursor(0, 1);
 lcd.print(sec2b,1);
 lcd.print(" sec ");
 }
 }
 break;
// next level after mode3 is selected ***
 case 3:
 delay(2000);
 lcd.clear();
 lcd.begin(16, 2);
 lcd.print("Mode 3 ");
 lcd.setCursor(0, 1);
 lcd.print("Select 1st time ");
 delay(1000);
 while (entersec3a==false) //press 1 or 2 to increase or decrease speed
 {
 analog0 = analogRead(analogPin0);
 analog1 = analogRead(analogPin1);
 analog2 = analogRead(analogPin2);
 analog3 = analogRead(analogPin3);
 if (analog0 <threshold) //increase speed when button 1 is pushed
 {
 if (sec3a <= 13.5)
 {
 sec3a = sec3a + secinc;
 }
 else
 {
 sec3a=14;
 }
 delay(300);
 }
 if (analog1 <threshold) //decrease speed when button 1 is pushed
 {
 if (sec3a >= 3.5)
 {
 sec3a = sec3a - secinc;
 }
 else
 {
 sec2b=3;
 }
 delay(300);
 }
 if (analog2 <threshold) // enter is pressed
 {
 entersec3a= true;
 }
 if (analog3 <threshold) // exit is pressed
 {
 reset();
 }
 if (sec3a == 3) // set the minimum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Min is 3 sec ");
 }

36

 else if (sec3a == 14) // set the maximum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Max is 14 sec ");
 }
 else // display current timing
 {
 lcd.setCursor(0, 1);
 lcd.print(sec3a,1);
 lcd.print(" sec ");
 }
 }
 lcd.clear();
 lcd.begin(16, 2);
 lcd.print("Mode 3 ");
 lcd.setCursor(0, 1);
 lcd.print("Select 2nd time ");
 delay(1000);
 while (entersec3b==false) //press 1 or 2 to increase or decrease speed
 {
 analog0 = analogRead(analogPin0);
 analog1 = analogRead(analogPin1);
 analog2 = analogRead(analogPin2);
 analog3 = analogRead(analogPin3);
 if (analog0 <threshold) //increase speed when button 1 is pushed
 {
 if (sec3b <= 13.5)
 {
 sec3b = sec3b + secinc;
 }
 else
 {
 sec3b=14;
 }
 delay(300);
 }
 if (analog1 <threshold) //decrease speed when button 1 is pushed
 {
 if (sec3b >= 3.5)
 {
 sec3b = sec3b - secinc;
 }
 else
 {
 sec3b=3;
 }
 delay(300);
 }
 if (analog2 <threshold) // enter is pressed
 {
 entersec3b= true;
 }
 if (analog3 <threshold) // exit is pressed
 {
 reset();
 }
 if (sec3b == 3) // set the minimum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Min is 3 sec ");
 }
 else if (sec3b == 14) // set the maximum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Max is 14 sec ");
 }

37

 else // display current timing
 {
 lcd.setCursor(0, 1);
 lcd.print(sec3b,1);
 lcd.print(" sec ");
 }
 }
 lcd.clear();
 lcd.begin(16, 2);
 lcd.print("Mode 3 ");
 lcd.setCursor(0, 1);
 lcd.print("Select 3rd time ");
 delay(1000);
 while (entersec3c==false) //press 1 or 2 to increase or decrease speed
 {
 analog0 = analogRead(analogPin0);
 analog1 = analogRead(analogPin1);
 analog2 = analogRead(analogPin2);
 analog3 = analogRead(analogPin3);
 if (analog0 <threshold) //increase speed when button 1 is pushed
 {
 if (sec3c <= 13.5)
 {
 sec3c = sec3c + secinc;
 }
 else
 {
 sec3c=14;
 }
 delay(300);
 }
 if (analog1 <threshold) //decrease speed when button 1 is pushed
 {
 if (sec3c >= 3.5)
 {
 sec3c = sec3c - secinc;
 }
 else
 {
 sec3c=3;
 }
 delay(300);
 }
 if (analog2 <threshold) // enter is pressed
 {
 entersec3c= true;
 }
 if (analog3 <threshold) // exit is pressed
 {
 reset();
 }
 if (sec3c == 3) // set the minimum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Min is 3 sec ");
 }
 else if (sec3c == 14) // set the maximum timing
 {
 lcd.setCursor(0, 1);
 lcd.print("Max is 14 sec ");
 }
 else // display current timing
 {
 lcd.setCursor(0, 1);
 lcd.print(sec3c,1);
 lcd.print(" sec ");

