

Adaptive Lighting

ECE 445: Senior Design, Team 17

Jered Greenspan, Madhav Khanna, Sichao Wang TA: Ryan May

Introduction

- Objectives
- System Overview
- Hardware Modules and Testing
- Recommendations
- Future Work
- Ethical Considerations

Objectives

- Goal: An adaptive lighting system in which feedback from a color sensor is used to drive an RGB LED array to achieve the CCT and brightness set by the user.
- Benefits:
 - Reduces overall lighting consumption
 - Maintains a lighting environment that is
 - Constant even with changing environment
 - Set by user more pleasing lighting experience

System Overview

- Sensor Unit
 - Manages user interface
 - Reads color sensor
 - Transmits sensor data, and user setpoints
- Lighting Controller
 - Receives data
 - Control algorithm
 - Outputs PWM signals
- Lighting Unit
 - Provides constant current to drive LED array from AC input

Lighting Unit

LED Driver

- The LED driver circuit involves the following:
 - Bridge rectifier to convert 120VAC to 160VDC.
 - Controller chip which we operate as a buck converter
 - The controller will facilitate PWM dimming for our high power LED's.

LED Features

- The LED driver circuit drives 9 high power LED's.
- Each of the green, blue and red channels in the LED's are driven by individual drivers.
- LED Characteristics:
 - 3 W LED's.
 - Forward Voltage:
 - Red 3.4 V ; Blue/Green 2.5V
 - Forward Current:
 - Red 330mA; Blue/Green- 300 mA

LED Driver Specifications

Driver consists of:

- Bridge Rectification circuit: Converting 120VAC to 160VDC.
- Buck Converter Circuit
- Lossless snubber circuit to take care of current spikes in the LED's.
- Current across the LED driver circuit is controlled using a current sense resistor and a PWM input from the microcontroller.
- •Increases PWM switching frequency from 500 Hz to 80 kHz

LED Driver

LED Driver

LED Current in driver after snubber.

LED Current with PWM dimming

LED Driver: Challenges

- The LED driver had worked exactly according to specifications on our breadboard.
- During our PCB design we had mistakenly connected the snubber capacitor to the current sense pin on the LED driver chip.
- The fast current sensing pin detected a capacitance and began oscillating.
- These oscillations caused the internal circuitry of the chip to malfunction.

Replacement Circuit

- A current sense resistor R2 to limit current across LED's.
 - A NPN transistor and a NFET.
 - Zener Diode to regulate voltage.

Sensor Unit

- User interface
 - Adjust CCT and brightness setpoints
- Reads color sensor using frequency capture
- Wirelessly sends packet over UART using RS232
- All supplied at 5V

Sensor Unit Schematic

Sensor Unit

Color Sensor

- 4x4 array of R,G,B,C photodiodes
- Frequency output: 2Hz-150kHz
- Output frequencies captured by microcontroller

TAOS TCS3200

Challenges of Color Sensor

- Frequency output can be unstable, causing oscillations in control
 - solved by using lower resolution and powerful LEDs for a wider frequency output range
- Each color channel sensitive to nonvisible spectrum. Covered sensor with IR-block filter
- Sensor is sensitive to the angle of incident light
- Nonlinear in dark condition (SNR low)

Color Sensor Spectrum

Color Sensor Response

Spectrum of LEDs

Peak response	Sensor	LED
R	630	630
G	525	522
В	460	455

Sensor Microcontroller

- PIC16F887
- Captures RGB frequencies, collects user settings, constantly transmits serial RS232 data at baud rate=1000 through transmitter
- Wireless transmission frequency is dependent on the sensor output frequency

- 2 Hz in dark -> 0.5 s x 16 x 3 chan. = 24s

Frequency Capture

- Using the internal timer of the PIC 16, we measure the time it takes between 16 periods of the output pulse of the sensor.
- Calculate the frequency by dividing by the period (with appropriate scaling).
- Initially, tried a software timer to count frequency, but was slow and narrow range

User Interface

- 16x2 Character LCD Module
- Displays the correlated color temperature (CCT) 2000-9000K and brightness from 0%~100%

- User sets by adjusting two knobs
- A button that turns the lights on/off

Wireless Communication

- Sensor unit contains transmitter module and lighting controller contains receiver
- Transmitter data pin connected to sensor microcontroller
- Transmitter modulates serial data and transmits wirelessly using ASK at 315 MHz
- PIC has UART driver. We use RS232.

