Comparative Motor Design

Project Proposal Spring 2012

Xiaowen Bai, Li Cai, and Cheng Xu

Team number: 6

TA: Jim Kolodziej

Contents

1.	Introd	uction 2	<u>'</u>
1	L.01.	Statement of Interest 2	<u>)</u>
1	L.02.	Objectives 2	2
1	L.03.	Benefits & Features 2) -
2.	Desigr	٦ 3	;
2	2.01.	Block Diagram	;
2	2.02.	Block Descriptions	;
2	2.03.	Performance Requirements 3	;
3.	Verific	ation 4	ł
3	3.01.	Testing Procedures 4	ł
3	3.02.	Tolerance Analysis 4	ł
4.	Cost	5	,
Z	1.01.	Equipment & Material Cost 5	,
Z	1.02.	Labor Cost 5	,
5.	Sched	ule 6	;

1. Introduction

1.01. Statement of Interest

Today many induction motors are serving critical processes that do not have a back up. Since any failure is very costly, it is tempting to choose costly components not required for the specific situation while pursuing maximum reliability. The challenge is to maximize reliability without over spending. Therefore, it is necessary to come up with new rotor constructions with better efficiency.

1.02. Objectives

Our group will begin with a small commercial AC induction motor and design two improved rotor configurations that support comparative analysis in the lab. One rotor would be based on the commercial product, but would increase the amount of aluminum in the conductor bars to improve efficiency. The second would use copper in place of aluminum. Our team will develop and analyze the two rotor designs, arrange for rotor fabrication, and then test all three rotors for dynamic and steady-state performance. Finite element analysis software (e.g.ANSYS/Ansoft) will be used to do the computer simulation comparisons for the designed rotors.

1.03. Benefits & Features

- Obtain a detailed comparison data set for different motor designs
- Compare each design's cost to identify the best efficiency-cost ratio
- Provide a reference for future motor material selection and design

2. Design

2.01. Block Diagram

2.02. Block Descriptions

- Power Supply:
 - o 60 Hz AC power supply up to 225 kVA
 - $\circ~$ DC Power of ±120 V at up to 24 kW
- Variac ™: an autotransformer that varies the output voltage for a steady AC input voltage
- Motor: Current Selection 1/4 HP motor, Grainger #3N843
- Dyno LabView: controls Dynamometer
- Dynamometer: controls a torque and velocity for the testing motor

2.03. Performance Requirements

The basic goal for this project is to design 2 rotors based on commercial product and

testing their characteristic data. In case to have a steady performance for the designed motors,

the requirement for testing operation is 208-220/440 V, 60/50 Hz, maximum ambient

temperature 40°C.

3. Verification

3.01. Testing Procedures

3.01.1. Simulation

An electromagnetic analysis software will be used to test the designed two rotors. In this project, we will use ANSYS Maxwell 14 and ANSYS RMxprt to analyzing the designed rotors, then comparing the analyzed data with the actual testing data.

3.01.2. Real Motor Testing

Equivalent Circuit of One Phase of A Three-Phase Induction Machine

Since we will test the operation characteristic for all three motors, several basic tests will be applied to obtain the basic machine operation data.

• DC Test

Obtain line resistance for each phase.

• Open Circuit Test

Obtain core loss (referred to stator) r_c and magnetizing reactance (referred to stator) x_m .

• Short Circuit Test

Obtain $r_2 + R_{ext}$, (where r_2 is rotor single-phase winding resistance, and R_{ext} is External resistance), x_1 - stator single phase leakage reactance, x_2 - rotor single phase leakage reactance.

From the tests listed above, we will obtain the data that are needed to analyze the motor performance, such as torque-speed curve, motor speed control, motor efficiency, etc. These analyses will be applied on all three rotors that we have: reference rotor, aluminum rotor, and copper rotor.

