
 1

Ice Detection & Salt-Dispensing Unit

Components of the automatic salt-dispensing robot

By

Chun-Ting Wang Lee

&&

Naman Mehta

Final Report – ECE 445

TA: Ryan May

Project No. 22

 2

Table of Contents
1. Introduction ... 3

1.1 Purpose .. 3

1.2 Project Functions ... 3

1.3 Project Block Diagram ... 3

 ... 4

I/O Board ... 6

Salt Dispensing Unit ... 6

Ice Detection Unit .. 6

PC Unit ... 6

Wireless Router Unit ... 6

Mainboard Controller Unit .. 6

2 Design ... 7

2.1 Ice detection Unit .. 7

2.1.1 Ice Detection Design-emitter ... 7

2.1.2 Ice Detection-sensor ... 8

2.1.3 Ice Detection-system .. 8

2.3 Teensy Microcontroller ... 8

2.3.1 Teensy Microcontroller Flowchart-analog input reading ... 9

2.4 Vehicle Controller .. 9

2.5 Power Supply Unit ... 10

2.6 The PC Unit .. 10

2.7 The Wireless Router Unit .. 11

2.8 The Mainboard Controller Unit (Pandaboard) .. 11

3. Design Verification .. 15

3.1 Ice detection Unit Verifications & Results ... 15

3.2 Teensy Microcontroller Verifications & Results .. 15

3.3 PC Unit, MCU, and Communication Verifications & Results ... 16

4. Costs .. 18

4.1 Parts ... 18

4.2 Labor .. 18

4.3 Total Cost ... 18

 3

5. Conclusion ... 19

5.1 Accomplishments .. 19

5.2 Uncertainties ... 19

5.3 Ethical Considerations ... 19

5.4 Wrap-up and Future work ... 19

References ... 20

Appendix A Requirement and Verification Table ... 21

1. Introduction

1.1 Purpose
Our project is an ice-detecting salt-dispensing semiautonomous robot. Our purpose can

be summarized to replacing manual labor with technology in the task of dispensing rock salt

over ice in in winter weather. With this project, we dive into fields we never explored before:

wireless communication, power, robotics, and sensors.

1.2 Project Functions
 Target Functionality:

 Remote-controlled robot movement

 Semi-autonomous robot movement

 Ice Detection

 Salt delivery on target ice (mechanical aspect)

Deliverable Functionality:

 Remote-controlled robot movement

 Semi-autonomous robot movement

 Ice Detection

1.3 Project Block Diagram

 4

 As shown in figure 1, the project is consisted of several different functional blocks:

The following diagram (figure 2) shows how the work is divided into two main portions; Naman

was in charge of the networking and computer interfacing, Tim was in charge of the analog ice

detection, salt-dispensing and input-output peripherals. The rest of the components such as

vehicle control and PSU are assigned as team collaboration components.

Figure 1 Project Block Diagram

Figure 2 Work Division Diagram

 5

Figure 3.5 – PC Unit, Wireless Router, and MCU

Figure 3 Detection & Dispensing Sub-Diagram

 6

I/O Board

The I/O Board consists of a Teensy microcontroller. We chose to do our I/O on a separate

microcontroller then the one included in the VCU because of the amount of I/O pins we

need. The ideal case would have been to send ice detection results back to the Mainboard

controller unit, which forwards the information. It would also control the salt dispensing

mechanism. The connection to the mainboard would be USB. In our deliverable, we kept this as

a separate unit for demonstration purposes, so we did not need to interface with the Mainboard

controller unit.

Salt Dispensing Unit

The unit is responsible for mechanically dispensing the salt. It would consist of a container for

the rock salt to be dispensed, a motor to control the outflow of the rock salt, and a refill

indicator circuit. Rock salt would be placed inside a container that has an extended opening that

is tilted and narrow. The outflow of rock salt would be determined by how fast the trap door by

the opening is being lifted. This unit was not implemented in the final deliverable.