Wireless Communication

- UART requires one byte at a time
- Package is 13 bytes long
- RGB values 2-bytes long, must split
- First two bytes are header used to identify beginning of package

Byte	Data
1	255
2	255
3	R[7:0]
4	R[15:8]
5	G[7:0]
6	G[15:8]
7	B[7:0]
8	B[15:8]
9	CCT (2-9)
10	0
11	Brightness (0-100)
12	0
13	On/Off

Sensor Unit: Testing

- Tested sensor frequency capture by comparing with oscilloscope.
- Verified data received using PICkit2 UART tool
- We confirmed rate of transmission met specification by counting packets
 ~300/min = ~5 packets/s

Lighting Controller

- Receives sensor data

 R,G,B,CCT,brightness,on/off
- Run PI controller on R,G,B variables
- Output PWM signals
- Connect to PIR sensor
- PIC24HJ128GP202

Lighting Controller

Lighting Controller

PIR sensor

- The sensor is highly integrated, but we had to test to get right on time and sensitivity
- Simply outputs high (3.3V) if a person is present (moving)

Ĩ

5V / Out / GND

- If not detected, system will be in low power mode
 - Not process any data
 - LEDs off

Lighting Controller: Flow

- Control is done in R,G,B coordinates
- Every new received packet
 - Update setpoint
 - PI control iteration done for each color channel
 - Update PWM signal

RGB Target Calculations

- We use CIE 1931 XYZ color space
- Cubic approximation to Planckican Locus to go from CCT to (x,y)
- Scale brightness to get Y

•
$$X = \frac{x}{y}Y$$
, $Z = \frac{1-x-y}{y}Y$

• Matrix N maps X,Y,Z to R,G,B

CIE 1931 color space chromaticity diagram

Color Sensor Calibration

- We want a relationship between R,G,B and X,Y,Z
- For red, green, and blue individually
 - Record sensor readings
 - Obtain X,Y,Z values using spectrometer
- Compute calibration matrix M
- N=M⁻¹
 - R,G,B of sensor and PWM only differ by constant

1

PI Controller

- For each color channel
 - $Error_R = R_{target} R_{sensor}$
 - Error less than threshold? Stable. Else:
 - $-\Delta R_{PWM} = k_{P,R} Error_R + k_{I,R} ErrorSum_R$
 - $-R_{PWM} += \Delta R_{PWM}$
 - If PWMs saturate, set to maximum or minimum (100%,0%)

Control assumptions

This works because

- Sensor output is linear with incident power
 - Will reach the setpoint more slowly under nonlinear conditions
- LED output power is linear with PWM duty cycle

– important because it influences PI control

Linearity of PWM

Green Sensor Values

Lighting Controller: Testing

- Once system was integrated, only PI control needed testing
- We allow a settling time of less than 10s in the design review
- Some times are longer than 10s Needs better tuning K_i and K_p
 - Tuning is needed for every change in LEDs relative position to the sensor to get the contribution of LEDs

Recommendations

- Brighter LED's for larger controllable range
- More accurate calibration matrix would make setpoints more accurate (~10% error currently)
- Tuning PI factors would lead to lower settling time, lower steady state error
- A better sensor with stable output smooth, narrow peaks for spectral response
- Second color sensor with ND filter
 - Handle brighter light when other sensor saturates

Future Work

- The system is extendable for LEDs with more colors to refine the output light
- Users are able to adjust more factors, i.e. arbitrary color in (x,y) space
- More sensors can be used to evaluate the environment better
- Sensor board battery powered
- Time of day settings

Ethical Considerations

- Safety of device was considered and evaluated before implementation and before the demonstration.
- Precautions were taken while building and soldering to not put ourselves.
- We must not overstate our performance claims.

Thank You

- Ryan May
- Alex Suchko
- Kevin Colvary
- Dr. Dragic
- Dr. Carney
- Mark Smart
- Parts Shop Team

Questions