3.02. Tolerance Analysis

In our project, the variation of casting material amount would affect greatly on motors' operation. The amount of aluminum and copper used in simulation may not actually matches the amount of casting material used in the real fabrication process. Therefore, in our tolerance analysis, we will examine how ideal simulation efficiency varies with the actual efficiency while \pm 5% material amount difference may occur.

Equipment & Material Cost			
Item Description	Item Price	Quantity	Total
1/4 HP Commercial Motor *	\$185.5/unit	2 units	\$371.00
Copper	\$3.87/Lb	20 Lb	\$77.40
Aluminum	\$1.15/Lb	6 Lb	\$6.90
Estimate Total Equipment & Material Cost			

4.01. Equipment & Material Cost

* The motor type we choose for this project is Grainger #3N843, which is discontinued. Therefore for the price estimation, we choose the price for ¼ HP commercial Motor Grainger Item # 2K505.

Material Quantity Calculation

We estimated the volume for casting material is 1 liter. For Copper, whose density ρ =8.94kg/L, the mass for copper is $m_{Cu} = 8.94kg$, approximately 20Lb. Similarly, the density of Aluminum is $\rho = 2.7kg/L$, the mass for aluminum is $m_{Al} = 2.7kg$, approximately 6Lb.

4.02. Labor Cost

Labor Cost				
Item Description	Item Price	Quantity	Total	Total * 2.5
Foundary Labor	\$200/unit	2 units	\$400.00	\$1,000.00
Xiaowen Bai	\$20/hour	8 weeks	\$1,600.00	\$4,000.00
Li Cai	\$20/hour	8 weeks	\$1,600.00	\$4,000.00
Cheng Xu	\$20/hour	8 weeks	\$1,600.00	\$4,000.00
Estimate Total Labor Cost			\$5,200.00	\$13,000.00

4.03. Total Cost

Equipment and Material Cost	\$455.30
Labor Cost	\$13,000.00
Total Cost	\$13,455.30

5. Schedule

Week	Tasks	Member
	Proposal	Xiaowen
	Research Background Paper	
	Analyzing cost	
2/6	Proposal	Li
	IEEE Code of Ethics	
	Proposal	Cheng
	Arrange appointments	
	Sign-up for design review	Xiaowen
	Preliminary Testing for Original Rotor	
	Contact local foundry	Li
2/13	Contact ECE stores and partshop	
	Preliminary Testing for Original Rotor	Cheng
	Research IEEE Standard for Motor	
	Testing	
	Preliminary Data Analysis	Xiaowen
	Prepare for design review	
2/20	Prepare for design review	Li
	Preliminary Data Analysis	Cheng
	Prepare for design review	
	Test Aluminum Rotor	Xiaowen
	Data Compile	
2/27	Data Record	Li
	Simulation	
	Data Compile	Cheng
	Analyze Aluminum Rotor Data	Xiaowen
	Data Record	Li
3/5	Simulation	
	Test Aluminum Rotor	Cheng
	Data Compile	
	Test Copper Rotor	Xiaowen
	Data Compile	
3/12	Data Record	Li
	Simulation	
	Data Compile	Cheng

3/19	Spring Break	
	Sign-up for Mock-up Presentation	Xiaowen
3/26	Simulation	Li
	Data Analysis	Cheng
	Compare Data for 3 Rotors	Xiaowen
4/2	Compare Data for 3 Rotors	Li
	Compare Data for 3 Rotors	Cheng
	Analyze Real Time & Cost	Xiaowen
4/9	Analyze Real Time & Cost	Li
	Analyze Real Time & Cost	Cheng
	Sign-up for Demo and Presentation	Xiaowen
4/16	Sign-up for Demo and Presentation	Li
	Sign-up for Demo and Presentation	Cheng
	Prepare for Demo and Presentation	Xiaowen
	Work on Final Paper	
1/22	Prepare for Demo and Presentation	Li
4/25	Work on Final Paper	
	Prepare for Demo and Presentation	Cheng
	Work on Final Paper	
	Work on Final Paper	Xiaowen
4/30	Work on Final Paper	Li
	Work on Final Paper	Cheng