# SOLAR POWERED CONVERTER EDUCATION DISPLAY

Philip Calderone, Sierra Campbell, Luis Cruz April 26, 2012

## Outline

- Introduction of project
- Objectives
- Individual subsystems
- Successes and Challenges
- Ethical Considerations
- Recommendations

#### Introduction of Project

- Renewable energy vital for environment
- Allows individuals to see circuitry that converts sun's rays into usable power
- Compares to the mechanical power of the hand crank

## **Objectives**

- Charge a battery with a solar panel to power circuitry
- Key values from both the hand crank and solar panel displayed on mobile app
- 120VAC at the output
- Seven switches each connected to a resistor will allow for varying load

#### Hand Crank

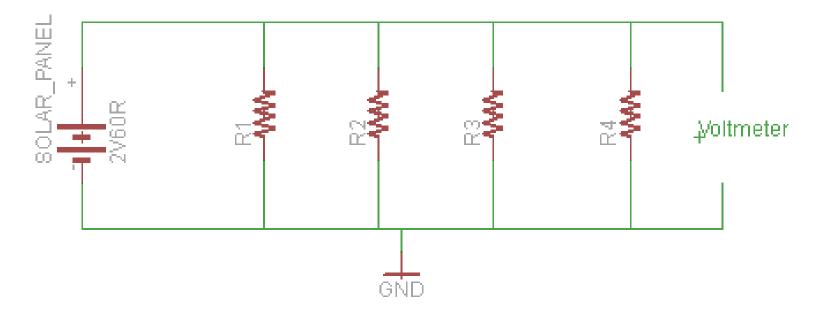
- Used to compare power produced by the solar panel
- Represents a conventional mechanical method
- 12V DC motor connected to an 8.5 cm shaft through a gear box with a 65.5:1 ratio

## Hand Crank Testing

 Used information from NASA and halved the torque of the average adult

| Maximum Torque Type       | Unpressurized suit, bare handed |                  |  |  |  |
|---------------------------|---------------------------------|------------------|--|--|--|
|                           | Mean<br>Nm (lb-in)              | SD<br>Nm (lb-in) |  |  |  |
| Maximum Torque Supination | 13.73 (121.5)                   | 3.41 (30.1)      |  |  |  |

- $P = \tau \times \omega$
- When spinning at 114 rpm average voltage=11V
- Used a 1kΩ resistor