Ice Detection Unit

Mounted at the front of the robot, the unit notifies the I/O Board whether there is ice in front of

the vehicle or not. Consisting of IR emitters, an array of IR sensor and some circuitry that

protect the integrity of the signal, the unit will determine the presence of ice by comparing the

amount of IR signal detected by the sensor array. The IR emitters will send out light signals that

will then be reflected by the ground below. The sensor array, monitoring the IR signals reflected

by the ground below, should pick up sufficient IR reflection, amplify it, and deliver the

information to the I/O Board.

PC Unit

The PC unit in the setup consisted of a laptop with a unix environment, wxPython, Python, and

wireless card. The PC would present a GUI interface to the user for control of the robot. The

GUI interface would have its own logic that would do some high-level tasks and then depend on

the C Backend to do the network communications to the server running on the Mainboard

Control Unit.

 Wireless Router Unit

This is a stock 802.11 wireless router, a Linksys WRT54GL in our case. Providing a network in

which the Mainboard Controller Unit can register itself with a static IP, the router serves only as

a communications medium.

Mainboard Controller Unit

This is the brains of the robot. Specifically, a TI OMAP platform named “Pandaboard.” The MCU

has a flavor of Linux installed (Ubuntu 11.10) and runs a server which talks to the C Backend of

the PC Unit. The server logic also forwards vehicular commands to the VCU. At one stage of

development, we had attached a webcam to the MCU and streamed live feed using ffserver and

 7

Figure 5 Transistor Circuit

ffmpeg, however, the webcam didn’t make it to the final deliverable due to reasons explained

in the design details.

2 Design

2.1 Ice detection Unit
Different detection methods are considered for ice detection, namely, temperature sensor and

infrared sensor. With temperature sensor, the implementation of ice detection would be more

difficult since most of the temperature sensor entails physical contact with the object under

test. The infrared sensor, on the other hand, could provide a reading without contact. In

addition, according to Meitzler et al [5], IR emitter and sensor network have been successfully

implemented to detect the thickness of ice. With numerous modifications, ice detection could

be implemented as well. Therefore, an ice detection system will be implemented with IR

emitter, and IR sensor (a photo-transistor).

2.1.1 Ice Detection Design-emitter

Before the actual detection of ice, the operation of major components (emitter, sensor) is

tested. To test the IR emitter (LTE-302), a general purpose amplifier, 2N3904, is in place to

provide a 20mA current to the IR emitter (see figure 4). To bias the transistor, a digital high (5 V)

is assumed to be Vcc, and IE is assumed to be close to IE which is about 20mA when transistor is

on. To calculate resistor values needed (R1 and R2) for biasing, the following equations are used,

and the result simulation is shown in figure 5.

Assumed:
20

5 0.65 [3]

e c

cc be

i i mA

V V V V

 Given:

100 at 1 1.2 [1]on

b c

ceV V V LED V

i i

To keep Vce=1V,
1 1

1 2.2

2.2 2.8 1R R

c onV V LED V Vc V

Vcc V V V V ic R

1 2.8 / 20 140R V mA , Since 2 2 / 3.15R ib R ic Vcc Vbe VonLED V

2 3.15 100 / 20 1.575R V mA k

Figure 4 Transistor Circuit Simulation

 8

As shown in the simulation, figure 5, the current provided to LED1 is about 20mA (21.2mA) and

LED1 is on. However, because of using a different model than LTE-301 in modeling, voltage at

LED1 is not 1.2V.

2.1.2 Ice Detection-sensor

 To detect the ice, a sensor that responses to different intensities of IR signal is required. To

implement, the counter part of the LTE-302 emitter, LTR-301 is used. The original setup of the

sensor is shown in figure 6.

However, to accommodate the analog reading ability of teensy microcontroller (up to 5 volt), a

resistor with lower value is been used. Moreover, to capture the change in the collector current

more accurately, an amplifier, LM324, and an LED are used to amplify the subtle voltage change,

as shown in figure 7. R2 and R1 are chosen so that a voltage gain of 4 is achieved by the

amplifier. According to the LM324 datasheet, 1 2 / 1 1 3 4Gain R R [4]. R3 is chosen so

that the maximum collector current under 1mW illumination (2.4mA) times the voltage gain (4)

is within 5V [6].