38

 }
 }
 break;
 }
// next level after timing is selected - show time***
 switch (mode)
 {
 case 1:
 lcd.setCursor(0, 1); //confirm the timing that user entered
 lcd.print("Entered ");
 lcd.print(sec,1);
 lcd.print("sec");
 delay(2000);
 break;
 case 2:
 lcd.setCursor(0, 0);
 lcd.print("Mode 2");
 lcd.setCursor(0, 1); //confirm the timing that user entered
 lcd.print("Entered ");
 lcd.print(sec2a,1);
 lcd.print("sec ");
 lcd.print(sec2b,1);
 lcd.print("sec");
 delay(1500);
 for (int positionCounter = 0; positionCounter < 11; positionCounter++)
 {
 // scroll one position left:
 lcd.setCursor(positionCounter, 0);
 lcd.print(" Mode 2");
 lcd.scrollDisplayLeft();
 // wait a bit:
 delay(150);
 }
 delay(1000);
 lcd.setCursor(0, 0);
 lcd.print("Mode 2");
 break;
 case 3:
 lcd.setCursor(0, 0);
 lcd.print("Mode 3");
 lcd.setCursor(0, 1); //confirm the timing that user entered
 lcd.print("Entered ");
 lcd.print(sec3a,1);
 lcd.print("sec ");
 lcd.print(sec3b,1);
 lcd.print("sec ");
 lcd.print(sec3c,1);
 lcd.print("sec");
 delay(1500);
 for (int positionCounter = 0; positionCounter < 20; positionCounter++)
 {
 // scroll one position left:
 lcd.setCursor(positionCounter, 0);
 lcd.print(" Mode 3");
 lcd.scrollDisplayLeft();
 // wait a bit:
 delay(150);
 }
 delay(1000);
 lcd.setCursor(0, 0);
 lcd.print("Mode 3");
 break;
 }
 // next level after timing is selected -- ask to start and show total
time***
 lcd.begin(16, 2);

39

 while (enterstart==false) //checks if the user began the swim pacer
 {
 lcd.setCursor(0, 0);
 lcd.print("Press 3 to Start");
 switch (mode)
 {
 case 1:
 lcd.setCursor(0, 1); //confirm the timing that user entered
 lcd.print("Total time:");
 lcd.print(sec,1);
 lcd.print("s");
 break;
 case 2:
 lcd.setCursor(0, 1); //confirm the timing that user entered
 lcd.print("Total time:");
 sec2t = sec2a + sec2b;
 lcd.print(sec2t,1);
 lcd.print("s");
 break;
 case 3:
 lcd.setCursor(0, 1); //confirm the timing that user entered
 lcd.print("Total time:");
 sec3t = sec3a + sec3b +sec3c;
 lcd.print(sec3t,1);
 lcd.print("s");
 break;
 }
 analog0 = analogRead(analogPin0);
 analog1 = analogRead(analogPin1);
 analog2 = analogRead(analogPin2);
 analog3 = analogRead(analogPin3);
 if (analog2 <threshold)
 {
 switch (mode)
 {
 case 1:
 spd =25/sec;
 break;
 case 2:
 spd =25/sec2t;
 break;
 case 3:
 spd =25/sec3t;
 break;
 }
 enterstart = true;
 }
 if (analog3 <threshold) // exit is pressed
 {
 reset();
 }
 }
 switch (mode)
 {
 case 1:
 lcd.begin(16, 2);
 lcd.print("Start Pacer");
 lcd.setCursor(0, 1);
 lcd.print(spd);
 lcd.print("m/s ");
 lcd.print(sec,1);
 lcd.print("s");
 while (enterstop==false) //swim pacer begins, display the speed and time
 {
 analog3 = analogRead(analogPin3);
 if (analog3 <threshold)

40

 {
 reset();
 }
 else
 pacer();
 }
 break;
 case 2:
 lcd.begin(16, 2);
 lcd.print("Start Pacer");
 lcd.setCursor(0, 1);
 lcd.print(sec2a,1);
 lcd.print("s ");
 lcd.print(sec2b,1);
 lcd.print("s");
 while (enterstop==false) //swim pacer begins, display the speed and time
 {
 analog3 = analogRead(analogPin3);
 if (analog3 <threshold)
 {
 reset();
 }
 else
 pacer2();
 }
 break;
 case 3:
 lcd.begin(16, 2);
 lcd.print("Start Pacer");
 lcd.setCursor(0, 1);
 lcd.print(sec3a,1);
 lcd.print("s ");
 lcd.print(sec3b,1);
 lcd.print("s ");
 lcd.print(sec3c,1);
 lcd.print("s ");
 while (enterstop==false) //swim pacer begins, display the speed and time
 {
 analog3 = analogRead(analogPin3);
 if (analog3 <threshold)
 {
 reset();
 }
 else
 pacer3();
 }
 break;
 }
 }
////**End
loop***//////
////**End
loop***//////
////**End
loop***//////
////**End
loop***//////

void pacer()
{
 int x = 1;
 int y = 1;
 time2= ((4/(25/sec))/2)*1000/8/2;
 time= (sec-((4/(25/sec))/2))*1000/42/2;
 for(x = 1; x < 9; x++)
 {