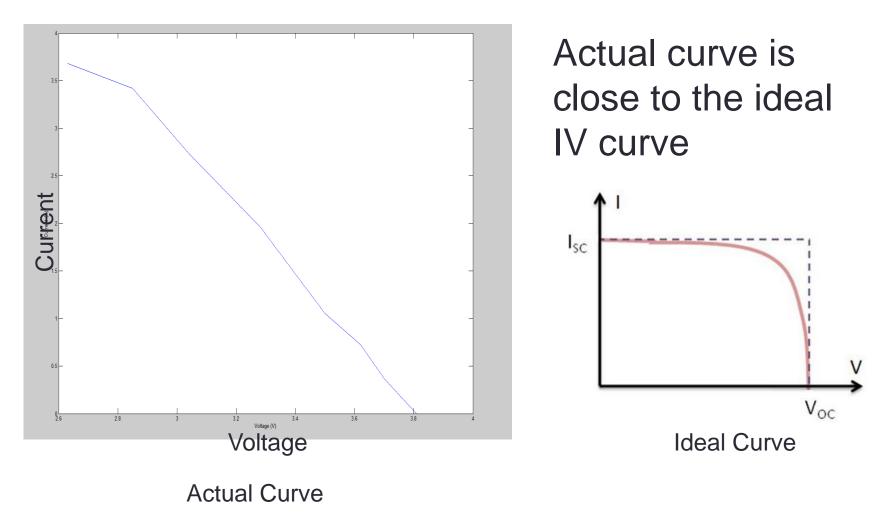

$$I = \frac{11}{1000} = 0.011A$$
$$R = 0.011 \times 11 = 0.011$$

$$P = 0.011 \times 11 = 0.121W$$

• 
$$\tau = \frac{0.121}{2\pi * \left(\frac{114}{60}\right)} = 0.0101Nm$$

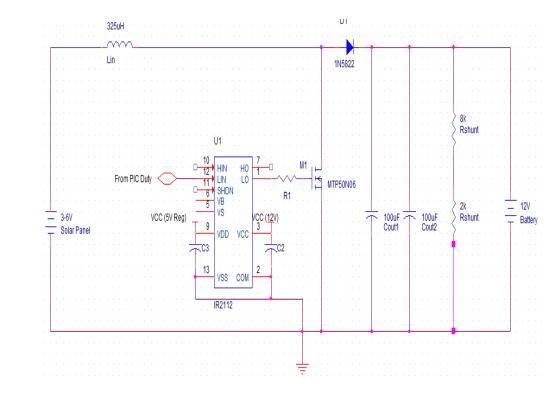
#### Solar Panel

- Six cell white panel from the Power Group
- Needed to understand the IV-characteristics
- Schematic for finding the open circuit voltage and short circuit current




## **Solar Panel Testing**

- Three tests were completed on separate days
- The third test was the most useful


| Test 3 on March 9th |                 |      |      |      |      |      |       |       |
|---------------------|-----------------|------|------|------|------|------|-------|-------|
| Ohms                | Open<br>Circuit | 10   | 5    | 3.33 | 1.67 | 1.11 | 0.83  | 0.71  |
| Voltage             | 3.81            | 3.7  | 3.62 | 3.5  | 3.28 | 3.04 | 2.85  | 2.63  |
| Current             | 0               | 0.37 | 0.72 | 1.05 | 1.97 | 2.74 | 3.42  | 3.682 |
| Power               | 0               | 1.37 | 2.62 | 3.68 | 6.46 | 8.32 | 9.747 | 9.68  |

#### **Solar Panel Testing**

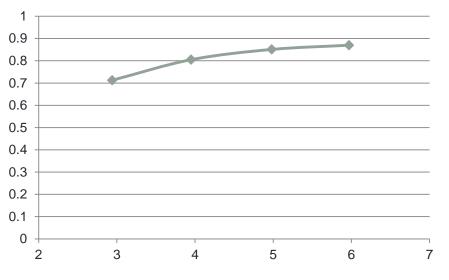


## **Charging Circuit Specifications**

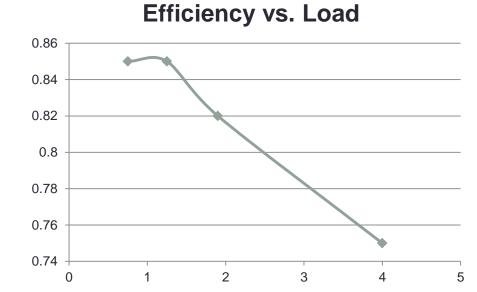
- V<sub>in</sub> = 3-6V
- V<sub>out</sub> = 13.7V
- $V_{ripple} = +/- 0.1V$
- f = 100kHz
- Receive switching signal from PIC



#### **Charging Circuit Design Considerations**


- IR2112 Low Side Gate Driver
- MTP50N06 (50V, 60A)
  - Well Oversized. Selected due to its small  $R_{ds,on} = .028\Omega$
- 1N5822 Schottky Rectifier
  - Selected for its small forward voltage drop
  - V<sub>f</sub> = 0.525V
- C = 100µF
- L = 300µH