2.1.3 Ice Detection-system

The system for ice detection has not been tested. However, after the emitter and sensor are

built, the system will be constructed by using different surface to see how much IR light is

reflected.

2.3 Teensy Microcontroller
The teensy microcontroller is the brain of the detection and dispensing units. It is a complete

USB-based microcontroller development system, in a very small footprint. All programming is

done via the USB port. Specifically, in this project, teensy 2.0 is used because its ability to read

analog input which is not possible for its ancestor teensy 1.0, see figure 8.

Figure 7 Original Sensor Setup

Figure 6 Sensor Setup Modified

Teensy 1.0 Teensy 2.0
Figure 8 Comparison Between 2.0 and 1.0

 9

 2.3.1 Teensy Microcontroller Flowchart-analog input reading2.4 Vehicle Controller

Wild-thumper controller is our vehicle controller. It has dual 15A continuous H bridges to control

the motor and the ability to receive command from Panda-board.

Figure 10

Figure 9 Analog Input Reading

 10

 2.5 Power Supply Unit
Power supply unit consists of a darlinton pair transistor to increase current gain, it will supply 5V

at 4A.

2.6 The PC Unit
Designing the GUI Interface

 11

wxPython and the GUI

 Python is a simple, high-level programming language. wxPython is a wrapper for Python

of the GUI toolkit wxWidgets. I chose these because I believe Python is suitable for quickly

coding high-level objects and without dealing with a lot of things seen in low level languages like

memory management; wxPython is meant to quickly push objects onto the screen with simple

parameters. Instantiating a button can be as simple as creating it in one line of code and

binding it to a event handling function in another line of code.

 The ability to switch modes is coded in Python. During the RC mode, arrow-key presses

and arrow button clicks are send to the robot. During the initialization phase, the mode is

similar to RC but actions are recorded. Finally, the autonomous mode is a playback of the

directional commands send during the initialization phase, hence the robot being semi-

autonomous.

 For the PC to know whether the robot is still “alive,” I send periodic “Are you Alive?”

messages and wait for acknowledgement messages. I believe this system works as I give an

adequate time of 6 seconds in case of network issues. If the 6 seconds elapse without

acknowledgement, the robot is considered unresponsive and connection is terminated.

Designing the C Backend (client program)

 The backend of the Python/wxPython GUI is C code. It is there to connect to the robot

over the network and handle communication. It is labeled as a client program as the robot is

constantly running a server program that the client program can connect to. Messages such as

the periodic “Are you Alive?” are passed from the Python frontend down to the C client backend

and out through the network, and vise-versa. The program is mostly network socket setup and

sending/receiving over the network socket.

2.7 The Wireless Router Unit
 As this is a stock router with no real configuration other than setting up a WPA2

encrypted network, there is no real design details. All that is needed is the ability to allow static

IP configurations on hosts, which is enabled by default.

2.8 The Mainboard Controller Unit (Pandaboard)

 12

Setting up the Pandaboard

 The contents of the Pandaboard box only include the board itself. Required

components for setting up the Pandaboard include:

1. A 5V Power Supply.

The Pandaboard requires a 5V source of power, and a recommended device is

http://search.digikey.com/us/en/products/PSAC30U-050/993-1019-ND/2384432.

5V/4A needs to be delivered, and the power input barrel specs are 2.1mm ID, 5.5mm

OD with a positive tip.

2. An SD Card

A minimum 4GB SD card is recommended to hold the Linux OS.

We are using a 4GB SD/microSD card by Kingston:

http://www.newegg.com/Product/Product.aspx?Item=N82E16820134527

3. A Programming/Testing Desktop Environment

A simple HDMI cable is needed for video out to a display for

programming and testing purposes. A USB keyboard and mouse are needed, as well.