41

 digitalWrite(select, HIGH); //select right shift mode
 digitalWrite(select2, LOW);
 resetcheck();
 if (x==1)
 digitalWrite(led1, HIGH);
 else
 digitalWrite(led1, LOW);
 if (x==2)
 digitalWrite(led2, HIGH);
 else
 digitalWrite(led2, LOW);
 if (x==3)
 digitalWrite(led3, HIGH);
 else
 digitalWrite(led3, LOW);
 if (x==4)
 digitalWrite(r1, HIGH);
 else
 digitalWrite(r1, LOW);

 digitalWrite(slclk, HIGH); // set the clock high
 delay(time2); // wait for half second
 digitalWrite(slclk, LOW); // set the clock low
 delay(time2); // wait for half second
 }
 for(x = 9; x < 52; x++)
 {
 digitalWrite(select, HIGH); //select right shift mode
 digitalWrite(select2, LOW);
 resetcheck();
 if (x==12)
 digitalWrite(r2, HIGH);
 else
 digitalWrite(r2, LOW);
 if (x==20)
 digitalWrite(r3, HIGH);
 else
 digitalWrite(r3, LOW);
 if (x==28)
 digitalWrite(r4, HIGH);
 else
 digitalWrite(r4, LOW);
 if (x==36)
 digitalWrite(r5, HIGH);
 else
 digitalWrite(r5, LOW);
 if (x==44)
 digitalWrite(r6, HIGH);
 else
 digitalWrite(r6, LOW);

 digitalWrite(slclk, HIGH); // set the clock high
 delay(time); // wait for half second
 digitalWrite(slclk, LOW); // set the clock low
 delay(time); // wait for half second
 }
 x=1;
 digitalWrite(select, LOW); //select left shift mode
 digitalWrite(select2, HIGH);

 for(y = 2; y < 9; y++)
 {
 resetcheck();
 digitalWrite(slclk, HIGH);
 delay(time2);
 digitalWrite(slclk, LOW);

42

 delay(time2);
 }
 for(y = 9; y < 52; y++)
 {
 resetcheck();
 if (y==9)
 digitalWrite(r5, HIGH);
 else
 digitalWrite(r5, LOW);
 if (y==17)
 digitalWrite(r4, HIGH);
 else
 digitalWrite(r4, LOW);
 if (y==25)
 digitalWrite(r3, HIGH);
 else
 digitalWrite(r3, LOW);
 if (y==33)
 digitalWrite(r2, HIGH);
 else
 digitalWrite(r2, LOW);
 if (y==41)
 digitalWrite(r1, HIGH);
 else
 digitalWrite(r1, LOW);
 if (y==49)
 digitalWrite(led3, HIGH);
 else
 digitalWrite(led3, LOW);
 if (y==50)
 digitalWrite(led2, HIGH);
 else
 digitalWrite(led2, LOW);

 if (y==51)
 digitalWrite(led1, HIGH);
 else
 digitalWrite(led1, LOW);
 if (y==51)
 {
 digitalWrite(slclk, HIGH);
 delay(10);
 digitalWrite(slclk, LOW);
 delay(10);
 x=1;
 }
 else
 {
 digitalWrite(slclk, HIGH);
 delay(time);
 digitalWrite(slclk, LOW);
 delay(time);
 x=1;
 }
 }
}
///***

void pacer2()
{
 int x = 1;
 int y = 1;
 time2= ((4/(12.5/sec2a))/2)*1000/8/2;
 time2a= (sec2a-((4/(12.5/sec2a))/2))*1000/17/2;
 time2b = sec2b *1000 /25/2;
 digitalWrite(select, HIGH); //select right shift mode