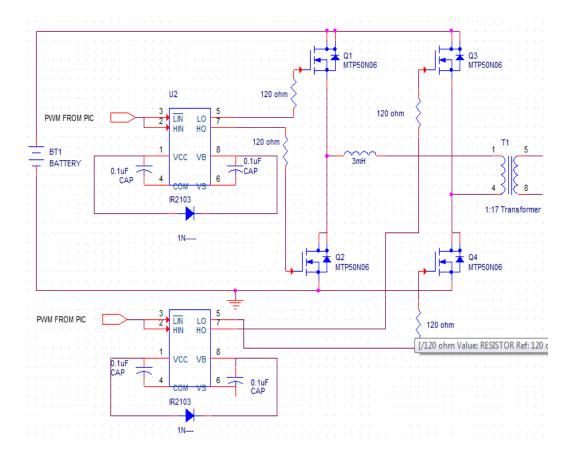
 $C = i_c * \frac{\Delta t}{\Delta V}$ 


 $L = V_L * \frac{\Delta v}{\Lambda_i}$ 

### **Charging Circuit Testing**

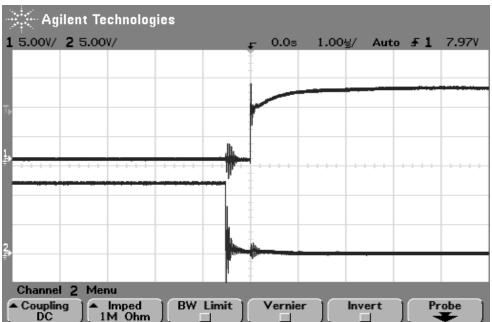
#### **Efficiency VS. Input Voltage**




| Vin |      | Vout  | Delta V | Efficiency |
|-----|------|-------|---------|------------|
|     | 2.94 | 13.71 | 0.1     | 0.71       |
|     | 3.95 | 13.68 | 0.15    | 0.8        |
|     | 4.98 | 13.76 | 0.14    | 0.85       |
|     | 5.97 | 13.72 | 0.11    | 0.87       |

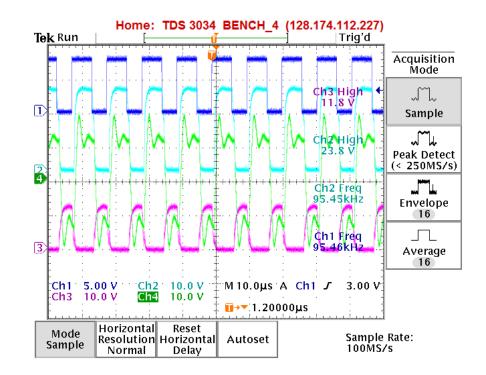


| Vin  | Vout  | Pin  | Pout | Efficiency |
|------|-------|------|------|------------|
| 4.98 | 13.71 | 0.87 | 0.74 | 0.85       |
| 4.98 | 13.76 | 1.48 | 1.26 | 0.85       |
| 4.95 | 13.72 | 2.32 | 1.91 | 0.82       |
| 4.89 | 13.73 | 5.2  | 3.9  | 0.75       |


#### **Inverter Circuit Specifications**

V<sub>in</sub> = 13.7V +/- 0.1V
V<sub>out</sub> = 120VAC
f 60Hz




#### **Inverter Circuit Design Considerations**

- IRS2003 Low/High Gate Driver
  - Selected due to built in delay time
- MTP50N06 MOSFET (50V, 60A)
  - Must handle 12V peak and 8.33A current.
  - $R_{ds,on} = 0.028\Omega$

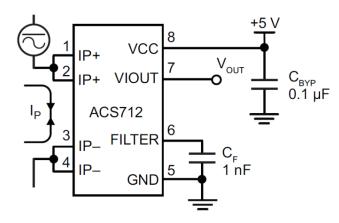


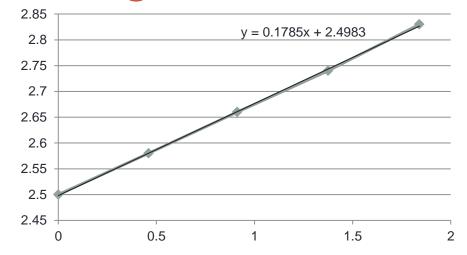
## **Inverter Circuit Testing**

- Ch1 = Switching Signal Reference
- Ch 2 = High Side Gate Drive
- Ch 3 = Low Side Gate Drive
- Ch 4 = Output Voltage Waveform