The final setup will idealy not include these, as these are not needed in the embedded

system.

http://search.digikey.com/us/en/products/PSAC30U-050/993-1019-ND/2384432
http://www.newegg.com/Product/Product.aspx?Item=N82E16820134527

 13

Getting the OS Image

 In our setup, we chose the Ubuntu 11.10 distribution of Linux. The OS image needs to

be made for Texas Instruments’ OMAP platform. These can be found through

http://omappedia.org/wiki/Ubuntu_flashing .

Putting the OS Image onto the SD Card

 After downloading, the file needs to be unarchived if it was downloaded from Ubuntu,

as they distribute gzipped images. Once unzipped, it is time to copy to the SD card. The

commands used are OS-specific, and I since I did this on OSX, I provide OSX-specific instructions:

1. (insert SD Card)

2. Unmount the SD card:

a. First, find out which device it is under /dev by running diskutil list and

figuring out which “n” disk number it is

b. Run diskutil unmountDisk /dev/disk”n” where is determined in the

above step

3. Run the following: dd if=(the ubuntu image) of=/dev/disk”n” . The process can

take quite a while, so don’t assume it is hanging.

Look at http://www.embeddedarm.com/support/faqs.php?item=10 for similar instructions on

Linux or Windows.

Powering the Pandaboard (test harness, not standalone battery power config)

The next part is powering up the Pandaboard. We used a 5V ~3amp power supply

courtesy of the parts shop. My partner, Tim, did the wiring from AC outlet to the power supply’s

power-in/GND pins and DC power out wires to a barrel-style connector since the Pandaboard

has a barrel-style power input. I would like to note that a 4 Amp supply is definitely

recommended, even though sources on the internet may say that less power can be adequate.

Less power is adequate if the Pandaboard isn’t powering the development environment we

have: HDMI out, wireless keyboard, wireless mouse. These consumed too much power that the

Pandaboard would reset during OS installation, so I had to resort to only plugging in either

keyboard or mouse.

http://omappedia.org/wiki/Ubuntu_flashing
http://www.embeddedarm.com/support/faqs.php?item=10

 14

OS and Network Related Setup

Once powered, the OS should boot and installation configuration options should be

shown. You can go through these without much guidance as it only involves simple things like

setting up time-zones. Once the desktop is reached, the right software must be present:

1. GCC toolchain. The Ubuntu OS came with this installed.

2. Text Editor. I installed Vim as it’s terminal-friendly, and since I needed

to make a choice of using a keyboard over a mouse. If you really want

to use a mouse and also have inadequate amperage from your PSU like

us, you can use an on-screen keyboard with the mouse to type.

Ensure the Pandaboard is connected to your home network. You will need to assign it a

static IP on your home network so the PC will know what IP to connect to instead of telling it

everytime in the case of a dynamic IP.

To assign a static IP, you can look at detailed instructions found here:

http://www.howtogeek.com/howto/19541/how-to-assign-a-static-ip-to-an-ubuntu-10.04-

desktop-computer/

Note: your gateway is simply the IP of your router, or whatever is the last device in your

network before going out to the internet. Whatever you set your static IP to, record it and add

an entry to your PC’s hosts file like this:

 panda 192.168.1.150

Your PC’s hosts file is simply a list of hostnames and what IPs they translate to you that you can

personally define. Usually on unix and unix-like OSes, it is /etc/hosts. To confirm you’ve set it

up correctly, have both PC and Pandaboard on the network, and ping “panda” or whatever

hostname you used for your Pandaboard from your PC.

Setting up the Webcam

During our development phase, we had made progress with streaming webcam feed from the

robot to the PC Unit. We worked with two different webcams, one rather ancient one (D-Link

DSB C300) and one Microsoft LifeCam. The first webcam, when connected to the Pandaboard,

was detected as a webcam type device in the Linux system message log, but no appropriate

 15

driver was loaded. We could not get the webcam software v4l2 (video4linux2) to play with

such an old device with the incorrect driver. After doing some research, I found out that it had

an OV 511 chip inside, and found the newest drivers for it, which dated to 2006. These drivers

were outdated as they cannot compile for the newer Linux kernel used in Ubuntu 10.10. After

attempting to rewrite the old outdated drivers, my partner gave me a Microsoft LifeCam. Linux

detected correct drivers for this right away, and I was able to move on to the second stage.