43

 digitalWrite(select2, LOW);
 for(x = 1; x < 9; x++)
 {
 resetcheck();
 if (x==1)
 digitalWrite(led1, HIGH);
 else
 digitalWrite(led1, LOW);
 if (x==2)
 digitalWrite(led2, HIGH);
 else
 digitalWrite(led2, LOW);
 if (x==3)
 digitalWrite(led3, HIGH);
 else
 digitalWrite(led3, LOW);
 if (x==4)
 digitalWrite(r1, HIGH);
 else
 digitalWrite(r1, LOW);

 digitalWrite(slclk, HIGH); // set the clock high
 delay(time2); // wait for half second
 digitalWrite(slclk, LOW); // set the clock low
 delay(time2); // wait for half second
 }
 for(x = 9; x < 26; x++)
 {
 resetcheck();
 digitalWrite(select, HIGH); //select right shift mode
 digitalWrite(select2, LOW);
 resetcheck();
 if (x==12)
 digitalWrite(r2, HIGH);
 else
 digitalWrite(r2, LOW);
 if (x==20)
 digitalWrite(r3, HIGH);
 else
 digitalWrite(r3, LOW);
 digitalWrite(slclk, HIGH); // set the clock high
 delay(time2a); // wait for half second
 digitalWrite(slclk, LOW); // set the clock low
 delay(time2a); // wait for half second
 }
 for(x = 26; x < 52; x++)
 {
 resetcheck();
 if (x==20)
 digitalWrite(r3, HIGH);
 else
 digitalWrite(r3, LOW);
 if (x==28)
 digitalWrite(r4, HIGH);
 else
 digitalWrite(r4, LOW);
 if (x==36)
 digitalWrite(r5, HIGH);
 else
 digitalWrite(r5, LOW);
 if (x==44)
 digitalWrite(r6, HIGH);
 else
 digitalWrite(r6, LOW);
 digitalWrite(slclk, HIGH); // set the clock high
 delay(time2b); // wait for half second

44

 digitalWrite(slclk, LOW); // set the clock low
 delay(time2b); // wait for half second
 }
 x=1;
 digitalWrite(select, LOW); //select left shift mode
 digitalWrite(select2, HIGH);
 for(y = 2; y < 9; y++)
 {
 resetcheck();
 digitalWrite(slclk, HIGH);
 delay(time2);
 digitalWrite(slclk, LOW);
 delay(time2);
 }
 for(y = 9; y < 26; y++)
 {
 resetcheck();
 if (y==9)
 digitalWrite(r5, HIGH);
 else
 digitalWrite(r5, LOW);
 if (y==17)
 digitalWrite(r4, HIGH);
 else
 digitalWrite(r4, LOW);
 if (y==25)
 digitalWrite(r3, HIGH);
 else
 digitalWrite(r3, LOW);

 digitalWrite(slclk, HIGH);
 delay(time2a);
 digitalWrite(slclk, LOW);
 delay(time2a);
 x=1;
 }
 for(y = 26; y < 52; y++)
 {
 resetcheck();
 if (y==25)
 digitalWrite(r3, HIGH);
 else
 digitalWrite(r3, LOW);
 if (y==33)
 digitalWrite(r2, HIGH);
 else
 digitalWrite(r2, LOW);
 if (y==41)
 digitalWrite(r1, HIGH);
 else
 digitalWrite(r1, LOW);
 if (y==49)
 digitalWrite(led3, HIGH);
 else
 digitalWrite(led3, LOW);
 if (y==50)
 digitalWrite(led2, HIGH);
 else
 digitalWrite(led2, LOW);
 if (y==51)
 digitalWrite(led1, HIGH);
 else
 digitalWrite(led1, LOW);
 if (y==51)
 {
 digitalWrite(slclk, HIGH);

45

 delay(10);
 digitalWrite(slclk, LOW);
 delay(10);
 }
 else
 {
 digitalWrite(slclk, HIGH);
 delay(time2b);
 digitalWrite(slclk, LOW);
 delay(time2b);
 }
 }
}

///***
void pacer3()
{
 int x = 1;
 int y = 1;
 time2= ((4/((25/3)/sec3a))/2)*1000/8/2;
 time3a= (sec3a-((4/((25/3)/sec3a))/2))*1000/9/2;
 time3b = sec3b *1000 /17/2;
 time3c = sec3c*1000/16/2;
 digitalWrite(select, HIGH); //select right shift mode
 digitalWrite(select2, LOW);
 for(x = 1; x < 9; x++)
 {
 resetcheck();
 if (x==1)
 digitalWrite(led1, HIGH);
 else
 digitalWrite(led1, LOW);
 if (x==2)
 digitalWrite(led2, HIGH);
 else
 digitalWrite(led2, LOW);
 if (x==3)
 digitalWrite(led3, HIGH);
 else
 digitalWrite(led3, LOW);
 if (x==4)
 digitalWrite(r1, HIGH);
 else
 digitalWrite(r1, LOW);
 digitalWrite(slclk, HIGH); // set the clock high
 delay(time2); // wait for half second
 digitalWrite(slclk, LOW); // set the clock low
 delay(time2); // wait for half second
 }
 for(x = 9; x < 18; x++)
 {
 resetcheck();
 if (x==4)
 digitalWrite(r1, HIGH);
 else
 digitalWrite(r1, LOW);
 if (x==12)
 digitalWrite(r2, HIGH);
 else
 digitalWrite(r2, LOW);
 digitalWrite(slclk, HIGH); // set the clock high
 delay(time3a); // wait for half second
 digitalWrite(slclk, LOW); // set the clock low
 delay(time3a); // wait for half second
 }
 for(x = 18; x < 35; x++)