#### **Inductor Design**

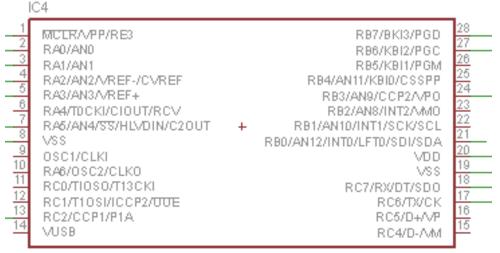

|   | turns count > core\/number                                                                                                                         | AL*                                                                        | 10                                                                           | 20                                                                           | 30                                                                           | 40                                                                           | 50                                                                           | 60                                                                           | 70                                                                           | 80                                                                           | 90                                                                           |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|   |                                                                                                                                                    | -                                                                          |                                                                              | in                                                                           | ductance                                                                     | e in m                                                                       | illihen                                                                      | ries                                                                         |                                                                              |                                                                              |                                                                              |
| ( | FT-23 -77<br>FT-37 -77<br>FT-50 -77<br>FT-50B -77<br>FT-50B -77<br>FT-82 -77<br>FT-114 -77<br>FT-114A-77<br>FT-114A-77<br>FT-140 -77<br>FT-240 -77 | 396<br>884<br>1100<br>1200<br>2400<br>1170<br>1270<br>2340<br>2250<br>2740 | .040<br>.088<br>.110<br>.120<br>.240<br>.117<br>.127<br>.234<br>.225<br>.274 | .158<br>.354<br>.440<br>.480<br>.960<br>.467<br>.508<br>.936<br>.900<br>1.10 | .356<br>.796<br>.990<br>1.08<br>2.16<br>1.05<br>1.14<br>2.13<br>2.03<br>2.47 | .634<br>1.41<br>1.76<br>1.92<br>3.84<br>1.87<br>2.03<br>3.74<br>3.60<br>4,38 | .990<br>2.21<br>2.75<br>3.00<br>6.00<br>2.93<br>3.18<br>5.85<br>5.63<br>6.85 | 1.43<br>3.18<br>3.96<br>4.32<br>8.64<br>4.21<br>4.57<br>8.42<br>8.10<br>9.86 | 1.94<br>4.33<br>6.39<br>5.88<br>11.7<br>5.73<br>6.22<br>11.4<br>11.3<br>13.4 | 2.53<br>5.66<br>7.04<br>7.68<br>15.4<br>7.49<br>8.13<br>15.0<br>14.4<br>17.5 | 3.21<br>7.16<br>8.91<br>9.72<br>19.4<br>9.48<br>10.3<br>21.4<br>18.2<br>22.2 |


| HATER:          | 45. M | 26.                        | D   | 130s  |                              | (44)  | TRACE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mart       |                   |                    |                     |      |                      |
|-----------------|-------|----------------------------|-----|-------|------------------------------|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|--------------------|---------------------|------|----------------------|
| Tornet<br>Bare  |       | 20                         |     | 40    | 00                           | 10000 | 10    | 5100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90         | 100               |                    |                     | 1    | -                    |
| 1-10H           |       | 38<br>24<br>38<br>38<br>37 | 122 |       | 2:2.6<br>148<br>2:13<br>1:05 | 219   | 221   | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 385        | 933<br>590<br>459 | 1009<br>714<br>543 | 1295<br>830<br>6631 | 1241 | 1764<br>11.56<br>882 |
| Contract of the | 2.7   | 13                         | 29  | 51 44 | -80                          | 115   | 2.57  | and the second se | 240<br>259 | 420               | 10.8<br>387        | 605                 | 768  | 121                  |

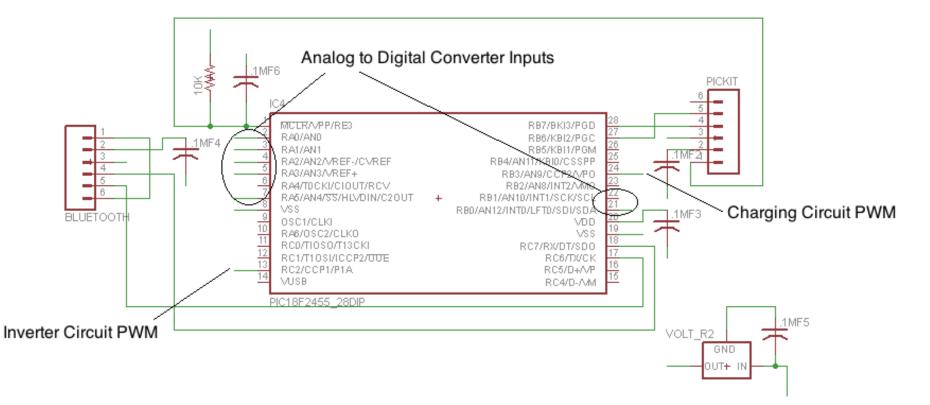
 Charging Circuit (Iron Powder Material 26)