Here I used ffmpeg to capture data from the webcam and stream it with ffserver. After a day’s

worth of playing around with settings, network bandwidth, and rethinking, I was able to reduce

the streaming lag from the webcam to around twenty seconds. This was a completely

unacceptable lag that forced us to drop the webcam component. The webcam driver,

ffserver/ffmpeg, or both were performing too poorly on the embedded platform to deliver

anything close to a live video feed.

3. Design Verification
In the design verification phase, the expected performance of each component is quantified and

organized. Verification phase is a critical phase that ensures basic component-wise

requirements are met. By doing verification from bottom up, debugging should be kept at a

minimum.

3.1 Ice detection Unit Verifications & Results
Please see appendix A for verification and results.

3.2 Teensy Microcontroller Verifications & Results
Different analog inputs are successfully read, see figure 10, 11, 12, 13.

Figure 11 Input At 0V

Figure 12 Input At 1.552V

 16

An easy conversion can be made to obtain the correct analog value, using hex value FF and the

corresponding voltage 5V as a base for comparison. First is converted into 255 in decimal.

Second, the analog reading is calculated using the following formula,

The reading for input of 1.552V is then calculate to be 1.255V and 1.88V for input of 1.788V

3.3 PC Unit, MCU, and Communication Verifications & Results
Modular Testing Procedures

Condition Testing Procedure

1. Commands recorded correctly during
initialization phase

1. Does the data recorded match
keys pressed on keyboard?

2. Python code can talk to backend C
code

2. Similar to UNIX pipe, can I pipe
stdin/stdout?

3. Does the PC establish a connection
with Pandaboard and communicate
well?

3. Send 100 commands and see
how many are received

4. Auto mode path is correct? 4. Make sure the commands
send during auto mode are the
same as initialization mode

Quantitative Results (of above testing procedures)

 Test 1

Figure 14 Input At 5V
Figure 13 Input At 1.778V

 17

 Yes, positive results. Commands saved to text file and comparison shows every

directional command sent is recorded. The test was tried three times with varying amounts of

directional commands.

 Test 2

 Yes, positive results. Interface can read messages form backend and write out

commands. Flushing buffers is required.

 Test 3

 Yes, positive results. Thanks to TCP, commands send were received in-order

and all 100 were received.

 Test 4

 Yes, positive results as expected after Test 1. File I/O is almost guaranteed to

not fail. Commands recorded to file were successfully read back during auto mode.

 18

4. Costs

4.1 Parts

Part Unit Cost Quantity Actual Cost

Teensy Microcontroller $16.00 1 $16.00

Breadboard $15.00 1 $15.00

LTE-302 IR Emitter $1.95 2 $3.90

LTR-301 IR Photo-detector

2N3904 General purpose transistor $0.10 2 $0.20

DC motor $1.95 1 $1.95

LM324 Amplifier $0.95 1 $0.95

Pandaboard $250.00 1 $250.00

Resistors $0.10 15 $1.50

MC3401 Amplifier $0.50 1 $0.50

MJE800 $1.00 1 $1.00

Thumper-controller $150.00 1 $150.00

Total $441.00

4.2 Labor

4.3 Total Cost

Member Salary/hour Hours Total

Naman $50 80 $8000

Chun-Ting $50 80 $8000

Labor cost Part Cost Total

$16,000.00 $441.00 $16441.00

 19

5. Conclusion
Intensive research is done on methodology of ice detection to justify the approach to ice differentiation.

Temperature sensing was first considered, but not implemented due to the contact requirement of the

device. IR sensing, on the other hand, was proven valid by Moss et al. The basic emitter and sensor were

built and tested for their proper operation. A teensy microcontroller captures analog output from the

sensor, and digitized it for further processing. The wireless communications between controllers is

established and tested.