46

 {
 resetcheck();
 if (x==20)
 digitalWrite(r3, HIGH);
 else
 digitalWrite(r3, LOW);
 if (x==28)
 digitalWrite(r4, HIGH);
 else
 digitalWrite(r4, LOW);
 digitalWrite(slclk, HIGH); // set the clock high
 delay(time3b); // wait for half second
 digitalWrite(slclk, LOW); // set the clock low
 delay(time3b); // wait for half second
 }
 for(x = 35; x < 52; x++)
 {
 resetcheck();
 if (x==36)
 digitalWrite(r5, HIGH);
 else
 digitalWrite(r5, LOW);
 if (x==44)
 digitalWrite(r6, HIGH);
 else
 digitalWrite(r6, LOW);
 digitalWrite(slclk, HIGH); // set the clock high
 delay(time3c); // wait for half second
 digitalWrite(slclk, LOW); // set the clock low
 delay(time3c); // wait for half second
 }
 x=1;
 digitalWrite(select, LOW); //select left shift mode
 digitalWrite(select2, HIGH);
 for(y = 2; y < 9; y++)
 {
 resetcheck();
 digitalWrite(slclk, HIGH);
 delay(time2);
 digitalWrite(slclk, LOW);
 delay(time2);
 }
 for(y = 9; y < 18; y++)
 {
 resetcheck();
 if (y==9)
 digitalWrite(r5, HIGH);
 else
 digitalWrite(r5, LOW);
 if (y==17)
 digitalWrite(r4, HIGH);
 else
 digitalWrite(r4, LOW);
 digitalWrite(slclk, HIGH);
 delay(time3a);
 digitalWrite(slclk, LOW);
 delay(time3a);
 }
 for(y = 18; y < 35; y++)
 {
 resetcheck();
 if (y==17)
 digitalWrite(r4, HIGH);
 else
 digitalWrite(r4, LOW);
 if (y==25)

47

 digitalWrite(r3, HIGH);
 else
 digitalWrite(r3, LOW);
 if (y==33)
 digitalWrite(r2, HIGH);
 else
 digitalWrite(r2, LOW);
 digitalWrite(slclk, HIGH);
 delay(time3b);
 digitalWrite(slclk, LOW);
 delay(time3b);
 }
 for(y = 35; y < 52; y++)
 {
 resetcheck();
 if (y==41)
 digitalWrite(r1, HIGH);
 else
 digitalWrite(r1, LOW);
 if (y==49)
 digitalWrite(led3, HIGH);
 else
 digitalWrite(led3, LOW);
 if (y==50)
 digitalWrite(led2, HIGH);
 else
 digitalWrite(led2, LOW);
 if (y==51)
 digitalWrite(led1, HIGH);
 else
 digitalWrite(led1, LOW);
 if (y==51)
 {
 digitalWrite(slclk, HIGH);
 delay(10);
 digitalWrite(slclk, LOW);
 delay(10);
 }
 else
 {
 digitalWrite(slclk, HIGH);
 delay(time3c);
 digitalWrite(slclk, LOW);
 delay(time3c);
 }
 }
}

///***

void resetcheck()
{
 analog3 = analogRead(analogPin3);
 if (analog3 <threshold)
 {
 digitalWrite(22,LOW);
 digitalWrite(led1, LOW);
 digitalWrite(led2, LOW);
 digitalWrite(led3, LOW);
 digitalWrite(r1, LOW);
 digitalWrite(r2, LOW);
 digitalWrite(r3, LOW);
 digitalWrite(r4, LOW);
 digitalWrite(r5, LOW);
 digitalWrite(r6, LOW);
 asm volatile (" jmp 0");

48

 delay(300);
 reset();
 }
}

void reset()
{
 digitalWrite(22,LOW);
 asm volatile (" jmp 0");
 delay(300);
}

void modeReset()
{
 entered = false;
 entersec=false;
 entersec2a=false;
 entersec2b=false;
 entersec3a=false;
 entersec3b=false;
 entersec3c=false;
 enterstart= false;
 enterstop = false;
}