 Inverter (Ferrite Material 77)

#### **Current Sensor Testing**

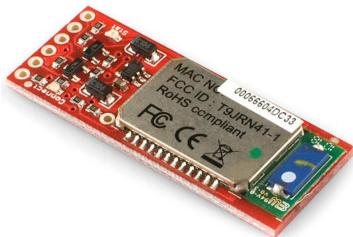






| Current sensor testing March 29 |            |          |          |      |       |  |  |
|---------------------------------|------------|----------|----------|------|-------|--|--|
|                                 |            | Measured | Vout     |      | %     |  |  |
| Voltage                         | Resistance | Current  | Expected | Vout | Error |  |  |
| 2.26                            | 1.13       | 1.84     | 2.868    | 2.83 | 1.32% |  |  |
| 1.7                             | 1.13       | 1.375    | 2.775    | 2.74 | 1.26% |  |  |
| 1.13                            | 1.13       | 0.912    | 2.6824   | 2.66 | 0.84% |  |  |
| 0.56                            | 1.13       | 0.46     | 2.592    | 2.58 | 0.46% |  |  |
| 0                               | 1.13       | 0        | 2.5      | 2.5  | 0.00% |  |  |

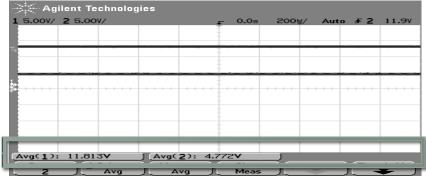
## **PIC Circuit Specifications**

- 12V to 5V Voltage Regulator
- Feedback controlled PWM signal for Charging Circuit
- 50% duty cycle signal for Inverter Circuit
- Analog to Digital Converter (ADC)
- Bluetooth connection

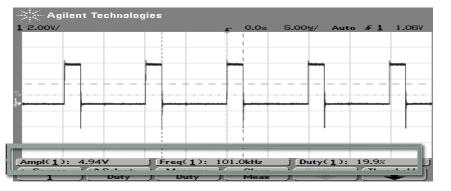



#### **PIC Schematic**

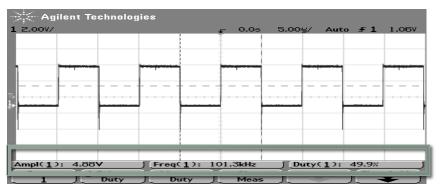



## **PIC Circuit Testing**

- Analyze regulator voltage on oscilloscope
- Analyze Charging Circuit PWM and Inverter Circuit PWM for frequency, duty cycle, and Vpp on oscilloscope
- Confirm known values from ADC with does on the app
- Confirm Bluetooth connection in Android App Testing Section