5.1 Accomplishments
The approach of ice detection is confirmed, basic detection circuitry is constructed and microcontroller’s

analog reading is successful. Detection circuit is able to differentiate between objects with high

reflectivity (potential ice) and objects that are not so reflective. Wireless communication is established

between MCU and the PC Unit, and software on the MCU is able to forward commands to the VCU

successfully.

5.2 Uncertainties
Although ice detection circuit is successfully constructed, the detection of ice is not completely robust

since our design only focuses on ice sheet (ice that has a flat surface), any curvature on the surface will

significant effect the result of the detection.

The semiautonomous mode operation still does not make the robot fully autonomous since it requires

initialization every time the course/path is altered. However, for the same environment (a driveway, for

example) the operation is sufficient.

5.3 Ethical Considerations
On the ethical side of things, we have to think about the safety of the end user. The end user should not

be harmed by usage of our robot. For example, exposed wires should be reduced so to not accidently

shock the end user. The software required to control the robot should not contain harmful code such as

malware. What is promised to the end user should be delivered within the reasonable bounds of

advertisement, such as accuracy of the ice detection.

5.4 Wrap-up and Future work
Building on the current deliverable, we can see the addition of the mechanical dispensing unit to the

robot as well as integrating the ice detection unit onto the robot. Bigger steps might be to make the

robot fully autonomous using a lot more processing power, code, and time. Image processing and logic

behind a fully autonomous mode would be a research topic of its own. True ice detection (at the

material science level) would be a research project of its own, as well. After reading the report of traffic

Light de-icer, we believe we can modify our ice detection circuitry to be more accurate and durable. The

improvements would involve an IR camera and software to do the distinguishing of the ice from dirt and

other various outdoor elements. This way, we avoid the calibration involved without current setup.

 20

References

[1] LTE-302 Datasheet, Lite-on electronics, Inc.

[2] LTR-301 Datasheet, Lite-on electronics, Inc.

[3] 2N3904 NPN General Purpose Amplifier Datasheet, Fairchild semiconductors. 2011

[4] LM324 Low Power Quad Operational Amplifiers, Texas Instrument. 2011

[5] An Infrared Solution to a National Priority NASA Ice Detection and Measurement Problem.

Thomas Meitzler, MI. 2007

[6] Teensy microcontroller, http://www.pjrc.com/teensy/

[7] The wxPython API found at http://www.wxpython.org/docs/api/

[8] Python 2.7.2 Documentation found at http://docs.python.org/tutorial/inputoutput.html

[9] Beej’s Guide to Network Programming http://beej.us/guide/bgnet/

[10] Rochkind, Marc J. Advanced Unix Programming. Publication Date: May 9, 2004 | ISBN-10:

0131411543. Addison-Wesley Professional; 2nd Edition.

[11] Pandaboard Ubuntu Pre-built Binaries Guide. http://omappedia.org/wiki/Ubuntu_Pre-

built_Binaries_Guide

[12] Python Subprocess information found at http://www.doughellmann.com/PyMOTW/subprocess/

[13] C Programming Reference found at http://www.cplusplus.com/reference/

[14] Kernighan, W. Brian. Ritchie, M. Dennis. The C Programming Language. Publication Date: April

1, 1988 | ISBN-10: 0131103628. Prentice Hall; 2nd Edition.

http://www.pjrc.com/teensy/
http://www.wxpython.org/docs/api/
http://docs.python.org/tutorial/inputoutput.html
http://beej.us/guide/bgnet/
http://omappedia.org/wiki/Ubuntu_Pre-built_Binaries_Guide
http://omappedia.org/wiki/Ubuntu_Pre-built_Binaries_Guide
http://www.doughellmann.com/PyMOTW/subprocess/
http://www.cplusplus.com/reference/

 21

Appendix A Requirement and Verification Table

System Requirements and Verifications

Requirement Verification Verification
status
(Y or N)

1. Ice detection
a. Emitter Von ~1.2V

measured
b. Vbe ~0.65V measured

1. Verification
a. 1.19V
b. .67V

Y
Y
Y

2. Teensy microcontroller
a. ~5V at Vcc

2. Verification
a. 5.15V

Y