## **PIC Circuit Test Results**


12V to 5V Voltage Regulator



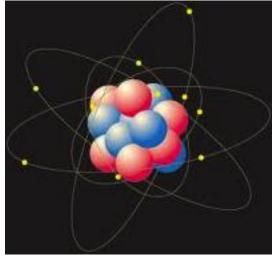
#### Charging Circuit PWM



Inverter Circuit PWM



#### PIC Circuit Test Results (cont.)

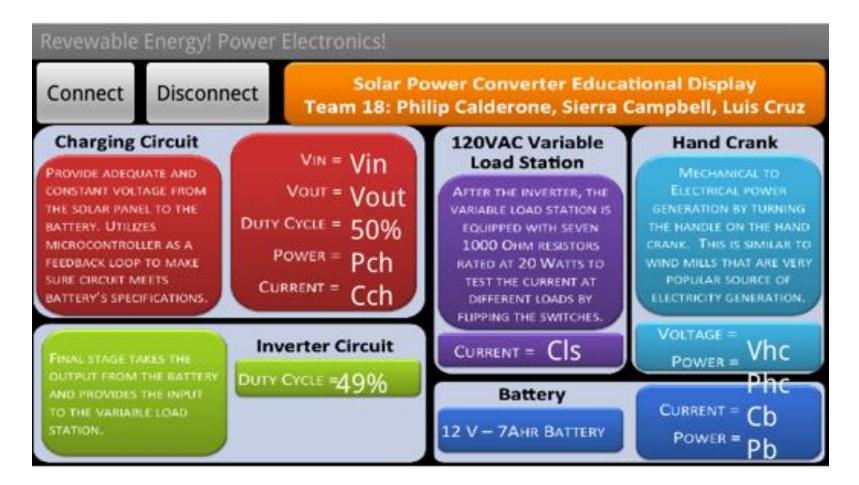

| Actual  | ADC     | Percent |
|---------|---------|---------|
| Voltage | Voltage | Error   |
| 1       | 1       | 0.00%   |
| 2       | 2       | 0.00%   |
| 3       | 3       | 0.00%   |
| 4       | 4       | 0.00%   |
| 5       | 5       | 0.00%   |
| 6       | 6       | 0.00%   |
| 7       | 8       | 14.29%  |
| 8       | 9       | 12.50%  |
| 10      | 11      | 10.00%  |
| 14      | 16      | 14.29%  |

## Android App Specifications

- Bluetooth connectivity
- Provide data such as:
  - ✓ Voltage
  - ✓ Current
  - ✓ Power
  - ✓ Duty Cycle
- Provide summary information on:
  - Charging Circuit
  - Inverter Circuit
  - 120VAC Variable Load Station
  - Hand Crank Station
  - ✓ Battery

## Android App Testing

- Test Bluetooth connection to phone
- Test Bluetooth connection through Android App
- Confirm app layout includes data and summary information




## Android App Test Results

- Bluetooth connection confirm with phone using Blue Term App
- Bluetooth connection through App confirmed through real-time updated variables

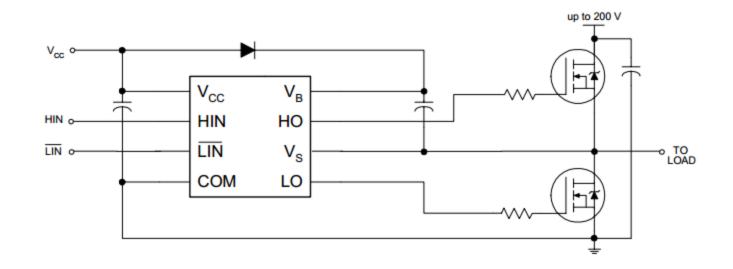


## Android App Test Results (cont.)



#### Successes

- The team was able to have individual blocks working
- Android application functional and updated in real time
- Customized box allows a person to see the circuitry
- Once PCB is recreated, the full circuitry should work


## Challenges

- Mislabeled part in Eagle created a short on the PCB and caused chips to malfunction
- Connection of PWM where output of boost circuit should have been on PIC
- Hand made transformer was not working
- The light from the panel not enough to illuminate light bulbs

### Lessons Learned

#### Read not only the datasheets but the Application Notes as well

- Bootstrap Capacitor
- Check pin connections on PCB



## **Ethical Considerations**

- Follow IEEE Code of ethics
- Needs to be safe for all individuals
  - Ensured that case was enclosed so that shock would not occur
  - Make sure wires are not exposed
  - Limit voltage
- Accurately give information regarding each component

## Recommendations

- Variable light source that mimics solar radiation pattern
- Maximum power point tracking of the solar panel
- A more realistic 60Hz sine wave at the output with a transformer
- Provide real-time pricing of electricity to be displayed on the mobile app

## Thank You

- Prof. Carney
- Justine Fortier
- Prof. Krein
- Kevin Colravy
- ECE Parts Store
- Electronic Shop
- Machine Shop

# **Questions**?